Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1155. doi: 10.1107/S1600536812011701

N-(4-Sulfamoylphen­yl)acetamide

Abdullah M Asiri a,b,, Hassan M Faidallah a, Tariq R Sobahi a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3344098  PMID: 22606101

Abstract

In the title compound, C8H10N2O3S, the dihedral angle between the acetamide group and the benzene ring is 15.59 (12)° and the amino group is close to being perpendicular to the benzene ring [N—S—Car—Car (ar = aromatic) torsion angle = 109.4 (2)°]. In the crystal, mol­ecules are linked into supra­molecular tubes parallel to [001] by amine–amide N—H⋯O inter­actions and these are connected into the three-dimensional architecture by amide–sulfonamide N—H⋯O hydrogen bonds. The crystal studied was a racemic twin.

Related literature  

For background to the biological applications of related sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For related structures, see: Asiri et al. (2011, 2012).graphic file with name e-68-o1155-scheme1.jpg

Experimental  

Crystal data  

  • C8H10N2O3S

  • M r = 214.24

  • Tetragonal, Inline graphic

  • a = 15.2631 (4) Å

  • c = 8.0571 (4) Å

  • V = 1877.00 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.40 × 0.05 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.880, T max = 0.984

  • 3827 measured reflections

  • 1862 independent reflections

  • 1698 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.079

  • S = 1.02

  • 1862 reflections

  • 140 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983), 625 Friedel pairs

  • Flack parameter: 0.48 (9)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011701/hb6682sup1.cif

e-68-o1155-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011701/hb6682Isup2.hkl

e-68-o1155-Isup2.hkl (91.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011701/hb6682Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 (1) 2.08 (1) 2.935 (3) 163 (3)
N1—H2⋯O3ii 0.89 (1) 2.04 (1) 2.929 (3) 178 (3)
N2—H3⋯O1iii 0.88 (1) 2.34 (2) 3.156 (3) 155 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The crystal and molecular structure of N-(4-sulfamoylphenyl)acetamide (I) is reported herein in continuation of on-going structural studies of sulfonamide derivatives (Asiri et al., 2011; Asiri et al., 2012), of interest owing to their biological activity, for example, to selectively inhibit COX–2 (Croitoru et al., 2004) and as they exhibit anti-microbial and anti-fungal activities (Dogruer et al. 2010).

In (I), Fig. 1. the amide residue is twisted out of the plane of the benzene ring to which it is attached as seen in the value of the C7—N2—C4—C3 torsion angle of -166.2 (2)°, and the amino group occupies a position perpendicular to the benzene ring with the N1—S1—C1—C2 torsion angle being 109.4 (2)°.

Each of the N—H hydrogen atoms forms a hydrogen bond to an oxygen atom with the amide-O3 atom being bifurcated, Table 1. The amino-H atoms bridge the amide-O atoms to generate supramolecular tubes along the c axis. These are connected into the three-dimensional architecture by amide-H···O(sulfonamide) hydrogen bonds, Fig. 2 and Table 1.

Experimental

2-Acetyl chloride (0.784 g, 25 mmol) in pyridine (5 ml) was slowly added to a solution of sulfanilamide (2.00 g, 11 mmol) in pyridine (20 ml) and the reaction mixture was stirred at 258 K for 4 h under anhydrous conditions. After warming the solution to room temperature, the pyridine was removed in vacuo and the resulting white solid dissolved in ethyl acetate. The organic extract was washed with 3 M hydrochloric acid (30 ml) then with saturated sodium bicarbonate solution (30 ml) and finally with brine. Drying over magnesium sulfate and evaporation yielded a white solid which was recrystallized from ethanol to give the title compound as colourless prisms. Yield: 74%. M.pt: 491–492 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined. Owing to poor agreement, the (7 7 0) reflection was omitted from the final cycles of refinement. The Flack (Flack, 1983) parameter was calculated from 625 Friedel pairs. The refined value, i.e. 0.48 (9). indicates that the crystal examined was a racemic twin.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the c axis of the unit-cell contents of (I). The N—H···O hydrogen bonds are shown as orange dashed lines.

Crystal data

C8H10N2O3S Dx = 1.516 Mg m3
Mr = 214.24 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421c Cell parameters from 2081 reflections
Hall symbol: P -4 2n θ = 2.7–27.5°
a = 15.2631 (4) Å µ = 0.33 mm1
c = 8.0571 (4) Å T = 100 K
V = 1877.00 (11) Å3 Prism, colourless
Z = 8 0.40 × 0.05 × 0.05 mm
F(000) = 896

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1862 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1698 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.028
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.7°
ω scan h = −12→19
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −18→10
Tmin = 0.880, Tmax = 0.984 l = −10→6
3827 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.7254P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
1862 reflections Δρmax = 0.25 e Å3
140 parameters Δρmin = −0.27 e Å3
3 restraints Absolute structure: Flack (1983), 625 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.48 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.42050 (3) 0.72593 (3) 0.79689 (8) 0.01459 (14)
O1 0.38712 (11) 0.72467 (12) 0.6291 (2) 0.0220 (4)
O2 0.43783 (11) 0.64415 (10) 0.8775 (2) 0.0212 (4)
O3 0.71401 (10) 1.06596 (10) 0.73297 (19) 0.0184 (4)
N1 0.34929 (12) 0.77773 (13) 0.9064 (3) 0.0165 (4)
H1 0.364 (2) 0.783 (2) 1.0119 (16) 0.038 (9)*
H2 0.329 (2) 0.8243 (14) 0.853 (4) 0.053 (11)*
N2 0.75181 (12) 0.92922 (13) 0.8186 (2) 0.0165 (4)
H3 0.7976 (12) 0.8991 (16) 0.852 (3) 0.025 (8)*
C1 0.51900 (14) 0.78616 (14) 0.7979 (3) 0.0153 (4)
C2 0.59105 (15) 0.75505 (15) 0.8838 (3) 0.0163 (5)
H2A 0.5884 0.7002 0.9394 0.020*
C3 0.66665 (15) 0.80408 (14) 0.8881 (3) 0.0164 (5)
H3A 0.7165 0.7826 0.9459 0.020*
C4 0.67072 (14) 0.88484 (15) 0.8086 (3) 0.0155 (5)
C5 0.59846 (15) 0.91651 (16) 0.7215 (4) 0.0227 (5)
H5 0.6011 0.9714 0.6662 0.027*
C6 0.52250 (16) 0.86653 (15) 0.7170 (4) 0.0226 (5)
H6 0.4727 0.8873 0.6583 0.027*
C7 0.77054 (15) 1.01386 (14) 0.7821 (3) 0.0158 (4)
C8 0.86506 (15) 1.03931 (15) 0.8005 (3) 0.0196 (5)
H8A 0.8689 1.1001 0.8392 0.029*
H8B 0.8946 1.0339 0.6930 0.029*
H8C 0.8934 1.0006 0.8813 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0124 (3) 0.0141 (3) 0.0172 (2) −0.0010 (2) 0.0011 (2) −0.0006 (3)
O1 0.0201 (8) 0.0260 (9) 0.0199 (8) −0.0028 (8) −0.0005 (7) −0.0042 (8)
O2 0.0197 (9) 0.0116 (8) 0.0323 (9) −0.0012 (7) 0.0006 (8) 0.0017 (7)
O3 0.0197 (8) 0.0153 (8) 0.0202 (8) 0.0024 (6) 0.0016 (7) 0.0017 (7)
N1 0.0122 (9) 0.0199 (10) 0.0176 (9) 0.0014 (8) 0.0033 (9) 0.0026 (9)
N2 0.0103 (9) 0.0147 (9) 0.0247 (10) 0.0011 (7) 0.0004 (8) 0.0038 (9)
C1 0.0129 (10) 0.0167 (10) 0.0163 (9) −0.0010 (9) 0.0012 (10) −0.0009 (11)
C2 0.0174 (11) 0.0119 (10) 0.0197 (11) 0.0028 (9) 0.0001 (10) 0.0017 (9)
C3 0.0138 (11) 0.0140 (11) 0.0215 (11) 0.0039 (9) −0.0002 (10) 0.0041 (10)
C4 0.0119 (10) 0.0148 (10) 0.0197 (11) 0.0010 (8) 0.0020 (10) −0.0012 (10)
C5 0.0167 (11) 0.0188 (11) 0.0326 (13) −0.0003 (9) −0.0011 (11) 0.0109 (12)
C6 0.0147 (11) 0.0237 (12) 0.0296 (12) 0.0015 (10) −0.0034 (12) 0.0107 (12)
C7 0.0180 (11) 0.0145 (10) 0.0150 (10) 0.0012 (9) 0.0035 (10) −0.0010 (10)
C8 0.0188 (11) 0.0186 (11) 0.0214 (11) −0.0034 (9) 0.0003 (11) 0.0012 (11)

Geometric parameters (Å, º)

S1—O2 1.4316 (17) C2—C3 1.376 (3)
S1—O1 1.4446 (17) C2—H2A 0.9500
S1—N1 1.608 (2) C3—C4 1.391 (3)
S1—C1 1.762 (2) C3—H3A 0.9500
O3—C7 1.238 (3) C4—C5 1.394 (3)
N1—H1 0.880 (10) C5—C6 1.388 (3)
N1—H2 0.885 (10) C5—H5 0.9500
N2—C7 1.355 (3) C6—H6 0.9500
N2—C4 1.413 (3) C7—C8 1.501 (3)
N2—H3 0.878 (10) C8—H8A 0.9800
C1—C2 1.384 (3) C8—H8B 0.9800
C1—C6 1.390 (3) C8—H8C 0.9800
O2—S1—O1 118.55 (11) C4—C3—H3A 119.7
O2—S1—N1 107.74 (11) C3—C4—C5 120.3 (2)
O1—S1—N1 106.36 (10) C3—C4—N2 115.9 (2)
O2—S1—C1 107.16 (10) C5—C4—N2 123.8 (2)
O1—S1—C1 108.19 (11) C6—C5—C4 118.9 (2)
N1—S1—C1 108.52 (11) C6—C5—H5 120.5
S1—N1—H1 114 (2) C4—C5—H5 120.5
S1—N1—H2 111 (2) C5—C6—C1 120.3 (2)
H1—N1—H2 119 (3) C5—C6—H6 119.9
C7—N2—C4 128.99 (19) C1—C6—H6 119.9
C7—N2—H3 113.4 (18) O3—C7—N2 122.3 (2)
C4—N2—H3 117.6 (18) O3—C7—C8 122.33 (19)
C2—C1—C6 120.5 (2) N2—C7—C8 115.34 (19)
C2—C1—S1 120.10 (17) C7—C8—H8A 109.5
C6—C1—S1 119.40 (18) C7—C8—H8B 109.5
C3—C2—C1 119.5 (2) H8A—C8—H8B 109.5
C3—C2—H2A 120.2 C7—C8—H8C 109.5
C1—C2—H2A 120.2 H8A—C8—H8C 109.5
C2—C3—C4 120.5 (2) H8B—C8—H8C 109.5
C2—C3—H3A 119.7
O2—S1—C1—C2 −6.7 (2) C2—C3—C4—N2 −179.1 (2)
O1—S1—C1—C2 −135.60 (19) C7—N2—C4—C3 −166.2 (2)
N1—S1—C1—C2 109.4 (2) C7—N2—C4—C5 15.6 (4)
O2—S1—C1—C6 175.7 (2) C3—C4—C5—C6 0.5 (4)
O1—S1—C1—C6 46.8 (2) N2—C4—C5—C6 178.6 (2)
N1—S1—C1—C6 −68.2 (2) C4—C5—C6—C1 −0.1 (4)
C6—C1—C2—C3 −0.3 (4) C2—C1—C6—C5 0.0 (4)
S1—C1—C2—C3 −177.88 (19) S1—C1—C6—C5 177.6 (2)
C1—C2—C3—C4 0.7 (3) C4—N2—C7—O3 0.5 (4)
C2—C3—C4—C5 −0.8 (4) C4—N2—C7—C8 −177.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.88 (1) 2.08 (1) 2.935 (3) 163 (3)
N1—H2···O3ii 0.89 (1) 2.04 (1) 2.929 (3) 178 (3)
N2—H3···O1iii 0.88 (1) 2.34 (2) 3.156 (3) 155 (2)

Symmetry codes: (i) −y+3/2, −x+3/2, z+1/2; (ii) −x+1, −y+2, z; (iii) x+1/2, −y+3/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6682).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424. [DOI] [PMC free article] [PubMed]
  3. Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762–o763. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Croitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993–997.
  6. Dogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57–65.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011701/hb6682sup1.cif

e-68-o1155-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011701/hb6682Isup2.hkl

e-68-o1155-Isup2.hkl (91.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011701/hb6682Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES