Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1153. doi: 10.1107/S1600536812009609

1-[(2S)-1-Chloro-3-phenyl­propan-2-yl]-2,4,5-triphenyl-1H-imidazole

Yongmei Xiao a, Liangru Yang a, Kun He a, Jinwei Yuan a, Pu Mao a,*
PMCID: PMC3344096  PMID: 22606099

Abstract

In the title compound, C30H25ClN2, the chiral center maintains the S configuration of the stating l-phenyl­alaninol. The two phenyl groups closest to the substituted N atom adopt an almost perpendicular orientation relative to the central imidazole ring, with dihedral angles of 88.9 (4) and 84.7 (3)°. The third phenyl group is nearly coplanar with it, making a dihedral angle of 11.0 (5)°.

Related literature  

For the synthesis and applications of chiral ionic liquids, see: Ding et al. (2005); Bwambok et al. (2008); Mao et al. (2010).graphic file with name e-68-o1153-scheme1.jpg

Experimental  

Crystal data  

  • C30H25ClN2

  • M r = 448.97

  • Orthorhombic, Inline graphic

  • a = 9.6123 (4) Å

  • b = 9.9437 (3) Å

  • c = 24.9677 (7) Å

  • V = 2386.47 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.56 mm−1

  • T = 291 K

  • 0.21 × 0.20 × 0.06 mm

Data collection  

  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.657, T max = 1.000

  • 9379 measured reflections

  • 4256 independent reflections

  • 3235 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.098

  • S = 1.02

  • 4256 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983), 1816 Friedel pairs

  • Flack parameter: 0.01 (2)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812009609/ld2044sup1.cif

e-68-o1153-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009609/ld2044Isup2.hkl

e-68-o1153-Isup2.hkl (208.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009609/ld2044Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of China (Nos. 20902017 and 21172055).

supplementary crystallographic information

Comment

Current interest in the stereoselective synthesis and catalysis, chiral recognization and separation in ionic liquids has motivated the synthesis of novel chiral ionic liquids. (Ding & Armstrong, 2005; Bwambok et al., 2008). Our group is interested in the preparation and application of chiral imidazolium derivatives from natural precursors (Mao et al., 2010). During the study, we observed that condensation of l-phenylalaninol, dibenzoyl, arylaldehyde and ammonium acetate afforded multi-aryl substituted imidazole alcohol derivatives carrying a chiral functionality. The following reaction with SOCl2 produced the title compound smoothly.

The molecular structure of the title compound is shown in Figure 1. As it is expected, the imidazole core (N1, C8, C7, N2, C24) is essentially planar. featuring an average deviation of less than 0.6 (3) °. The dihedral angles formed by the three aryl substituents and the central imidazole ring are 88.9 (4) (N2—C24—C25—C26), 11.0 (5) (C5—C6—C7—C8) and 95.3 (3) ° (C7—C8—C9—C14).

Due to the presence of muti aryl groups on the imidazole ring, the basicity of the N2 of the imidazole is reduced and its quaternization by the produced chloro- substituted derivative is suppressed successfully.

Experimental

SOCl2 (40 ml) was added slowly at room temperature into a three-neck flask containing 2-(4,5-Diphenyl-2-p-tolyl-imidazol-1-yl)-3-phenyl-propan-1-ol (4.45 g, 0.01 mol) and Na2CO3 (1.06 g, 0.01 mol). The solids were slowly dissolved upon addition of SOCl2. After complete addition, the mixture was kept at 50 °C for 5 h and then at 70 °C for 2 h. The excessive SOCl2 was removed and the residue was washed with H2O and filtered to afford the crude product. Crystallization from EtOH afforded colorless crystals of the title compound.

Refinement

A suitable crystal was selected and mounted on a Xcalibur, Eos, Gemini diffractometer.The crystal was kept at 291.15 K during data collection. Using Olex2 (Dolomanov et al., 2009), the structure was solved with the SHELXS (Sheldrick, 2008) structure solution program using Direct Methods and refined with the SHELXL (Sheldrick, 2008) refinement package using Least Squares minimization.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.

Crystal data

C30H25ClN2 Dx = 1.250 Mg m3
Mr = 448.97 Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121 Cell parameters from 2343 reflections
a = 9.6123 (4) Å θ = 3.5–66.9°
b = 9.9437 (3) Å µ = 1.56 mm1
c = 24.9677 (7) Å T = 291 K
V = 2386.47 (14) Å3 Prismatic, colorless
Z = 4 0.21 × 0.20 × 0.06 mm
F(000) = 944

Data collection

Agilent Xcalibur Eos Gemini diffractometer 4256 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3235 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 16.2312 pixels mm-1 θmax = 67.0°, θmin = 3.5°
ω scans h = −8→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −11→11
Tmin = 0.657, Tmax = 1.000 l = −29→29
9379 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0291P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
4256 reflections Δρmax = 0.14 e Å3
298 parameters Δρmin = −0.15 e Å3
0 restraints Absolute structure: Flack (1983), 1816 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.02166 (10) 0.49291 (10) 0.54575 (3) 0.0805 (3)
N1 0.2271 (2) 0.64694 (19) 0.67166 (8) 0.0430 (5)
N2 0.2501 (3) 0.80764 (18) 0.73267 (8) 0.0433 (5)
C1 0.2662 (3) 0.7993 (3) 0.84491 (10) 0.0525 (7)
H1 0.2457 0.8782 0.8266 0.063*
C2 0.2834 (4) 0.8033 (3) 0.90011 (11) 0.0619 (8)
H2 0.2755 0.8844 0.9184 0.074*
C3 0.3121 (4) 0.6867 (3) 0.92756 (10) 0.0617 (8)
H3 0.3223 0.6884 0.9646 0.074*
C4 0.3255 (4) 0.5675 (3) 0.90000 (11) 0.0626 (8)
H4 0.3461 0.4887 0.9185 0.075*
C5 0.3085 (3) 0.5641 (3) 0.84478 (11) 0.0545 (8)
H5 0.3171 0.4830 0.8266 0.065*
C6 0.2790 (3) 0.6806 (2) 0.81663 (9) 0.0415 (5)
C7 0.2604 (3) 0.6838 (2) 0.75749 (9) 0.0395 (5)
C8 0.2469 (3) 0.5829 (2) 0.72076 (9) 0.0382 (5)
C9 0.2431 (3) 0.4337 (2) 0.72724 (9) 0.0394 (6)
C10 0.1175 (3) 0.3689 (3) 0.73505 (11) 0.0477 (6)
H10 0.0357 0.4187 0.7364 0.057*
C11 0.1120 (3) 0.2302 (3) 0.74093 (12) 0.0564 (8)
H11 0.0269 0.1877 0.7461 0.068*
C12 0.2317 (4) 0.1558 (2) 0.73909 (12) 0.0574 (8)
H12 0.2280 0.0628 0.7425 0.069*
C13 0.3575 (3) 0.2192 (3) 0.73211 (12) 0.0556 (7)
H13 0.4388 0.1686 0.7312 0.067*
C14 0.3644 (3) 0.3580 (3) 0.72642 (11) 0.0494 (7)
H14 0.4501 0.4000 0.7221 0.059*
C15 0.5054 (4) 0.6007 (3) 0.53636 (12) 0.0726 (10)
H15 0.4501 0.5715 0.5081 0.087*
C16 0.6292 (5) 0.6662 (4) 0.52570 (16) 0.0907 (13)
H16 0.6567 0.6799 0.4904 0.109*
C17 0.7110 (4) 0.7106 (3) 0.56644 (17) 0.0845 (12)
H17 0.7943 0.7544 0.5590 0.101*
C18 0.6708 (4) 0.6909 (3) 0.61861 (16) 0.0719 (9)
H18 0.7260 0.7218 0.6466 0.086*
C19 0.5479 (3) 0.6250 (3) 0.62902 (12) 0.0611 (8)
H19 0.5210 0.6114 0.6644 0.073*
C20 0.4629 (3) 0.5783 (3) 0.58816 (10) 0.0521 (7)
C21 0.3307 (3) 0.5022 (3) 0.59933 (10) 0.0539 (7)
H21A 0.3494 0.4355 0.6267 0.065*
H21B 0.3036 0.4546 0.5671 0.065*
C22 0.2082 (3) 0.5894 (3) 0.61769 (10) 0.0482 (7)
H22 0.2023 0.6653 0.5927 0.058*
C23 0.0692 (3) 0.5147 (3) 0.61442 (10) 0.0612 (8)
H23A −0.0023 0.5657 0.6329 0.073*
H23B 0.0773 0.4277 0.6317 0.073*
C24 0.2292 (3) 0.7824 (2) 0.68147 (10) 0.0414 (5)
C25 0.2084 (3) 0.8899 (2) 0.64130 (10) 0.0449 (6)
C26 0.3191 (4) 0.9466 (3) 0.61519 (14) 0.0750 (10)
H26 0.4076 0.9104 0.6197 0.090*
C27 0.3010 (5) 1.0571 (4) 0.58219 (16) 0.0921 (13)
H27 0.3770 1.0946 0.5646 0.111*
C28 0.1709 (4) 1.1112 (3) 0.57538 (13) 0.0762 (11)
H28 0.1585 1.1856 0.5533 0.091*
C29 0.0601 (4) 1.0555 (4) 0.60104 (14) 0.0781 (11)
H29 −0.0283 1.0919 0.5965 0.094*
C30 0.0785 (3) 0.9450 (3) 0.63390 (12) 0.0640 (8)
H30 0.0021 0.9074 0.6512 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0822 (6) 0.1023 (6) 0.0571 (3) −0.0076 (6) −0.0157 (4) −0.0137 (5)
N1 0.0504 (13) 0.0381 (10) 0.0404 (10) 0.0030 (10) 0.0030 (10) −0.0012 (9)
N2 0.0537 (13) 0.0320 (9) 0.0441 (10) −0.0012 (11) −0.0006 (11) −0.0012 (9)
C1 0.0667 (19) 0.0384 (12) 0.0524 (13) −0.0001 (16) −0.0016 (15) −0.0048 (12)
C2 0.081 (2) 0.0531 (15) 0.0520 (14) −0.0010 (18) −0.0013 (16) −0.0120 (13)
C3 0.077 (2) 0.0647 (18) 0.0431 (13) −0.0035 (18) −0.0066 (14) −0.0035 (14)
C4 0.082 (2) 0.0540 (15) 0.0517 (14) 0.0087 (17) −0.0078 (15) 0.0070 (14)
C5 0.074 (2) 0.0402 (13) 0.0491 (13) 0.0059 (15) −0.0017 (14) −0.0030 (12)
C6 0.0432 (13) 0.0391 (12) 0.0422 (11) −0.0024 (12) −0.0001 (11) 0.0001 (10)
C7 0.0406 (14) 0.0329 (10) 0.0449 (12) 0.0006 (12) −0.0001 (12) 0.0004 (10)
C8 0.0367 (13) 0.0345 (11) 0.0435 (12) 0.0020 (11) 0.0045 (12) 0.0006 (10)
C9 0.0466 (15) 0.0331 (10) 0.0384 (11) 0.0026 (12) 0.0011 (12) −0.0022 (9)
C10 0.0459 (15) 0.0394 (14) 0.0579 (14) 0.0057 (13) 0.0043 (14) 0.0019 (13)
C11 0.0532 (17) 0.0477 (16) 0.0683 (18) −0.0100 (14) −0.0030 (16) 0.0052 (15)
C12 0.079 (2) 0.0311 (11) 0.0618 (15) −0.0025 (15) −0.0026 (18) 0.0010 (12)
C13 0.0596 (18) 0.0421 (16) 0.0650 (17) 0.0192 (15) 0.0023 (16) 0.0022 (14)
C14 0.0441 (15) 0.0445 (15) 0.0596 (15) 0.0011 (13) 0.0062 (14) 0.0021 (13)
C15 0.092 (3) 0.073 (2) 0.0528 (16) 0.011 (2) 0.0135 (18) 0.0050 (15)
C16 0.108 (3) 0.092 (3) 0.072 (2) 0.008 (3) 0.034 (2) 0.023 (2)
C17 0.079 (3) 0.0602 (19) 0.114 (3) 0.001 (2) 0.036 (3) 0.014 (2)
C18 0.070 (2) 0.0579 (17) 0.087 (2) −0.0023 (18) 0.0098 (19) 0.0003 (18)
C19 0.070 (2) 0.0577 (16) 0.0555 (15) 0.0019 (17) 0.0098 (16) 0.0060 (15)
C20 0.0629 (19) 0.0471 (15) 0.0464 (13) 0.0125 (15) 0.0084 (14) 0.0004 (12)
C21 0.0678 (19) 0.0488 (14) 0.0451 (12) 0.0048 (17) 0.0049 (13) −0.0073 (13)
C22 0.0606 (18) 0.0424 (13) 0.0417 (12) −0.0012 (14) 0.0010 (13) −0.0041 (11)
C23 0.0660 (19) 0.076 (2) 0.0416 (12) −0.0059 (19) −0.0029 (13) −0.0096 (15)
C24 0.0453 (14) 0.0342 (11) 0.0448 (12) 0.0020 (13) 0.0022 (12) 0.0003 (10)
C25 0.0547 (16) 0.0388 (12) 0.0412 (12) −0.0009 (13) 0.0015 (12) 0.0020 (11)
C26 0.063 (2) 0.073 (2) 0.089 (2) 0.0052 (18) 0.0099 (19) 0.0319 (19)
C27 0.090 (3) 0.088 (3) 0.098 (3) −0.010 (2) 0.015 (2) 0.048 (2)
C28 0.107 (3) 0.0606 (19) 0.0615 (18) 0.012 (2) −0.003 (2) 0.0232 (16)
C29 0.084 (3) 0.079 (2) 0.0713 (19) 0.030 (2) −0.004 (2) 0.0219 (18)
C30 0.0601 (19) 0.0696 (19) 0.0623 (16) 0.0061 (16) 0.0063 (16) 0.0164 (16)

Geometric parameters (Å, º)

Cl1—C23 1.788 (2) C15—H15 0.9300
N1—C8 1.395 (3) C15—C16 1.383 (6)
N1—C22 1.475 (3) C15—C20 1.374 (4)
N1—C24 1.370 (3) C16—H16 0.9300
N2—C7 1.382 (3) C16—C17 1.360 (6)
N2—C24 1.318 (3) C17—H17 0.9300
C1—H1 0.9300 C17—C18 1.373 (5)
C1—C2 1.389 (4) C18—H18 0.9300
C1—C6 1.380 (3) C18—C19 1.376 (5)
C2—H2 0.9300 C19—H19 0.9300
C2—C3 1.374 (4) C19—C20 1.387 (4)
C3—H3 0.9300 C20—C21 1.506 (4)
C3—C4 1.377 (4) C21—H21A 0.9700
C4—H4 0.9300 C21—H21B 0.9700
C4—C5 1.389 (4) C21—C22 1.532 (4)
C5—H5 0.9300 C22—H22 0.9800
C5—C6 1.384 (3) C22—C23 1.531 (4)
C6—C7 1.488 (3) C23—H23A 0.9700
C7—C8 1.366 (3) C23—H23B 0.9700
C8—C9 1.492 (3) C24—C25 1.479 (3)
C9—C10 1.383 (4) C25—C26 1.370 (4)
C9—C14 1.388 (4) C25—C30 1.376 (4)
C10—H10 0.9300 C26—H26 0.9300
C10—C11 1.388 (4) C26—C27 1.384 (4)
C11—H11 0.9300 C27—H27 0.9300
C11—C12 1.369 (4) C27—C28 1.372 (5)
C12—H12 0.9300 C28—H28 0.9300
C12—C13 1.374 (5) C28—C29 1.361 (5)
C13—H13 0.9300 C29—H29 0.9300
C13—C14 1.389 (4) C29—C30 1.383 (4)
C14—H14 0.9300 C30—H30 0.9300
C8—N1—C22 130.0 (2) C16—C17—H17 120.0
C24—N1—C8 106.9 (2) C16—C17—C18 120.0 (4)
C24—N1—C22 123.1 (2) C18—C17—H17 120.0
C24—N2—C7 106.05 (19) C17—C18—H18 120.3
C2—C1—H1 119.3 C17—C18—C19 119.3 (4)
C6—C1—H1 119.3 C19—C18—H18 120.3
C6—C1—C2 121.4 (3) C18—C19—H19 119.1
C1—C2—H2 120.2 C18—C19—C20 121.7 (3)
C3—C2—C1 119.6 (3) C20—C19—H19 119.1
C3—C2—H2 120.2 C15—C20—C19 117.6 (3)
C2—C3—H3 120.1 C15—C20—C21 120.4 (3)
C2—C3—C4 119.7 (3) C19—C20—C21 121.9 (2)
C4—C3—H3 120.1 C20—C21—H21A 108.6
C3—C4—H4 119.8 C20—C21—H21B 108.6
C3—C4—C5 120.4 (3) C20—C21—C22 114.8 (2)
C5—C4—H4 119.8 H21A—C21—H21B 107.5
C4—C5—H5 119.7 C22—C21—H21A 108.6
C6—C5—C4 120.6 (3) C22—C21—H21B 108.6
C6—C5—H5 119.7 N1—C22—C21 113.4 (2)
C1—C6—C5 118.3 (2) N1—C22—H22 106.8
C1—C6—C7 118.6 (2) N1—C22—C23 110.2 (2)
C5—C6—C7 123.1 (2) C21—C22—H22 106.8
N2—C7—C6 118.23 (19) C23—C22—C21 112.3 (2)
C8—C7—N2 110.3 (2) C23—C22—H22 106.8
C8—C7—C6 131.4 (2) Cl1—C23—H23A 109.8
N1—C8—C9 123.1 (2) Cl1—C23—H23B 109.8
C7—C8—N1 105.5 (2) C22—C23—Cl1 109.44 (19)
C7—C8—C9 131.3 (2) C22—C23—H23A 109.8
C10—C9—C8 120.0 (3) C22—C23—H23B 109.8
C10—C9—C14 118.8 (2) H23A—C23—H23B 108.2
C14—C9—C8 121.2 (3) N1—C24—C25 126.0 (2)
C9—C10—H10 119.6 N2—C24—N1 111.3 (2)
C9—C10—C11 120.8 (3) N2—C24—C25 122.8 (2)
C11—C10—H10 119.6 C26—C25—C24 121.0 (3)
C10—C11—H11 120.0 C26—C25—C30 118.5 (3)
C12—C11—C10 120.1 (3) C30—C25—C24 120.1 (3)
C12—C11—H11 120.0 C25—C26—H26 119.6
C11—C12—H12 120.1 C25—C26—C27 120.8 (3)
C11—C12—C13 119.8 (2) C27—C26—H26 119.6
C13—C12—H12 120.1 C26—C27—H27 120.0
C12—C13—H13 119.6 C28—C27—C26 120.0 (4)
C12—C13—C14 120.7 (3) C28—C27—H27 120.0
C14—C13—H13 119.6 C27—C28—H28 120.2
C9—C14—C13 119.8 (3) C29—C28—C27 119.7 (3)
C9—C14—H14 120.1 C29—C28—H28 120.2
C13—C14—H14 120.1 C28—C29—H29 119.9
C16—C15—H15 119.6 C28—C29—C30 120.2 (3)
C20—C15—H15 119.6 C30—C29—H29 119.9
C20—C15—C16 120.9 (4) C25—C30—C29 120.8 (3)
C15—C16—H16 119.8 C25—C30—H30 119.6
C17—C16—C15 120.5 (3) C29—C30—H30 119.6
C17—C16—H16 119.8
N1—C8—C9—C10 −85.7 (3) C10—C11—C12—C13 0.9 (5)
N1—C8—C9—C14 95.3 (3) C11—C12—C13—C14 −0.6 (5)
N1—C22—C23—Cl1 161.61 (19) C12—C13—C14—C9 −0.6 (4)
N1—C24—C25—C26 −92.4 (4) C14—C9—C10—C11 −1.2 (4)
N1—C24—C25—C30 94.9 (4) C15—C16—C17—C18 −0.2 (6)
N2—C7—C8—N1 −0.2 (3) C15—C20—C21—C22 −105.2 (3)
N2—C7—C8—C9 −176.5 (3) C16—C15—C20—C19 0.7 (5)
N2—C24—C25—C26 88.9 (4) C16—C15—C20—C21 −177.6 (3)
N2—C24—C25—C30 −83.8 (4) C16—C17—C18—C19 0.6 (5)
C1—C2—C3—C4 1.0 (5) C17—C18—C19—C20 −0.3 (5)
C1—C6—C7—N2 8.6 (4) C18—C19—C20—C15 −0.3 (5)
C1—C6—C7—C8 −169.1 (3) C18—C19—C20—C21 178.0 (3)
C2—C1—C6—C5 0.5 (5) C19—C20—C21—C22 76.5 (3)
C2—C1—C6—C7 −179.5 (3) C20—C15—C16—C17 −0.5 (6)
C2—C3—C4—C5 −0.8 (6) C20—C21—C22—N1 −69.1 (3)
C3—C4—C5—C6 0.5 (5) C20—C21—C22—C23 165.1 (2)
C4—C5—C6—C1 −0.3 (5) C21—C22—C23—Cl1 −70.9 (3)
C4—C5—C6—C7 179.6 (3) C22—N1—C8—C7 179.2 (3)
C5—C6—C7—N2 −171.3 (3) C22—N1—C8—C9 −4.1 (5)
C5—C6—C7—C8 11.0 (5) C22—N1—C24—N2 −178.8 (2)
C6—C1—C2—C3 −0.8 (5) C22—N1—C24—C25 2.4 (5)
C6—C7—C8—N1 177.7 (3) C24—N1—C8—C7 −0.3 (3)
C6—C7—C8—C9 1.3 (5) C24—N1—C8—C9 176.5 (3)
C7—N2—C24—N1 −0.7 (3) C24—N1—C22—C21 119.7 (3)
C7—N2—C24—C25 178.1 (3) C24—N1—C22—C23 −113.4 (3)
C7—C8—C9—C10 90.2 (4) C24—N2—C7—C6 −177.7 (2)
C7—C8—C9—C14 −88.8 (4) C24—N2—C7—C8 0.5 (3)
C8—N1—C22—C21 −59.6 (4) C24—C25—C26—C27 −172.7 (3)
C8—N1—C22—C23 67.3 (4) C24—C25—C30—C29 172.6 (3)
C8—N1—C24—N2 0.6 (3) C25—C26—C27—C28 0.1 (6)
C8—N1—C24—C25 −178.2 (3) C26—C25—C30—C29 −0.3 (5)
C8—C9—C10—C11 179.7 (3) C26—C27—C28—C29 −0.2 (6)
C8—C9—C14—C13 −179.5 (2) C27—C28—C29—C30 0.1 (6)
C9—C10—C11—C12 0.0 (5) C28—C29—C30—C25 0.2 (5)
C10—C9—C14—C13 1.5 (4) C30—C25—C26—C27 0.1 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2044).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Bwambok, D. K., Marwani, H. M., Fernand, V. E., Fakayode, S. O., Lowry, M., Negulescu, I., Strongin, R. M. & Warner, I. M. (2008). Chirality, 20, 151–158. [DOI] [PMC free article] [PubMed]
  3. Ding, J. & Armstrong, D. W. (2005). Chirality, 17, 281–292. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812009609/ld2044sup1.cif

e-68-o1153-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009609/ld2044Isup2.hkl

e-68-o1153-Isup2.hkl (208.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009609/ld2044Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES