Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1154. doi: 10.1107/S1600536812011579

(4Z)-4-Benzyl­idene-2-phenyl-1,3-oxazol-5(4H)-one

Abdullah M Asiri a,b,, Hassan M Faidallah a, Tariq R Sobahi a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3344097  PMID: 22606100

Abstract

In the title compound, C17H13NO2, the benzene ring is twisted slightly out of the plane of the oxazole ring to which it is attached [dihedral angle = 7.98 (8)°]. Similarly, there is a twist [dihedral angle = 5.50 (8)°] between the oxazole and phenyl rings that are linked via the C=C bond [1.348 (2) Å]; the conformation about the latter is Z. In the crystal, the presence of C—H⋯O, C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.5259 (9) Å] link the mol­ecules into a three-dimensional architecture.

Related literature  

For background to the biological activity of oxazolone derivatives, see: Fidanza & Dernoeden (1996); Khan et al. (2006); Puig et al. (2000) For the synthesis, see: Mariappan et al. (2011).graphic file with name e-68-o1154-scheme1.jpg

Experimental  

Crystal data  

  • C17H13NO2

  • M r = 263.28

  • Orthorhombic, Inline graphic

  • a = 12.0827 (6) Å

  • b = 7.7848 (3) Å

  • c = 27.6527 (16) Å

  • V = 2601.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.974, T max = 0.983

  • 7121 measured reflections

  • 2990 independent reflections

  • 2206 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.109

  • S = 1.03

  • 2990 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011579/hb6681sup1.cif

e-68-o1154-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011579/hb6681Isup2.hkl

e-68-o1154-Isup2.hkl (146.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011579/hb6681Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.95 2.56 3.463 (2) 158
C6—H6⋯Cg1ii 0.95 2.93 3.8311 (17) 158
C9—H9⋯Cg1iii 0.95 2.92 3.6532 (17) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Several oxazolone derivatives (Fidanza & Dernoeden, 1996) have proved effective as insecticides, herbicides and fungicides that control brown patch (Rhizoctonia solani (Kühn)). Oxazol-5-ones are known to inhibit the activity of the tyrosinase enzyme with a maximum inhibition by the derivative which bears a cinnamoyl residue at the C-4 position (Khan et al., 2006). Further, some 3,4-diaryloxazolones show inhibition of cyclooxygenase-2 (COX-2) and in vivo anti-inflammatory activity making them excellent candidates for the treatment of arthritis and hyperalgesia (Puig et al., 2000). In this connection, the title compound, 4(Z)-2-phenyl-4-(phenylmethylidene)-4,5-dihydro-1,3-oxazol-5-one (I), was synthesized and characterized by X-ray crystallography.

In (I), Fig. 1, the oxazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.007 Å. The pendent benzene ring is slightly twisted out of this plane and forms a dihedral angle of 7.98 (8)°; the N1—C1—C11—C12 torsion angle = -171.85 (15)°. The conformation about the C3═C4 bond [1.348 (2) Å] is Z. There is a slight twist in this region of the molecule so that the dihedral angle between the oxazol and phenyl rings is 5.50 (8)°; the C4—C5—C10—C9 torsion angle = 177.79 (14)°. The r.m.s. deviation of the 20 non-hydrogen atoms comprising (I) = 0.131 Å with the maximum deviations being 0.258 (1) Å for the C16 atom and -0.224 (2) Å for the C13 atom.

The crystal packing is sustained by C—H···O and C—H···π interactions, Table 1, as well as π—π interactions occurring between the oxazole and benzene rings [ring centroid···ring centroid distance = 3.5259 (9) Å for symmetry operation 1 - x, 1 - y, 1 - z]. Globally, molecules assemble into undulating layers that stack along the b axis, Fig. 2.

Experimental

4-Methoxybenzoylglycine was prepared in accord with the literature procedure (Mariappan et al., 2011). A mixture of 4-methoxybenzoylglycine (2.1 g, 0.01 mmol), benzaldehyde (1.1 g, 0.02 mmol), anhydrous sodium acetate (0.8 g, 0.01 mmol) and acetic anhydride (4.0 g, 0.04 mmol) was refluxed for 1 h on a water bath with occasional stirring. The resulting mixture was left in a refrigerator overnight. The solid thus obtained was filtered, washed with cold water, dried in an hot-air oven at 333 K and recrystallized from ethanol as yellow polyhedra. Yield: 84%. M.pt: 470–471 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the unit-cell contents of (I). The C—H···O, C—H···π and π—π interactions are shown as orange, brown and purple dashed lines, respectively.

Crystal data

C17H13NO2 F(000) = 1104
Mr = 263.28 Dx = 1.345 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2443 reflections
a = 12.0827 (6) Å θ = 2.6–27.5°
b = 7.7848 (3) Å µ = 0.09 mm1
c = 27.6527 (16) Å T = 100 K
V = 2601.1 (2) Å3 Polyhedron, yellow
Z = 8 0.30 × 0.25 × 0.20 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2990 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2206 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.033
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 3.0°
ω scan h = −15→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −7→10
Tmin = 0.974, Tmax = 0.983 l = −36→20
7121 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.043P)2 + 0.6059P] where P = (Fo2 + 2Fc2)/3
2990 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.70006 (8) 0.51990 (13) 0.55832 (4) 0.0199 (3)
O2 0.76383 (9) 0.68781 (14) 0.61933 (4) 0.0270 (3)
N1 0.53733 (10) 0.42459 (15) 0.58986 (4) 0.0174 (3)
C1 0.60411 (12) 0.42309 (18) 0.55339 (6) 0.0176 (3)
C2 0.69316 (13) 0.59344 (19) 0.60408 (6) 0.0197 (3)
C3 0.58820 (12) 0.52949 (18) 0.62455 (6) 0.0176 (3)
C4 0.55689 (12) 0.56871 (18) 0.67001 (6) 0.0186 (3)
H4 0.6050 0.6445 0.6868 0.022*
C5 0.46027 (12) 0.51218 (18) 0.69718 (6) 0.0176 (3)
C6 0.44944 (13) 0.5668 (2) 0.74539 (6) 0.0220 (4)
H6 0.5037 0.6409 0.7590 0.026*
C7 0.36046 (14) 0.51376 (19) 0.77344 (6) 0.0238 (4)
H7 0.3538 0.5520 0.8059 0.029*
C8 0.28135 (14) 0.40496 (19) 0.75395 (6) 0.0233 (4)
H8 0.2205 0.3683 0.7731 0.028*
C9 0.29095 (13) 0.3493 (2) 0.70625 (6) 0.0226 (4)
H9 0.2368 0.2741 0.6931 0.027*
C10 0.37888 (12) 0.40289 (19) 0.67789 (6) 0.0200 (3)
H10 0.3842 0.3656 0.6453 0.024*
C11 0.59187 (12) 0.32991 (18) 0.50822 (5) 0.0169 (3)
C12 0.67737 (13) 0.3232 (2) 0.47430 (6) 0.0221 (4)
H12 0.7441 0.3847 0.4799 0.027*
C13 0.66513 (13) 0.2269 (2) 0.43248 (6) 0.0249 (4)
H13 0.7241 0.2222 0.4098 0.030*
C14 0.56739 (13) 0.13662 (19) 0.42313 (6) 0.0216 (3)
C15 0.48133 (13) 0.14847 (19) 0.45658 (6) 0.0211 (3)
H15 0.4136 0.0906 0.4504 0.025*
C16 0.49287 (12) 0.24313 (18) 0.49867 (6) 0.0195 (3)
H16 0.4335 0.2491 0.5211 0.023*
C17 0.55537 (15) 0.0289 (2) 0.37818 (6) 0.0292 (4)
H17A 0.5060 −0.0682 0.3848 0.044*
H17B 0.6282 −0.0144 0.3684 0.044*
H17C 0.5241 0.0990 0.3521 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0168 (5) 0.0235 (5) 0.0194 (6) −0.0029 (4) −0.0007 (4) 0.0022 (5)
O2 0.0260 (6) 0.0308 (6) 0.0242 (6) −0.0105 (5) −0.0044 (5) 0.0035 (5)
N1 0.0182 (6) 0.0171 (6) 0.0168 (7) 0.0012 (5) −0.0021 (5) 0.0014 (5)
C1 0.0160 (7) 0.0164 (7) 0.0204 (8) 0.0007 (6) −0.0025 (6) 0.0053 (6)
C2 0.0216 (8) 0.0197 (7) 0.0176 (8) −0.0005 (7) −0.0043 (6) 0.0046 (6)
C3 0.0181 (7) 0.0154 (7) 0.0193 (8) −0.0001 (6) −0.0042 (6) 0.0030 (6)
C4 0.0189 (7) 0.0167 (7) 0.0201 (8) 0.0004 (6) −0.0050 (6) 0.0000 (6)
C5 0.0197 (7) 0.0149 (7) 0.0182 (8) 0.0029 (6) −0.0014 (6) 0.0019 (6)
C6 0.0249 (8) 0.0205 (7) 0.0207 (8) 0.0017 (7) −0.0030 (7) −0.0012 (7)
C7 0.0315 (9) 0.0230 (8) 0.0167 (8) 0.0075 (7) 0.0003 (7) 0.0002 (7)
C8 0.0242 (8) 0.0223 (8) 0.0232 (9) 0.0035 (7) 0.0051 (7) 0.0045 (7)
C9 0.0225 (8) 0.0201 (8) 0.0251 (9) −0.0020 (7) 0.0002 (7) −0.0004 (7)
C10 0.0214 (8) 0.0202 (7) 0.0184 (8) 0.0012 (6) −0.0004 (6) −0.0010 (6)
C11 0.0181 (7) 0.0166 (7) 0.0159 (8) 0.0037 (6) −0.0004 (6) 0.0032 (6)
C12 0.0192 (7) 0.0249 (8) 0.0222 (9) 0.0008 (7) 0.0001 (7) 0.0015 (7)
C13 0.0250 (8) 0.0293 (8) 0.0203 (9) 0.0052 (7) 0.0049 (7) 0.0001 (7)
C14 0.0294 (8) 0.0164 (7) 0.0189 (8) 0.0036 (7) −0.0019 (7) 0.0030 (6)
C15 0.0230 (8) 0.0180 (7) 0.0225 (8) −0.0012 (6) −0.0030 (7) 0.0028 (6)
C16 0.0199 (8) 0.0185 (7) 0.0202 (8) 0.0013 (7) 0.0006 (6) 0.0044 (6)
C17 0.0386 (10) 0.0238 (8) 0.0253 (9) 0.0016 (8) −0.0009 (8) −0.0033 (7)

Geometric parameters (Å, º)

O1—C2 1.3913 (19) C9—C10 1.385 (2)
O1—C1 1.3895 (18) C9—H9 0.9500
O2—C2 1.2028 (18) C10—H10 0.9500
N1—C1 1.2915 (19) C11—C12 1.396 (2)
N1—C3 1.4017 (19) C11—C16 1.399 (2)
C1—C11 1.452 (2) C12—C13 1.386 (2)
C2—C3 1.475 (2) C12—H12 0.9500
C3—C4 1.348 (2) C13—C14 1.399 (2)
C4—C5 1.456 (2) C13—H13 0.9500
C4—H4 0.9500 C14—C15 1.395 (2)
C5—C10 1.406 (2) C14—C17 1.507 (2)
C5—C6 1.405 (2) C15—C16 1.385 (2)
C6—C7 1.388 (2) C15—H15 0.9500
C6—H6 0.9500 C16—H16 0.9500
C7—C8 1.386 (2) C17—H17A 0.9800
C7—H7 0.9500 C17—H17B 0.9800
C8—C9 1.393 (2) C17—H17C 0.9800
C8—H8 0.9500
C2—O1—C1 105.22 (11) C8—C9—H9 119.8
C1—N1—C3 105.41 (12) C9—C10—C5 120.29 (15)
N1—C1—O1 116.08 (13) C9—C10—H10 119.9
N1—C1—C11 127.78 (14) C5—C10—H10 119.9
O1—C1—C11 116.13 (13) C12—C11—C16 119.18 (14)
O2—C2—O1 121.84 (14) C12—C11—C1 121.42 (14)
O2—C2—C3 133.00 (15) C16—C11—C1 119.39 (13)
O1—C2—C3 105.16 (12) C13—C12—C11 120.13 (15)
C4—C3—N1 130.33 (14) C13—C12—H12 119.9
C4—C3—C2 121.51 (14) C11—C12—H12 119.9
N1—C3—C2 108.12 (13) C12—C13—C14 121.08 (15)
C3—C4—C5 129.62 (14) C12—C13—H13 119.5
C3—C4—H4 115.2 C14—C13—H13 119.5
C5—C4—H4 115.2 C15—C14—C13 118.27 (15)
C10—C5—C6 118.55 (14) C15—C14—C17 120.80 (15)
C10—C5—C4 123.23 (14) C13—C14—C17 120.93 (15)
C6—C5—C4 118.21 (14) C16—C15—C14 121.17 (15)
C7—C6—C5 120.80 (15) C16—C15—H15 119.4
C7—C6—H6 119.6 C14—C15—H15 119.4
C5—C6—H6 119.6 C15—C16—C11 120.13 (14)
C8—C7—C6 119.90 (15) C15—C16—H16 119.9
C8—C7—H7 120.1 C11—C16—H16 119.9
C6—C7—H7 120.1 C14—C17—H17A 109.5
C7—C8—C9 120.05 (15) C14—C17—H17B 109.5
C7—C8—H8 120.0 H17A—C17—H17B 109.5
C9—C8—H8 120.0 C14—C17—H17C 109.5
C10—C9—C8 120.41 (15) H17A—C17—H17C 109.5
C10—C9—H9 119.8 H17B—C17—H17C 109.5
C3—N1—C1—O1 −0.47 (16) C6—C7—C8—C9 −0.2 (2)
C3—N1—C1—C11 178.31 (14) C7—C8—C9—C10 −0.4 (2)
C2—O1—C1—N1 −0.24 (16) C8—C9—C10—C5 0.9 (2)
C2—O1—C1—C11 −179.16 (12) C6—C5—C10—C9 −0.7 (2)
C1—O1—C2—O2 −179.03 (14) C4—C5—C10—C9 177.79 (14)
C1—O1—C2—C3 0.80 (14) N1—C1—C11—C12 −171.85 (15)
C1—N1—C3—C4 −176.66 (15) O1—C1—C11—C12 6.9 (2)
C1—N1—C3—C2 0.95 (15) N1—C1—C11—C16 7.3 (2)
O2—C2—C3—C4 −3.4 (3) O1—C1—C11—C16 −173.88 (12)
O1—C2—C3—C4 176.76 (13) C16—C11—C12—C13 −2.1 (2)
O2—C2—C3—N1 178.70 (16) C1—C11—C12—C13 177.12 (14)
O1—C2—C3—N1 −1.10 (15) C11—C12—C13—C14 0.7 (2)
N1—C3—C4—C5 0.6 (3) C12—C13—C14—C15 1.2 (2)
C2—C3—C4—C5 −176.76 (14) C12—C13—C14—C17 −178.58 (14)
C3—C4—C5—C10 −1.3 (2) C13—C14—C15—C16 −1.7 (2)
C3—C4—C5—C6 177.19 (15) C17—C14—C15—C16 178.08 (14)
C10—C5—C6—C7 0.1 (2) C14—C15—C16—C11 0.3 (2)
C4—C5—C6—C7 −178.48 (14) C12—C11—C16—C15 1.6 (2)
C5—C6—C7—C8 0.3 (2) C1—C11—C16—C15 −177.63 (13)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C5–C10 ring.

D—H···A D—H H···A D···A D—H···A
C7—H7···O2i 0.95 2.56 3.463 (2) 158
C6—H6···Cg1ii 0.95 2.93 3.8311 (17) 158
C9—H9···Cg1iii 0.95 2.92 3.6532 (17) 135

Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) x+3/2, −y+1/2, −z+1; (iii) x, −y−3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6681).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Fidanza, M. A. & Dernoeden, P. H. (1996). Crop Sci. 36, 1631–1638.
  5. Khan, K. M., Mughal, U. R., Khan, M. T., Zia-Ullah, Perveen, S. & Choudhary, M. I. (2006). Bioorg. Med. Chem. 14, 6027–6033. [DOI] [PubMed]
  6. Mariappan, G., Saha, B. P., Datta, S., Kumar, D. & Haldar, P. K. (2011). Chem. Sci (Bangalore, India), 123, 335–341.
  7. Puig, C., Crespo, M. I., Godessart, N., Feixas, J., Ibarzo, J., Jiménez, J. M., Soca, L., Cardelús, I., Heredia, A., Miralpeix, M., Puig, J., Beleta, J., Huerta, J. M., López, M., Segarra, V., Ryder, H. & Palacios, J. M. (2000). J. Med. Chem. 43, 214–223. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011579/hb6681sup1.cif

e-68-o1154-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011579/hb6681Isup2.hkl

e-68-o1154-Isup2.hkl (146.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011579/hb6681Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES