Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1152. doi: 10.1107/S1600536812011737

Methyl 2,2-dimeth­oxy-8-oxo-1-oxaspiro­[4.5]deca-6,9-diene-3-carboxyl­ate

Yongbing Lou a,*
PMCID: PMC3344095  PMID: 22606098

Abstract

In the title mol­ecule, C13H16O6, the cyclo­hexa-1,4-diene ring adopts a flat boat conformation (r.m.s. deviation from planarity = 0.060 Å) and the five-membered tetra­hydro­furan ring adopts an envelope conformation with the carboxyl group-substituted C atom as the flap. The dihedral angle at the spiro junction is 89.1 (1)°. In the crystal, mol­ecules are linked through weak C—H⋯O and van der Waals inter­actions.

Related literature  

For background to bioactive tetronic acid derivatives, see: Fischer et al. (1993); Bayer Aktiengesellschaft (1995).graphic file with name e-68-o1152-scheme1.jpg

Experimental  

Crystal data  

  • C13H16O6

  • M r = 268.26

  • Monoclinic, Inline graphic

  • a = 6.5324 (7) Å

  • b = 11.7519 (12) Å

  • c = 17.4204 (18) Å

  • β = 97.723 (2)°

  • V = 1325.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.31 × 0.26 × 0.21 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.958, T max = 0.978

  • 7015 measured reflections

  • 2588 independent reflections

  • 2140 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.140

  • S = 1.05

  • 2588 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011737/qk2030sup1.cif

e-68-o1152-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011737/qk2030Isup2.hkl

e-68-o1152-Isup2.hkl (127.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011737/qk2030Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O3i 0.96 2.60 3.269 (3) 127

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was sponsored by the National Science Foundation of Jiangsu Province (No. BK2009262) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry.

supplementary crystallographic information

Comment

The chemistry of tetronic acid (tetrahydrofuran-2,4-dione) compounds has received increasing attention in recent years due to their high biological activity as herbicides and insecticides (Fischer et al., 1993). The company Bayer AG has developed three tetronic acid pesticides, spirodiclofen, spiromesifen, and spirotetramat (Bayer Aktiengesellschaft, 1995), which are now in wide use in crop protection. As part of our studies in this area, we describe here the structure of the title compound (Scheme 1).

The title molecule (Fig. 1) contains one six-membered and one five-membered ring connected with a spiro-carbon C4. All bond lengths in this spiro system adopt normal values, e.g. the double bonds C2═C3, C5═C6, and C1═O1 with values of 1.320 (3) Å, 1.322 (3) Å, and 1.219 (2) Å, respectively. The cyclohexadienone unit is slightly bent to a flat boat conformation with atoms C2, C3, C5, C6 being practically coplanar and C1, C4, and O1 by 0.087 (3), 0.0163 (3), and 0.191 (5) Å, respectively, off from the plane of the former atoms. The five-membered tetrahydrofuran ring adopts an envelope conformation with C8 by 0.558 (3) Å out of the least-squares plane through O2, C4, C7, and C9 (their r.m.s. deviation from l.s. plane is 0.017 Å). In the crystal (Fig. 2), the molecules are linked through weak van der Waals and C-H···O interactions.

Experimental

The starting material and all intermediates are known from literature and are obtained by standard procedures. The title compound was synthesized starting with 4-hydroxybenzaldehyde according to Fig. 3. using standard procedures for the intermediates 2 through 5. Then, to a solution of 5 (800 mg, 3.36 mmol) in MeOH (12 ml) was added a solution of PhI(OAc)2 (1.6 g, 4.97 mmol) in CH2Cl2 (7 ml) at room temperature. The mixture was stirred for 30 min. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc: PE = 1:3) to afford 6 (648.1 mg, 72% yield). 1H NMR (400 MHz, CDCl3) δ 2.28 (dd, J =9.2 Hz, 13.6 Hz, 1H), 2.72 (dd, J = 8.0 Hz, 13.6 Hz, 1H), 3.38 (s, 3H), 3.46 (s, 3H), 3.78 (s, 3H), 6.15–6.20 (m, 2H), 6.89–6.92 (m, 1H), 7.07–7.10 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 36.9, 48.4, 49.9, 51.1, 52.4, 75.8, 122.2, 127.6, 148.2, 149.2, 169.5, 185.0.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93–0.98Å and were included in the final cycle of refinement in the riding mode with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the structure viewed down the a-axis.

Fig. 3.

Fig. 3.

Synthetic route for the title compound.

Crystal data

C13H16O6 F(000) = 568
Mr = 268.26 Dx = 1.345 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2543 reflections
a = 6.5324 (7) Å θ = 5.9–49.9°
b = 11.7519 (12) Å µ = 0.11 mm1
c = 17.4204 (18) Å T = 298 K
β = 97.723 (2)° Prismatic, colorless
V = 1325.2 (2) Å3 0.31 × 0.26 × 0.21 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2588 independent reflections
Radiation source: fine-focus sealed tube 2140 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −7→8
Tmin = 0.958, Tmax = 0.978 k = −14→14
7015 measured reflections l = −13→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.297P] where P = (Fo2 + 2Fc2)/3
2588 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.2524 (3) 0.60788 (16) −0.03288 (8) 0.0876 (5)
O2 0.0228 (2) 0.64745 (11) 0.26381 (7) 0.0560 (4)
O3 0.5107 (3) 0.39189 (16) 0.31643 (8) 0.0826 (5)
O4 0.34081 (19) 0.39820 (12) 0.41846 (7) 0.0571 (4)
O5 0.08806 (19) 0.62430 (12) 0.39416 (7) 0.0567 (4)
O6 0.35585 (19) 0.64129 (11) 0.32927 (7) 0.0546 (4)
C1 −0.1786 (3) 0.60713 (17) 0.03521 (11) 0.0601 (5)
C2 0.0197 (3) 0.66200 (19) 0.06170 (12) 0.0665 (6)
H2 0.0846 0.7040 0.0267 0.080*
C3 0.1080 (3) 0.65306 (19) 0.13416 (12) 0.0639 (6)
H3 0.2302 0.6927 0.1491 0.077*
C4 0.0216 (3) 0.58253 (16) 0.19334 (10) 0.0510 (4)
C5 −0.1957 (3) 0.54671 (16) 0.16723 (11) 0.0553 (5)
H5 −0.2722 0.5170 0.2039 0.066*
C6 −0.2852 (3) 0.55504 (17) 0.09477 (12) 0.0601 (5)
H6 −0.4186 0.5272 0.0815 0.072*
C7 0.1620 (3) 0.47845 (17) 0.21615 (10) 0.0584 (5)
H7A 0.1032 0.4096 0.1916 0.070*
H7B 0.2989 0.4899 0.2018 0.070*
C8 0.1695 (3) 0.47217 (14) 0.30329 (9) 0.0460 (4)
H8 0.0463 0.4327 0.3160 0.055*
C9 0.1579 (2) 0.59822 (14) 0.32513 (9) 0.0440 (4)
C10 0.3594 (3) 0.41569 (15) 0.34472 (10) 0.0490 (4)
C11 0.5178 (3) 0.35071 (19) 0.46569 (12) 0.0659 (6)
H11A 0.5372 0.2734 0.4503 0.099*
H11B 0.4961 0.3525 0.5191 0.099*
H11C 0.6383 0.3945 0.4592 0.099*
C12 −0.1168 (4) 0.5942 (3) 0.40212 (17) 0.0983 (10)
H12A −0.2091 0.6268 0.3604 0.147*
H12B −0.1506 0.6224 0.4506 0.147*
H12C −0.1304 0.5129 0.4008 0.147*
C13 0.3702 (4) 0.76269 (19) 0.33775 (14) 0.0778 (7)
H13A 0.3063 0.7985 0.2911 0.117*
H13B 0.5130 0.7846 0.3475 0.117*
H13C 0.3011 0.7861 0.3804 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0973 (12) 0.1070 (13) 0.0497 (9) −0.0063 (10) −0.0219 (8) 0.0074 (8)
O2 0.0571 (7) 0.0555 (7) 0.0502 (7) 0.0126 (6) −0.0116 (6) −0.0035 (5)
O3 0.0771 (10) 0.1179 (14) 0.0537 (9) 0.0494 (10) 0.0115 (7) 0.0034 (8)
O4 0.0570 (8) 0.0695 (9) 0.0441 (7) 0.0098 (6) 0.0041 (6) 0.0112 (6)
O5 0.0510 (7) 0.0703 (8) 0.0485 (7) 0.0051 (6) 0.0056 (6) −0.0117 (6)
O6 0.0456 (7) 0.0566 (8) 0.0596 (8) −0.0074 (5) −0.0004 (6) 0.0070 (6)
C1 0.0633 (12) 0.0596 (11) 0.0518 (11) 0.0056 (9) −0.0125 (9) 0.0026 (9)
C2 0.0652 (12) 0.0766 (14) 0.0554 (11) −0.0081 (10) −0.0006 (9) 0.0161 (10)
C3 0.0510 (11) 0.0787 (14) 0.0582 (12) −0.0127 (9) −0.0067 (9) 0.0101 (10)
C4 0.0487 (10) 0.0578 (11) 0.0431 (9) 0.0014 (8) −0.0061 (7) 0.0020 (7)
C5 0.0511 (10) 0.0576 (11) 0.0547 (11) −0.0061 (8) −0.0021 (8) 0.0050 (8)
C6 0.0509 (10) 0.0617 (11) 0.0622 (12) −0.0066 (9) −0.0130 (9) 0.0016 (9)
C7 0.0630 (11) 0.0667 (12) 0.0420 (9) 0.0149 (9) −0.0059 (8) −0.0057 (8)
C8 0.0452 (9) 0.0484 (10) 0.0430 (9) 0.0024 (7) 0.0012 (7) −0.0013 (7)
C9 0.0387 (8) 0.0505 (9) 0.0413 (9) 0.0014 (7) −0.0001 (7) −0.0002 (7)
C10 0.0560 (10) 0.0491 (9) 0.0412 (9) 0.0090 (8) 0.0039 (8) −0.0024 (7)
C11 0.0665 (13) 0.0759 (14) 0.0525 (11) 0.0154 (10) −0.0029 (9) 0.0168 (10)
C12 0.0590 (14) 0.152 (3) 0.0895 (18) −0.0069 (15) 0.0299 (13) −0.0282 (17)
C13 0.0921 (16) 0.0582 (12) 0.0756 (14) −0.0239 (11) −0.0158 (12) 0.0146 (11)

Geometric parameters (Å, º)

O1—C1 1.219 (2) C5—C6 1.321 (3)
O2—C9 1.4148 (19) C5—H5 0.9300
O2—C4 1.444 (2) C6—H6 0.9300
O3—C10 1.195 (2) C7—C8 1.514 (2)
O4—C10 1.323 (2) C7—H7A 0.9700
O4—C11 1.439 (2) C7—H7B 0.9700
O5—C9 1.377 (2) C8—C10 1.503 (2)
O5—C12 1.409 (3) C8—C9 1.534 (2)
O6—C9 1.381 (2) C8—H8 0.9800
O6—C13 1.436 (3) C11—H11A 0.9600
C1—C6 1.460 (3) C11—H11B 0.9600
C1—C2 1.465 (3) C11—H11C 0.9600
C2—C3 1.320 (3) C12—H12A 0.9600
C2—H2 0.9300 C12—H12B 0.9600
C3—C4 1.492 (3) C12—H12C 0.9600
C3—H3 0.9300 C13—H13A 0.9600
C4—C5 1.492 (2) C13—H13B 0.9600
C4—C7 1.549 (3) C13—H13C 0.9600
C9—O2—C4 110.94 (13) C10—C8—C9 111.85 (14)
C10—O4—C11 116.36 (15) C7—C8—C9 101.87 (14)
C9—O5—C12 117.44 (16) C10—C8—H8 109.4
C9—O6—C13 114.67 (16) C7—C8—H8 109.4
O1—C1—C6 122.06 (19) C9—C8—H8 109.4
O1—C1—C2 121.4 (2) O5—C9—O6 106.90 (13)
C6—C1—C2 116.54 (16) O5—C9—O2 108.78 (13)
C3—C2—C1 121.39 (19) O6—C9—O2 111.98 (14)
C3—C2—H2 119.3 O5—C9—C8 117.70 (15)
C1—C2—H2 119.3 O6—C9—C8 106.86 (14)
C2—C3—C4 123.21 (18) O2—C9—C8 104.72 (13)
C2—C3—H3 118.4 O3—C10—O4 123.58 (16)
C4—C3—H3 118.4 O3—C10—C8 125.45 (16)
O2—C4—C5 107.74 (15) O4—C10—C8 110.94 (15)
O2—C4—C3 109.54 (16) O4—C11—H11A 109.5
C5—C4—C3 112.28 (15) O4—C11—H11B 109.5
O2—C4—C7 105.29 (13) H11A—C11—H11B 109.5
C5—C4—C7 111.23 (16) O4—C11—H11C 109.5
C3—C4—C7 110.48 (16) H11A—C11—H11C 109.5
C6—C5—C4 123.44 (19) H11B—C11—H11C 109.5
C6—C5—H5 118.3 O5—C12—H12A 109.5
C4—C5—H5 118.3 O5—C12—H12B 109.5
C5—C6—C1 121.19 (18) H12A—C12—H12B 109.5
C5—C6—H6 119.4 O5—C12—H12C 109.5
C1—C6—H6 119.4 H12A—C12—H12C 109.5
C8—C7—C4 103.53 (14) H12B—C12—H12C 109.5
C8—C7—H7A 111.1 O6—C13—H13A 109.5
C4—C7—H7A 111.1 O6—C13—H13B 109.5
C8—C7—H7B 111.1 H13A—C13—H13B 109.5
C4—C7—H7B 111.1 O6—C13—H13C 109.5
H7A—C7—H7B 109.0 H13A—C13—H13C 109.5
C10—C8—C7 114.59 (15) H13B—C13—H13C 109.5
O1—C1—C2—C3 −174.2 (2) C12—O5—C9—O2 55.5 (2)
C6—C1—C2—C3 7.7 (3) C12—O5—C9—C8 −63.3 (2)
C1—C2—C3—C4 3.4 (4) C13—O6—C9—O5 −62.06 (19)
C9—O2—C4—C5 122.48 (15) C13—O6—C9—O2 57.0 (2)
C9—O2—C4—C3 −115.12 (16) C13—O6—C9—C8 171.10 (15)
C9—O2—C4—C7 3.68 (19) C4—O2—C9—O5 −151.91 (14)
C2—C3—C4—O2 −133.2 (2) C4—O2—C9—O6 90.16 (17)
C2—C3—C4—C5 −13.5 (3) C4—O2—C9—C8 −25.26 (18)
C2—C3—C4—C7 111.3 (2) C10—C8—C9—O5 −79.84 (19)
O2—C4—C5—C6 134.4 (2) C7—C8—C9—O5 157.31 (15)
C3—C4—C5—C6 13.7 (3) C10—C8—C9—O6 40.30 (19)
C7—C4—C5—C6 −110.7 (2) C7—C8—C9—O6 −82.55 (16)
C4—C5—C6—C1 −3.7 (3) C10—C8—C9—O2 159.24 (14)
O1—C1—C6—C5 174.4 (2) C7—C8—C9—O2 36.39 (17)
C2—C1—C6—C5 −7.5 (3) C11—O4—C10—O3 1.8 (3)
O2—C4—C7—C8 19.56 (19) C11—O4—C10—C8 −176.39 (16)
C5—C4—C7—C8 −96.87 (18) C7—C8—C10—O3 11.3 (3)
C3—C4—C7—C8 137.73 (16) C9—C8—C10—O3 −104.0 (2)
C4—C7—C8—C10 −154.35 (15) C7—C8—C10—O4 −170.64 (16)
C4—C7—C8—C9 −33.39 (18) C9—C8—C10—O4 74.07 (19)
C12—O5—C9—O6 176.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13A···O3i 0.96 2.60 3.269 (3) 127

Symmetry code: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2030).

References

  1. Bayer Aktiengesellschaft (1995). WO Patent No. 9 504 719A1.
  2. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fischer, R. M., Bretschneider, T. S. & Kruger, B.-W. (1993). US Patent No. 5 262 383.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011737/qk2030sup1.cif

e-68-o1152-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011737/qk2030Isup2.hkl

e-68-o1152-Isup2.hkl (127.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011737/qk2030Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES