Abstract
In the title compound, C8H10N2O3S, the dihedral angle between the acetamide group and the benzene ring is 15.59 (12)° and the amino group is close to being perpendicular to the benzene ring [N—S—Car—Car (ar = aromatic) torsion angle = 109.4 (2)°]. In the crystal, molecules are linked into supramolecular tubes parallel to [001] by amine–amide N—H⋯O interactions and these are connected into the three-dimensional architecture by amide–sulfonamide N—H⋯O hydrogen bonds. The crystal studied was a racemic twin.
Related literature
For background to the biological applications of related sulfonamides, see: Croitoru et al. (2004 ▶); Dogruer et al. (2010 ▶). For related structures, see: Asiri et al. (2011 ▶, 2012 ▶).
Experimental
Crystal data
C8H10N2O3S
M r = 214.24
Tetragonal,
a = 15.2631 (4) Å
c = 8.0571 (4) Å
V = 1877.00 (11) Å3
Z = 8
Mo Kα radiation
μ = 0.33 mm−1
T = 100 K
0.40 × 0.05 × 0.05 mm
Data collection
Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011 ▶) T min = 0.880, T max = 0.984
3827 measured reflections
1862 independent reflections
1698 reflections with I > 2σ(I)
R int = 0.028
Refinement
R[F 2 > 2σ(F 2)] = 0.032
wR(F 2) = 0.079
S = 1.02
1862 reflections
140 parameters
3 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.25 e Å−3
Δρmin = −0.27 e Å−3
Absolute structure: Flack (1983 ▶), 625 Friedel pairs
Flack parameter: 0.48 (9)
Data collection: CrysAlis PRO (Agilent, 2011 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011701/hb6682sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011701/hb6682Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812011701/hb6682Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1⋯O3i | 0.88 (1) | 2.08 (1) | 2.935 (3) | 163 (3) |
| N1—H2⋯O3ii | 0.89 (1) | 2.04 (1) | 2.929 (3) | 178 (3) |
| N2—H3⋯O1iii | 0.88 (1) | 2.34 (2) | 3.156 (3) | 155 (2) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).
supplementary crystallographic information
Comment
The crystal and molecular structure of N-(4-sulfamoylphenyl)acetamide (I) is reported herein in continuation of on-going structural studies of sulfonamide derivatives (Asiri et al., 2011; Asiri et al., 2012), of interest owing to their biological activity, for example, to selectively inhibit COX–2 (Croitoru et al., 2004) and as they exhibit anti-microbial and anti-fungal activities (Dogruer et al. 2010).
In (I), Fig. 1. the amide residue is twisted out of the plane of the benzene ring to which it is attached as seen in the value of the C7—N2—C4—C3 torsion angle of -166.2 (2)°, and the amino group occupies a position perpendicular to the benzene ring with the N1—S1—C1—C2 torsion angle being 109.4 (2)°.
Each of the N—H hydrogen atoms forms a hydrogen bond to an oxygen atom with the amide-O3 atom being bifurcated, Table 1. The amino-H atoms bridge the amide-O atoms to generate supramolecular tubes along the c axis. These are connected into the three-dimensional architecture by amide-H···O(sulfonamide) hydrogen bonds, Fig. 2 and Table 1.
Experimental
2-Acetyl chloride (0.784 g, 25 mmol) in pyridine (5 ml) was slowly added to a solution of sulfanilamide (2.00 g, 11 mmol) in pyridine (20 ml) and the reaction mixture was stirred at 258 K for 4 h under anhydrous conditions. After warming the solution to room temperature, the pyridine was removed in vacuo and the resulting white solid dissolved in ethyl acetate. The organic extract was washed with 3 M hydrochloric acid (30 ml) then with saturated sodium bicarbonate solution (30 ml) and finally with brine. Drying over magnesium sulfate and evaporation yielded a white solid which was recrystallized from ethanol to give the title compound as colourless prisms. Yield: 74%. M.pt: 491–492 K.
Refinement
Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined. Owing to poor agreement, the (7 7 0) reflection was omitted from the final cycles of refinement. The Flack (Flack, 1983) parameter was calculated from 625 Friedel pairs. The refined value, i.e. 0.48 (9). indicates that the crystal examined was a racemic twin.
Figures
Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
A view in projection down the c axis of the unit-cell contents of (I). The N—H···O hydrogen bonds are shown as orange dashed lines.
Crystal data
| C8H10N2O3S | Dx = 1.516 Mg m−3 |
| Mr = 214.24 | Mo Kα radiation, λ = 0.71073 Å |
| Tetragonal, P421c | Cell parameters from 2081 reflections |
| Hall symbol: P -4 2n | θ = 2.7–27.5° |
| a = 15.2631 (4) Å | µ = 0.33 mm−1 |
| c = 8.0571 (4) Å | T = 100 K |
| V = 1877.00 (11) Å3 | Prism, colourless |
| Z = 8 | 0.40 × 0.05 × 0.05 mm |
| F(000) = 896 |
Data collection
| Agilent SuperNova Dual diffractometer with an Atlas detector | 1862 independent reflections |
| Radiation source: SuperNova (Mo) X-ray Source | 1698 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.028 |
| Detector resolution: 10.4041 pixels mm-1 | θmax = 27.6°, θmin = 2.7° |
| ω scan | h = −12→19 |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −18→10 |
| Tmin = 0.880, Tmax = 0.984 | l = −10→6 |
| 3827 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0379P)2 + 0.7254P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.02 | (Δ/σ)max = 0.001 |
| 1862 reflections | Δρmax = 0.25 e Å−3 |
| 140 parameters | Δρmin = −0.27 e Å−3 |
| 3 restraints | Absolute structure: Flack (1983), 625 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.48 (9) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.42050 (3) | 0.72593 (3) | 0.79689 (8) | 0.01459 (14) | |
| O1 | 0.38712 (11) | 0.72467 (12) | 0.6291 (2) | 0.0220 (4) | |
| O2 | 0.43783 (11) | 0.64415 (10) | 0.8775 (2) | 0.0212 (4) | |
| O3 | 0.71401 (10) | 1.06596 (10) | 0.73297 (19) | 0.0184 (4) | |
| N1 | 0.34929 (12) | 0.77773 (13) | 0.9064 (3) | 0.0165 (4) | |
| H1 | 0.364 (2) | 0.783 (2) | 1.0119 (16) | 0.038 (9)* | |
| H2 | 0.329 (2) | 0.8243 (14) | 0.853 (4) | 0.053 (11)* | |
| N2 | 0.75181 (12) | 0.92922 (13) | 0.8186 (2) | 0.0165 (4) | |
| H3 | 0.7976 (12) | 0.8991 (16) | 0.852 (3) | 0.025 (8)* | |
| C1 | 0.51900 (14) | 0.78616 (14) | 0.7979 (3) | 0.0153 (4) | |
| C2 | 0.59105 (15) | 0.75505 (15) | 0.8838 (3) | 0.0163 (5) | |
| H2A | 0.5884 | 0.7002 | 0.9394 | 0.020* | |
| C3 | 0.66665 (15) | 0.80408 (14) | 0.8881 (3) | 0.0164 (5) | |
| H3A | 0.7165 | 0.7826 | 0.9459 | 0.020* | |
| C4 | 0.67072 (14) | 0.88484 (15) | 0.8086 (3) | 0.0155 (5) | |
| C5 | 0.59846 (15) | 0.91651 (16) | 0.7215 (4) | 0.0227 (5) | |
| H5 | 0.6011 | 0.9714 | 0.6662 | 0.027* | |
| C6 | 0.52250 (16) | 0.86653 (15) | 0.7170 (4) | 0.0226 (5) | |
| H6 | 0.4727 | 0.8873 | 0.6583 | 0.027* | |
| C7 | 0.77054 (15) | 1.01386 (14) | 0.7821 (3) | 0.0158 (4) | |
| C8 | 0.86506 (15) | 1.03931 (15) | 0.8005 (3) | 0.0196 (5) | |
| H8A | 0.8689 | 1.1001 | 0.8392 | 0.029* | |
| H8B | 0.8946 | 1.0339 | 0.6930 | 0.029* | |
| H8C | 0.8934 | 1.0006 | 0.8813 | 0.029* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0124 (3) | 0.0141 (3) | 0.0172 (2) | −0.0010 (2) | 0.0011 (2) | −0.0006 (3) |
| O1 | 0.0201 (8) | 0.0260 (9) | 0.0199 (8) | −0.0028 (8) | −0.0005 (7) | −0.0042 (8) |
| O2 | 0.0197 (9) | 0.0116 (8) | 0.0323 (9) | −0.0012 (7) | 0.0006 (8) | 0.0017 (7) |
| O3 | 0.0197 (8) | 0.0153 (8) | 0.0202 (8) | 0.0024 (6) | 0.0016 (7) | 0.0017 (7) |
| N1 | 0.0122 (9) | 0.0199 (10) | 0.0176 (9) | 0.0014 (8) | 0.0033 (9) | 0.0026 (9) |
| N2 | 0.0103 (9) | 0.0147 (9) | 0.0247 (10) | 0.0011 (7) | 0.0004 (8) | 0.0038 (9) |
| C1 | 0.0129 (10) | 0.0167 (10) | 0.0163 (9) | −0.0010 (9) | 0.0012 (10) | −0.0009 (11) |
| C2 | 0.0174 (11) | 0.0119 (10) | 0.0197 (11) | 0.0028 (9) | 0.0001 (10) | 0.0017 (9) |
| C3 | 0.0138 (11) | 0.0140 (11) | 0.0215 (11) | 0.0039 (9) | −0.0002 (10) | 0.0041 (10) |
| C4 | 0.0119 (10) | 0.0148 (10) | 0.0197 (11) | 0.0010 (8) | 0.0020 (10) | −0.0012 (10) |
| C5 | 0.0167 (11) | 0.0188 (11) | 0.0326 (13) | −0.0003 (9) | −0.0011 (11) | 0.0109 (12) |
| C6 | 0.0147 (11) | 0.0237 (12) | 0.0296 (12) | 0.0015 (10) | −0.0034 (12) | 0.0107 (12) |
| C7 | 0.0180 (11) | 0.0145 (10) | 0.0150 (10) | 0.0012 (9) | 0.0035 (10) | −0.0010 (10) |
| C8 | 0.0188 (11) | 0.0186 (11) | 0.0214 (11) | −0.0034 (9) | 0.0003 (11) | 0.0012 (11) |
Geometric parameters (Å, º)
| S1—O2 | 1.4316 (17) | C2—C3 | 1.376 (3) |
| S1—O1 | 1.4446 (17) | C2—H2A | 0.9500 |
| S1—N1 | 1.608 (2) | C3—C4 | 1.391 (3) |
| S1—C1 | 1.762 (2) | C3—H3A | 0.9500 |
| O3—C7 | 1.238 (3) | C4—C5 | 1.394 (3) |
| N1—H1 | 0.880 (10) | C5—C6 | 1.388 (3) |
| N1—H2 | 0.885 (10) | C5—H5 | 0.9500 |
| N2—C7 | 1.355 (3) | C6—H6 | 0.9500 |
| N2—C4 | 1.413 (3) | C7—C8 | 1.501 (3) |
| N2—H3 | 0.878 (10) | C8—H8A | 0.9800 |
| C1—C2 | 1.384 (3) | C8—H8B | 0.9800 |
| C1—C6 | 1.390 (3) | C8—H8C | 0.9800 |
| O2—S1—O1 | 118.55 (11) | C4—C3—H3A | 119.7 |
| O2—S1—N1 | 107.74 (11) | C3—C4—C5 | 120.3 (2) |
| O1—S1—N1 | 106.36 (10) | C3—C4—N2 | 115.9 (2) |
| O2—S1—C1 | 107.16 (10) | C5—C4—N2 | 123.8 (2) |
| O1—S1—C1 | 108.19 (11) | C6—C5—C4 | 118.9 (2) |
| N1—S1—C1 | 108.52 (11) | C6—C5—H5 | 120.5 |
| S1—N1—H1 | 114 (2) | C4—C5—H5 | 120.5 |
| S1—N1—H2 | 111 (2) | C5—C6—C1 | 120.3 (2) |
| H1—N1—H2 | 119 (3) | C5—C6—H6 | 119.9 |
| C7—N2—C4 | 128.99 (19) | C1—C6—H6 | 119.9 |
| C7—N2—H3 | 113.4 (18) | O3—C7—N2 | 122.3 (2) |
| C4—N2—H3 | 117.6 (18) | O3—C7—C8 | 122.33 (19) |
| C2—C1—C6 | 120.5 (2) | N2—C7—C8 | 115.34 (19) |
| C2—C1—S1 | 120.10 (17) | C7—C8—H8A | 109.5 |
| C6—C1—S1 | 119.40 (18) | C7—C8—H8B | 109.5 |
| C3—C2—C1 | 119.5 (2) | H8A—C8—H8B | 109.5 |
| C3—C2—H2A | 120.2 | C7—C8—H8C | 109.5 |
| C1—C2—H2A | 120.2 | H8A—C8—H8C | 109.5 |
| C2—C3—C4 | 120.5 (2) | H8B—C8—H8C | 109.5 |
| C2—C3—H3A | 119.7 | ||
| O2—S1—C1—C2 | −6.7 (2) | C2—C3—C4—N2 | −179.1 (2) |
| O1—S1—C1—C2 | −135.60 (19) | C7—N2—C4—C3 | −166.2 (2) |
| N1—S1—C1—C2 | 109.4 (2) | C7—N2—C4—C5 | 15.6 (4) |
| O2—S1—C1—C6 | 175.7 (2) | C3—C4—C5—C6 | 0.5 (4) |
| O1—S1—C1—C6 | 46.8 (2) | N2—C4—C5—C6 | 178.6 (2) |
| N1—S1—C1—C6 | −68.2 (2) | C4—C5—C6—C1 | −0.1 (4) |
| C6—C1—C2—C3 | −0.3 (4) | C2—C1—C6—C5 | 0.0 (4) |
| S1—C1—C2—C3 | −177.88 (19) | S1—C1—C6—C5 | 177.6 (2) |
| C1—C2—C3—C4 | 0.7 (3) | C4—N2—C7—O3 | 0.5 (4) |
| C2—C3—C4—C5 | −0.8 (4) | C4—N2—C7—C8 | −177.7 (2) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···O3i | 0.88 (1) | 2.08 (1) | 2.935 (3) | 163 (3) |
| N1—H2···O3ii | 0.89 (1) | 2.04 (1) | 2.929 (3) | 178 (3) |
| N2—H3···O1iii | 0.88 (1) | 2.34 (2) | 3.156 (3) | 155 (2) |
Symmetry codes: (i) −y+3/2, −x+3/2, z+1/2; (ii) −x+1, −y+2, z; (iii) x+1/2, −y+3/2, −z+3/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6682).
References
- Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
- Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424. [DOI] [PMC free article] [PubMed]
- Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762–o763. [DOI] [PMC free article] [PubMed]
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Croitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993–997.
- Dogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57–65.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011701/hb6682sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011701/hb6682Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812011701/hb6682Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


