Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1146. doi: 10.1107/S1600536812011750

2-Amino-6-{[(6-chloropyridin-3-yl)methyl](ethyl)amino}-1-methyl-5-nitro-4-phenyl-1,4-dihydro­pyridine-3-carbonitrile ethanol monosolvate

Chuan-Wen Sun a,*, Yan-Xia Chen a, Tian-Yan Liu a
PMCID: PMC3344090  PMID: 22606093

Abstract

In the title compound, C21H21ClN6O2·C2H6O, a member of the insecticidal active neonicotinoid group of compounds, the 1,4-dihydro­pyridine ring adopts a boat conformation. An intra­molecular C—H⋯O hydrogen bond occurs while the components are linked by an N—H⋯O interaction. The crystal packing is stablized by O—H⋯N hydrogen bonds and C—H⋯O interactions.

Related literature  

For the synthesis, see: Zhang et al. (2010). For the insectidal activity of nitenpyram [systematic name: (E)-N-(6-Chloro-3-pyridyl­meth­yl)-N-ethyl-N′-methyl-2-nitro­vinyl­idenediamine], see: Elbert & Nauen (2000); Jeschke & Nauen (2008); Kashiwada (1996); Minamida et al. (1993); Shao et al. (2008); Tomizawa & Casida (2009).graphic file with name e-68-o1146-scheme1.jpg

Experimental  

Crystal data  

  • C21H21ClN6O2·C2H6O

  • M r = 470.96

  • Orthorhombic, Inline graphic

  • a = 19.3334 (19) Å

  • b = 12.1156 (12) Å

  • c = 20.644 (2) Å

  • V = 4835.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 2001) T min = 0.970, T max = 0.981

  • 44471 measured reflections

  • 4267 independent reflections

  • 3044 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.135

  • S = 1.05

  • 4267 reflections

  • 330 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011750/gg2077sup1.cif

e-68-o1146-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011750/gg2077Isup2.hkl

e-68-o1146-Isup2.hkl (209.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011750/gg2077Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1i 0.82 1.97 2.785 (13) 179
N4—H4B⋯O3 0.86 2.26 2.902 (11) 132
C6—H6A⋯O2 0.97 2.13 2.783 (3) 124
C7—H7B⋯O2ii 0.97 2.57 3.378 (3) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (21042010, 21102092 and 30870560).

supplementary crystallographic information

Comment

Neonicotinoid insecticides (NNSs), which act agonistically on the insect nicotinic acetylcholine receptors (nAChRs), are gaining widespread use as a way to control pests, because of their high potency and low mammalian toxicity. As part of the chloronicotinyl subclass, nitenpyram, which was brought to the market two decades ago, also showed higher selectivity and better systemic properties against mammals, birds, aquatic life than insects, due to the differential binding affinities with the nAChR receptors of their neurosystem. (Jeschke & Nauen, 2008; Tomizawa & Casida, 2009; Minamida et al., 1993; Kashiwada, 1996; Shao et al., 2008; Elbert & Nauen, 2000). In this report, the title compound (Scheme I) was synthesized and characterized by X-ray diffraction.

In the title structure, C21H21ClN6O2C2H6O, (I), there is a cis-2-Amino-6-[N-(6-chloro-3-pyridinylmethyl)-N-ethyl]amino-3-cyano-1-methyl-5- nitro-4-phenyl-1,4-dihydropyridine molecule and a ethanol molecule in the asymmetric unit (Fig. 1). The 1,4-dihydropyridine ring adopts a sofa (boat) conformation. As compared with the trans configuration of nitro in the crystal structure of nitenpyram, the nitro group in the title compound is in the cis configuration as anticipated. Interestingly, the C–C and C-N bond length data (C9–N3 1.389 (2) Å, N3–C10 1.402 (3) Å, C11–C12 1.510 (3) Å and C12-C13 1.519 (3) Å) in the structure of (I) are shorter than the standard C–C (1.54 Å) and C–N (1.47 Å). On the contrary, the C═C bond length data (C9═C13 1.384 (3) Å and C10═C11 1.348 (3) Å) are longer than the standard C═C bond (1.34 Å). This shows that there is a homo-conjugation effect on the 1,4-dihydropyridine scaffold (Fig. 1).

The crystal packing is stablized by O-H···N, N-H···O and C-H···O hydrogen bonds (Fig. 2). Analysis shows that no intermolecular p···π or C-H···π interactions exist in the crystal structure.

Experimental

The title compound was prepared by the literature method (Zhang et al., 2010) and it was obtained using volatilization of petroleum ether and ethanol solution at room temperature, giving yellow crystals (yield 83.7%). 1H NMR (CDCl3, 400 Hz): 8.08 (d, J = 12.4 Hz,1H, Py—H), 7.34 (d, J = 8.9 Hz, 1H, Py—H), 7.24 (s,3H,Ph—H), 7.08 (m, J = 7.8 Hz, 1H, Py—H), 7.05–6.95 (m, 2H, Ph—H), 5.06 (s, 1H, CH), 4.79 (s, 2H, NH2), 4.33 (d, J = 14.8 Hz, 1H), 4.06 (m, J = 14.6 Hz, 1H), 3.35–3.20 (m, 1H), 3.17 (s, 3H, NCH3), 3.10 (d, J = 7.3 Hz,1H), 1.33–1.21 (m,3H,NCH2CH3). IR(KBr, cm-1) 2974 (CH3), 3327, 3197 (NH2), 2184 (CN), 1457, 1409 (NO2), 1648, 1614, 1557 (benzene).Anal. calcd. for C23H21ClN6O2 C 59.36, H 4.98, N 19.78% found, C 59.38, H 4.97, N 19.76%.

Refinement

During the refinement, the ethanol molecule was disordered over two sites. These C-C and C-O distances were refined with the restraints of C-C = 1.51 (1)Å and C-O = 1.38 (1)Å by using the DFIX command. The final occupancies for the major and minor components were 0.57 (1):0.43 (1), respectively. In (I), H atoms bonded to C and N atoms were located at their ideal positions and subsequently treated as riding modes with C–H distances of 0.93Å (aromatic), 0.97Å (methylene) 0.98Å (methine) 0.86Å (amine) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(aromatic, methylene, methine C or N) or 1.5Ueq(methyl C). H atoms bonded to ethanol O atoms were located at its ideal position (O-H=0.82Å) and refined with the constraint of the Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) shown with 30% displacement ellipsoids. For clarity, the minor component of the disordered ethanol molecule is omitted. Hydrogen bonding is shown as dashed lines.

Fig. 2.

Fig. 2.

Part of the crystal packing in the title compound (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C21H21ClN6O2·C2H6O F(000) = 1984
Mr = 470.96 Dx = 1.294 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5913 reflections
a = 19.3334 (19) Å θ = 2.2–20.1°
b = 12.1156 (12) Å µ = 0.19 mm1
c = 20.644 (2) Å T = 298 K
V = 4835.5 (8) Å3 Block, yellow
Z = 8 0.16 × 0.12 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 4267 independent reflections
Radiation source: fine-focus sealed tube 3044 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
phi and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS: Bruker, 2001) h = −23→23
Tmin = 0.970, Tmax = 0.981 k = −14→14
44471 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.8771P] where P = (Fo2 + 2Fc2)/3
4267 reflections (Δ/σ)max < 0.001
330 parameters Δρmax = 0.21 e Å3
4 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.16697 (13) 0.1575 (2) 0.97037 (12) 0.0672 (6)
C2 0.16346 (13) 0.0715 (2) 0.92705 (12) 0.0677 (6)
H2 0.1423 0.0051 0.9379 0.081*
C3 0.19239 (11) 0.08776 (18) 0.86736 (11) 0.0594 (6)
H3 0.1913 0.0314 0.8368 0.071*
C4 0.22332 (10) 0.18758 (16) 0.85211 (10) 0.0509 (5)
C5 0.22151 (11) 0.26760 (19) 0.89890 (12) 0.0636 (6)
H5 0.2408 0.3359 0.8890 0.076*
C6 0.26080 (10) 0.20673 (18) 0.78962 (10) 0.0538 (5)
H6A 0.2766 0.2827 0.7884 0.065*
H6B 0.3014 0.1596 0.7884 0.065*
C7 0.25784 (11) 0.15403 (18) 0.67342 (11) 0.0608 (6)
H7A 0.2256 0.1348 0.6392 0.073*
H7B 0.2857 0.0893 0.6828 0.073*
C8 0.30456 (13) 0.2463 (3) 0.65010 (14) 0.0890 (8)
H8A 0.2773 0.3106 0.6409 0.133*
H8B 0.3282 0.2233 0.6115 0.133*
H8C 0.3379 0.2634 0.6831 0.133*
C9 0.15149 (10) 0.21488 (15) 0.72709 (10) 0.0457 (5)
C10 0.04705 (11) 0.17912 (18) 0.66673 (10) 0.0540 (5)
C11 0.01366 (10) 0.26259 (18) 0.69650 (11) 0.0555 (5)
C12 0.04016 (10) 0.30390 (16) 0.76091 (10) 0.0515 (5)
H12 0.0249 0.3805 0.7660 0.062*
C13 0.11850 (9) 0.30414 (15) 0.75527 (10) 0.0473 (5)
C14 0.12560 (12) 0.02347 (17) 0.68983 (12) 0.0629 (6)
H14A 0.1431 0.0043 0.6478 0.094*
H14B 0.0841 −0.0175 0.6983 0.094*
H14C 0.1596 0.0060 0.7221 0.094*
C15 −0.04783 (12) 0.3063 (2) 0.66890 (13) 0.0663 (6)
C16 0.01488 (10) 0.23895 (18) 0.81946 (11) 0.0551 (5)
C17 −0.01453 (13) 0.1358 (2) 0.81419 (14) 0.0727 (7)
H17 −0.0206 0.1046 0.7734 0.087*
C18 −0.03510 (15) 0.0781 (2) 0.86844 (16) 0.0910 (9)
H18 −0.0544 0.0082 0.8638 0.109*
C19 −0.02752 (15) 0.1221 (3) 0.92841 (17) 0.0951 (9)
H19 −0.0416 0.0830 0.9649 0.114*
C20 0.00120 (15) 0.2249 (3) 0.93454 (15) 0.0975 (10)
H20 0.0067 0.2558 0.9755 0.117*
C21 0.02208 (13) 0.2832 (2) 0.88048 (13) 0.0784 (7)
H21 0.0412 0.3531 0.8854 0.094*
Cl1 0.13433 (5) 0.14060 (7) 1.04868 (3) 0.1000 (3)
N1 0.19380 (11) 0.25445 (17) 0.95814 (10) 0.0710 (6)
N2 0.21881 (8) 0.18511 (13) 0.73179 (8) 0.0486 (4)
N3 0.11034 (8) 0.14244 (13) 0.69193 (8) 0.0491 (4)
N4 0.02386 (10) 0.12143 (17) 0.61498 (10) 0.0750 (6)
H4A −0.0156 0.1370 0.5981 0.090*
H4B 0.0486 0.0692 0.5989 0.090*
N5 −0.09771 (11) 0.34154 (19) 0.64678 (13) 0.0927 (7)
N6 0.15343 (9) 0.40156 (14) 0.77108 (9) 0.0568 (5)
O1 0.12139 (9) 0.47446 (13) 0.80126 (9) 0.0812 (5)
O2 0.21474 (8) 0.41614 (12) 0.75479 (9) 0.0703 (5)
C22 0.1322 (6) −0.1213 (7) 0.4967 (5) 0.147 (4) 0.57
H22A 0.1746 −0.1413 0.5178 0.220* 0.57
H22B 0.1263 −0.1656 0.4585 0.220* 0.57
H22C 0.0941 −0.1334 0.5256 0.220* 0.57
C23 0.1345 (8) −0.0106 (7) 0.4793 (5) 0.194 (6) 0.57
H23A 0.0942 0.0043 0.4528 0.233* 0.57
H23B 0.1747 −0.0004 0.4519 0.233* 0.57
O3 0.1370 (7) 0.0705 (9) 0.5276 (6) 0.145 (5) 0.57
H3A 0.1532 0.1222 0.5069 0.218* 0.57
C22' 0.1377 (5) −0.0766 (13) 0.4602 (5) 0.113 (3) 0.43
H22D 0.0896 −0.0859 0.4701 0.169* 0.43
H22E 0.1581 −0.1473 0.4513 0.169* 0.43
H22F 0.1425 −0.0298 0.4229 0.169* 0.43
C23' 0.1723 (4) −0.0269 (7) 0.5146 (4) 0.094 (2) 0.43
H23C 0.1732 −0.0788 0.5503 0.113* 0.43
H23D 0.2198 −0.0105 0.5028 0.113* 0.43
O3' 0.1403 (5) 0.0683 (7) 0.5341 (6) 0.085 (3) 0.43
H3B 0.1193 0.0955 0.5035 0.127* 0.43

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0703 (15) 0.0707 (16) 0.0606 (14) −0.0110 (12) 0.0025 (12) 0.0082 (12)
C2 0.0759 (15) 0.0581 (14) 0.0690 (16) −0.0160 (12) −0.0023 (13) 0.0120 (12)
C3 0.0652 (14) 0.0515 (12) 0.0616 (14) −0.0049 (10) −0.0046 (11) 0.0034 (11)
C4 0.0448 (11) 0.0496 (12) 0.0582 (13) −0.0018 (9) −0.0067 (9) 0.0043 (10)
C5 0.0669 (14) 0.0556 (13) 0.0683 (16) −0.0134 (11) 0.0021 (12) 0.0053 (12)
C6 0.0416 (11) 0.0535 (12) 0.0665 (14) −0.0009 (9) −0.0016 (10) 0.0037 (10)
C7 0.0543 (12) 0.0631 (14) 0.0651 (14) 0.0088 (10) 0.0134 (11) 0.0066 (11)
C8 0.0765 (17) 0.0963 (19) 0.094 (2) −0.0013 (15) 0.0331 (15) 0.0180 (16)
C9 0.0440 (11) 0.0428 (11) 0.0505 (11) −0.0034 (9) 0.0030 (9) 0.0091 (9)
C10 0.0472 (11) 0.0586 (13) 0.0563 (13) −0.0054 (10) −0.0024 (10) 0.0052 (11)
C11 0.0430 (11) 0.0554 (12) 0.0682 (14) 0.0019 (10) −0.0014 (10) 0.0085 (11)
C12 0.0435 (11) 0.0430 (11) 0.0682 (14) 0.0065 (9) 0.0034 (10) 0.0016 (10)
C13 0.0448 (11) 0.0389 (10) 0.0584 (12) −0.0016 (9) 0.0009 (9) 0.0053 (9)
C14 0.0681 (14) 0.0443 (12) 0.0764 (16) −0.0008 (10) −0.0046 (12) −0.0002 (11)
C15 0.0502 (13) 0.0630 (14) 0.0856 (17) −0.0020 (11) −0.0027 (12) 0.0091 (13)
C16 0.0394 (10) 0.0570 (13) 0.0690 (14) 0.0056 (10) 0.0088 (10) 0.0011 (11)
C17 0.0740 (15) 0.0651 (15) 0.0790 (17) −0.0060 (13) 0.0211 (13) 0.0025 (13)
C18 0.094 (2) 0.0777 (18) 0.102 (2) −0.0085 (15) 0.0348 (18) 0.0158 (17)
C19 0.0780 (19) 0.118 (3) 0.090 (2) 0.0036 (18) 0.0234 (16) 0.033 (2)
C20 0.087 (2) 0.141 (3) 0.0646 (18) −0.006 (2) 0.0106 (15) 0.0001 (19)
C21 0.0729 (16) 0.0889 (19) 0.0735 (18) −0.0101 (14) 0.0092 (14) −0.0073 (15)
Cl1 0.1254 (7) 0.1083 (6) 0.0663 (5) −0.0273 (5) 0.0183 (4) 0.0100 (4)
N1 0.0846 (14) 0.0667 (13) 0.0618 (13) −0.0142 (11) 0.0057 (10) −0.0010 (10)
N2 0.0411 (9) 0.0498 (9) 0.0550 (10) 0.0011 (7) 0.0036 (8) 0.0046 (8)
N3 0.0455 (9) 0.0430 (9) 0.0588 (10) 0.0013 (7) −0.0006 (8) 0.0022 (8)
N4 0.0625 (12) 0.0837 (14) 0.0787 (14) 0.0041 (10) −0.0180 (10) −0.0155 (12)
N5 0.0568 (13) 0.0909 (16) 0.130 (2) 0.0106 (11) −0.0179 (13) 0.0186 (15)
N6 0.0557 (11) 0.0431 (10) 0.0715 (12) −0.0019 (9) 0.0003 (9) 0.0057 (9)
O1 0.0788 (11) 0.0533 (10) 0.1115 (14) −0.0030 (9) 0.0099 (10) −0.0224 (10)
O2 0.0534 (9) 0.0533 (9) 0.1042 (13) −0.0117 (7) 0.0058 (9) 0.0071 (9)
C22 0.203 (10) 0.110 (7) 0.128 (8) −0.023 (6) −0.051 (7) 0.017 (5)
C23 0.363 (19) 0.097 (7) 0.122 (8) 0.046 (9) −0.026 (10) −0.009 (6)
O3 0.219 (11) 0.122 (8) 0.095 (6) 0.048 (7) 0.036 (6) −0.014 (6)
C22' 0.099 (6) 0.134 (10) 0.105 (8) −0.003 (7) 0.013 (6) −0.021 (7)
C23' 0.099 (5) 0.105 (7) 0.077 (5) 0.040 (5) −0.010 (4) 0.013 (5)
O3' 0.105 (6) 0.055 (5) 0.093 (7) −0.001 (5) 0.037 (5) 0.016 (5)

Geometric parameters (Å, º)

C1—N1 1.309 (3) C14—H14B 0.9600
C1—C2 1.374 (3) C14—H14C 0.9600
C1—Cl1 1.747 (3) C15—N5 1.149 (3)
C2—C3 1.368 (3) C16—C21 1.376 (3)
C2—H2 0.9300 C16—C17 1.377 (3)
C3—C4 1.385 (3) C17—C18 1.379 (4)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.369 (3) C18—C19 1.356 (4)
C4—C6 1.498 (3) C18—H18 0.9300
C5—N1 1.345 (3) C19—C20 1.370 (5)
C5—H5 0.9300 C19—H19 0.9300
C6—N2 1.467 (3) C20—C21 1.381 (4)
C6—H6A 0.9700 C20—H20 0.9300
C6—H6B 0.9700 C21—H21 0.9300
C7—N2 1.471 (3) N4—H4A 0.8600
C7—C8 1.516 (3) N4—H4B 0.8600
C7—H7A 0.9700 N6—O2 1.245 (2)
C7—H7B 0.9700 N6—O1 1.246 (2)
C8—H8A 0.9600 C22—C23 1.388 (8)
C8—H8B 0.9600 C22—H22A 0.9600
C8—H8C 0.9600 C22—H22B 0.9600
C9—N2 1.354 (2) C22—H22C 0.9600
C9—C13 1.384 (3) C23—O3 1.400 (9)
C9—N3 1.389 (2) C23—H23A 0.9700
C10—C11 1.348 (3) C23—H23B 0.9700
C10—N4 1.353 (3) O3—H3A 0.8200
C10—N3 1.402 (3) C22'—C23' 1.439 (8)
C11—C15 1.420 (3) C22'—H22D 0.9600
C11—C12 1.510 (3) C22'—H22E 0.9600
C12—C13 1.519 (3) C22'—H22F 0.9600
C12—C16 1.523 (3) C23'—O3' 1.370 (8)
C12—H12 0.9800 C23'—H23C 0.9700
C13—N6 1.398 (3) C23'—H23D 0.9700
C14—N3 1.472 (3) O3'—H3A 0.8975
C14—H14A 0.9600 O3'—H3B 0.8200
N1—C1—C2 125.0 (2) H14A—C14—H14C 109.5
N1—C1—Cl1 115.25 (19) H14B—C14—H14C 109.5
C2—C1—Cl1 119.72 (19) N5—C15—C11 179.7 (3)
C3—C2—C1 117.2 (2) C21—C16—C17 117.9 (2)
C3—C2—H2 121.4 C21—C16—C12 119.5 (2)
C1—C2—H2 121.4 C17—C16—C12 122.6 (2)
C2—C3—C4 120.4 (2) C16—C17—C18 121.0 (3)
C2—C3—H3 119.8 C16—C17—H17 119.5
C4—C3—H3 119.8 C18—C17—H17 119.5
C5—C4—C3 116.5 (2) C19—C18—C17 120.8 (3)
C5—C4—C6 120.69 (19) C19—C18—H18 119.6
C3—C4—C6 122.7 (2) C17—C18—H18 119.6
N1—C5—C4 124.6 (2) C18—C19—C20 119.0 (3)
N1—C5—H5 117.7 C18—C19—H19 120.5
C4—C5—H5 117.7 C20—C19—H19 120.5
N2—C6—C4 113.92 (16) C19—C20—C21 120.6 (3)
N2—C6—H6A 108.8 C19—C20—H20 119.7
C4—C6—H6A 108.8 C21—C20—H20 119.7
N2—C6—H6B 108.8 C16—C21—C20 120.7 (3)
C4—C6—H6B 108.8 C16—C21—H21 119.6
H6A—C6—H6B 107.7 C20—C21—H21 119.6
N2—C7—C8 112.2 (2) C1—N1—C5 116.1 (2)
N2—C7—H7A 109.2 C9—N2—C6 122.86 (17)
C8—C7—H7A 109.2 C9—N2—C7 120.18 (18)
N2—C7—H7B 109.2 C6—N2—C7 115.36 (15)
C8—C7—H7B 109.2 C9—N3—C10 119.57 (16)
H7A—C7—H7B 107.9 C9—N3—C14 121.28 (16)
C7—C8—H8A 109.5 C10—N3—C14 118.32 (17)
C7—C8—H8B 109.5 C10—N4—H4A 120.0
H8A—C8—H8B 109.5 C10—N4—H4B 120.0
C7—C8—H8C 109.5 H4A—N4—H4B 120.0
H8A—C8—H8C 109.5 O2—N6—O1 120.54 (17)
H8B—C8—H8C 109.5 O2—N6—C13 121.09 (18)
N2—C9—C13 128.39 (18) O1—N6—C13 118.36 (17)
N2—C9—N3 114.80 (17) C22—C23—O3 119.7 (11)
C13—C9—N3 116.72 (17) C22—C23—H23A 107.4
C11—C10—N4 126.1 (2) O3—C23—H23A 107.4
C11—C10—N3 119.12 (19) C22—C23—H23B 107.4
N4—C10—N3 114.74 (19) O3—C23—H23B 107.4
C10—C11—C15 119.8 (2) H23A—C23—H23B 106.9
C10—C11—C12 119.17 (18) C23—O3—H3A 100.2
C15—C11—C12 120.9 (2) C23'—C22'—H22D 109.5
C11—C12—C13 105.76 (17) C23'—C22'—H22E 109.5
C11—C12—C16 114.75 (17) H22D—C22'—H22E 109.5
C13—C12—C16 112.45 (17) C23'—C22'—H22F 109.5
C11—C12—H12 107.9 H22D—C22'—H22F 109.5
C13—C12—H12 107.9 H22E—C22'—H22F 109.5
C16—C12—H12 107.9 O3'—C23'—C22' 111.9 (11)
C9—C13—N6 122.37 (17) O3'—C23'—H23C 109.2
C9—C13—C12 119.35 (17) C22'—C23'—H23C 109.2
N6—C13—C12 117.72 (17) O3'—C23'—H23D 109.2
N3—C14—H14A 109.5 C22'—C23'—H23D 109.2
N3—C14—H14B 109.5 H23C—C23'—H23D 107.9
H14A—C14—H14B 109.5 C23'—O3'—H3A 107.5
N3—C14—H14C 109.5 C23'—O3'—H3B 109.5
N1—C1—C2—C3 2.3 (4) C12—C16—C17—C18 178.2 (2)
Cl1—C1—C2—C3 −177.31 (18) C16—C17—C18—C19 0.7 (4)
C1—C2—C3—C4 −0.4 (3) C17—C18—C19—C20 −0.2 (5)
C2—C3—C4—C5 −1.5 (3) C18—C19—C20—C21 0.1 (5)
C2—C3—C4—C6 174.9 (2) C17—C16—C21—C20 0.8 (4)
C3—C4—C5—N1 1.9 (3) C12—C16—C21—C20 −178.4 (2)
C6—C4—C5—N1 −174.6 (2) C19—C20—C21—C16 −0.4 (4)
C5—C4—C6—N2 −127.6 (2) C2—C1—N1—C5 −2.1 (4)
C3—C4—C6—N2 56.2 (3) Cl1—C1—N1—C5 177.59 (17)
N4—C10—C11—C15 −8.0 (3) C4—C5—N1—C1 −0.1 (4)
N3—C10—C11—C15 175.28 (19) C13—C9—N2—C6 31.1 (3)
N4—C10—C11—C12 168.5 (2) N3—C9—N2—C6 −145.33 (18)
N3—C10—C11—C12 −8.2 (3) C13—C9—N2—C7 −133.8 (2)
C10—C11—C12—C13 40.0 (2) N3—C9—N2—C7 49.8 (2)
C15—C11—C12—C13 −143.46 (19) C4—C6—N2—C9 40.7 (3)
C10—C11—C12—C16 −84.5 (2) C4—C6—N2—C7 −153.71 (17)
C15—C11—C12—C16 92.0 (2) C8—C7—N2—C9 101.8 (2)
N2—C9—C13—N6 27.3 (3) C8—C7—N2—C6 −64.2 (2)
N3—C9—C13—N6 −156.32 (18) N2—C9—N3—C10 −160.22 (17)
N2—C9—C13—C12 −161.53 (19) C13—C9—N3—C10 22.9 (3)
N3—C9—C13—C12 14.9 (3) N2—C9—N3—C14 30.4 (3)
C11—C12—C13—C9 −43.8 (2) C13—C9—N3—C14 −146.51 (19)
C16—C12—C13—C9 82.2 (2) C11—C10—N3—C9 −26.8 (3)
C11—C12—C13—N6 127.84 (19) N4—C10—N3—C9 156.08 (19)
C16—C12—C13—N6 −106.2 (2) C11—C10—N3—C14 142.9 (2)
C11—C12—C16—C21 −164.9 (2) N4—C10—N3—C14 −34.2 (3)
C13—C12—C16—C21 74.1 (3) C9—C13—N6—O2 6.9 (3)
C11—C12—C16—C17 15.9 (3) C12—C13—N6—O2 −164.43 (18)
C13—C12—C16—C17 −105.0 (2) C9—C13—N6—O1 −174.0 (2)
C21—C16—C17—C18 −1.0 (4) C12—C13—N6—O1 14.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N1i 0.82 1.97 2.785 (13) 179
N4—H4B···O3 0.86 2.26 2.902 (11) 132
C6—H6A···O2 0.97 2.13 2.783 (3) 124
C7—H7B···O2ii 0.97 2.57 3.378 (3) 141

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2077).

References

  1. Bruker (2001). SADABS, SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Elbert, A. & Nauen, R. (2000). Pest Manage. Sci. 56, 60–64.
  3. Jeschke, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084–1098. [DOI] [PubMed]
  4. Kashiwada, Y. (1996). Agrochem. Jpn, 68, 18–19.
  5. Minamida, I., Iwanaga, K. & Tabuchi, T. (1993). J. Pestic. Sci. 18, 31–40.
  6. Shao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513–6516. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Tomizawa, M. & Casida, J. E. (2009). Acc. Chem. Res. 42, 260–269. [DOI] [PubMed]
  10. Zhang, W. W., Yang, X. B., Chen, W. D., Xu, X. Y., Li, L., Zhai, H. B. & Li, Z. (2010). J. Agric. Food Chem. 58, 2741–2745. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011750/gg2077sup1.cif

e-68-o1146-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011750/gg2077Isup2.hkl

e-68-o1146-Isup2.hkl (209.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011750/gg2077Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES