Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1157–o1158. doi: 10.1107/S1600536812011798

A second monoclinic polymorph for 3-amino-1-(4-meth­oxy­phen­yl)-9,10-dihydro­phenanthrene-2,4-dicarbonitrile

Abdullah M Asiri a,b,, Hassan M Faidallah a, Khalid A Alamry a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3344100  PMID: 22606103

Abstract

The title compound, C23H17N3O, has been previously described in a monoclinic P21/c polymorph with Z = 4 [Asiri, Al-Youbi, Faidallah, Ng & Tiekink (2011). Acta Cryst. E67, o2449]. In the new monoclinic P21/n form, with Z = 8, there are two independent mol­ecules, A and B, in the asymmetric unit. In both mol­ecules, the cyclo­hexa-1,3-diene ring has a screw-boat conformation, whereas it is a distorted half-chair in the original polymorph. There is a fold in each mol­ecule, as indicated by the dihedral angle between the benzene rings of the 1,2-dihydro­naphthalene and aniline residues of 33.19 (10)° (mol­ecule A) and 30.6 (10)° (mol­ecule B). The meth­oxy­benzene ring is twisted out of the plane of the aniline residue to which it is connected [dihedral angles = 49.22 (10) and 73.27 (10)°, in A and B respectively]. In the crystal, the two independent mol­ecules self-associate via N—H⋯N hydrogen bonds, generating a 12-membered {⋯HNC3N}2 synthon. These are connected into a supra­molecular tape in the (-101) plane by N—H⋯O(meth­oxy) inter­actions. In the P21/c polymorph, supra­molecular layers are formed by N—H⋯N and N—H⋯O inter­actions.

Related literature  

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010); Rostom et al. (2011). For related structures, see: Asiri et al. (2011a ,b ); Al-Youbi et al. (2012). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o1157-scheme1.jpg

Experimental  

Crystal data  

  • C23H17N3O

  • M r = 351.40

  • Monoclinic, Inline graphic

  • a = 11.5197 (6) Å

  • b = 25.1585 (12) Å

  • c = 11.9564 (6) Å

  • β = 90.719 (5)°

  • V = 3464.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.35 × 0.10 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.971, T max = 0.992

  • 20450 measured reflections

  • 7990 independent reflections

  • 5348 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.156

  • S = 1.04

  • 7990 reflections

  • 503 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011798/bt5850sup1.cif

e-68-o1157-sup1.cif (30.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011798/bt5850Isup2.hkl

e-68-o1157-Isup2.hkl (390.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011798/bt5850Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N6 0.89 (1) 2.25 (2) 3.081 (3) 157 (3)
N5—H3⋯N1 0.88 (1) 2.36 (1) 3.213 (3) 162 (2)
N2—H1⋯O1i 0.88 (2) 2.56 (2) 3.271 (3) 139 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

In connection with structural studies on phenanthrene compounds (Asiri et al., 2011a; Asiri et al., 2011b; Al-Youbi et al., 2012), of interest owing to biological activity (Wang et al. 2010; Rostom et al., 2011), a new monoclinic polymorph of the title compound 3-amino-1-(4-methoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (I) was found. Previously (I) was isolated in the monoclinic space group P21/c with Z = 4 (Asiri et al., 2011b). The new form crystallizes in the monoclinic space group P21/n with two independent molecules in the asymmetric unit, Fig. 1.

The conformations of the two independent molecules in (I) differ in two regions of the molecule. In the N1-containing molecule, the cyclohexa-1,3-diene ring has a screw-boat conformation as defined by the following geometric parameters (Cremer & Pople, 1975): puckering parameters q2 = 0.527 (2) Å and q3 = 0.156 (2) Å, and amplitudes: Q = 0.549 (2) Å, θ = 73.5 (2)° and φ2 = 93.2 (3)°. By contrast, in the N4-containing molecule, the conformation is based on a distorted half-chair with puckering parameters: q2 = 0.530 (2) Å, q3 = -0.178 (2) Å, Q = 0.558 (2) Å, θ = 108.5 (2)° and φ2 = 265.8 (3) °. In the P21/c polymorph of (I), the conformation matches more closely a distorted half-chair.

For the first independent molecule, the benzene rings of the 1,2-dihydronaphthalene and methoxybenzene residues form dihedral angles of 33.19 (10) and 49.22 (10)°, respectively, with the amino-benzene ring, indicating non-planarity in the fused ring system and a twist of the methoxybenzene out of the plane of the benzene ring to which it is connected. The comparable angles for the second independent molecule are 30.6 (10) and 73.27 (10)°, respectively. Figure 2 shows an overlay diagram for the three independent molecules of (I) characterized in the two polymorphs.

In the crystal structure of (I) the two independent molecules self-associate via N—H···N hydrogen bonds to generate 12-membered {···HNC3N}2 synthons, Fig. 3 and Table 1. One of the amino-H atoms forms a hydrogen bond to a methoxy-O atom leading to the formation of a supramolecular tape along [1 0 1], Fig. 3 and Table 1. The fourth independent amino-H atom does not participate in a significant intermolecular interaction. In the previously described P21/c form of (I), supramolecular arrays with a zigzag topology were formed through N—H···N hydrogen bonds, leading to {···HNC3N}2 synthons, as well N—H···O(methoxy) hydrogen bonding.

Experimental

A mixture of 4-methoxybenzaldehyde (1.38 g, 0.01 mmol), 1-tetralone (1.46 g, 0.01 mmol), malononitrile (0.66 g, 0.01 mmol) and ammonium acetate (6.2 g, 0.08 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool, and the formed precipitate was filtered, washed with water, dried and recrystallized from ethanol. Yield: 69%. M.pt: 533–535 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined. Owing to poor agreement, the (1 0 1) and (0 2 1) reflections were omitted from the final cycles of refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Overlay diagram of the two independent molecules of (I) and the polymorph of (I). The molecules have been aligned so that nitrile-N atom closest to the partially saturated ring, amino-N and the C atom diagonally opposite to the amino-N atom have been superimposed. Colour code: red = N1-molecule of (I), green = N4-molecule (inverted) of (I) and blue = polymorph of (I).

Fig. 3.

Fig. 3.

A view of the supramolecular tape along [1 0 1] in (I). The N—H···N and N—H···O hydrogen bonds are shown as blue and orange dashed lines, respectively.

Crystal data

C23H17N3O F(000) = 1472
Mr = 351.40 Dx = 1.347 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4701 reflections
a = 11.5197 (6) Å θ = 2.4–27.5°
b = 25.1585 (12) Å µ = 0.09 mm1
c = 11.9564 (6) Å T = 100 K
β = 90.719 (5)° Prism, orange
V = 3464.9 (3) Å3 0.35 × 0.35 × 0.10 mm
Z = 8

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 7990 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 5348 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.055
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −24→32
Tmin = 0.971, Tmax = 0.992 l = −15→12
20450 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.057P)2 + 0.839P] where P = (Fo2 + 2Fc2)/3
7990 reflections (Δ/σ)max = 0.001
503 parameters Δρmax = 0.33 e Å3
4 restraints Δρmin = −0.25 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.10070 (14) 0.15244 (6) 0.28185 (14) 0.0303 (4)
O2 0.84581 (15) 0.39154 (6) 1.09183 (14) 0.0328 (4)
N1 0.35813 (17) 0.54827 (8) 0.59073 (16) 0.0301 (5)
N2 0.44427 (18) 0.41933 (8) 0.60868 (17) 0.0286 (4)
N3 0.45795 (18) 0.28657 (8) 0.52814 (17) 0.0341 (5)
N4 0.48229 (19) 0.77085 (8) 0.78737 (19) 0.0377 (5)
N5 0.49102 (17) 0.64209 (8) 0.72209 (16) 0.0268 (4)
N6 0.56385 (16) 0.51011 (7) 0.73917 (15) 0.0249 (4)
C1 0.15965 (18) 0.40545 (8) 0.38717 (18) 0.0220 (5)
C2 0.04533 (18) 0.40182 (9) 0.32242 (19) 0.0242 (5)
H2A 0.0596 0.4063 0.2415 0.029*
H2B 0.0102 0.3664 0.3338 0.029*
C3 −0.03757 (19) 0.44473 (8) 0.36222 (19) 0.0256 (5)
H3A −0.1106 0.4432 0.3178 0.031*
H3B −0.0566 0.4386 0.4417 0.031*
C4 0.01701 (19) 0.49843 (9) 0.34957 (18) 0.0235 (5)
C5 −0.0443 (2) 0.54234 (9) 0.31252 (19) 0.0275 (5)
H5 −0.1252 0.5393 0.2974 0.033*
C6 0.0111 (2) 0.59115 (9) 0.29700 (19) 0.0292 (5)
H6 −0.0323 0.6216 0.2748 0.035*
C7 0.1298 (2) 0.59477 (9) 0.31422 (18) 0.0268 (5)
H7 0.1686 0.6273 0.2992 0.032*
C8 0.1925 (2) 0.55150 (9) 0.35315 (18) 0.0249 (5)
H8 0.2738 0.5546 0.3653 0.030*
C9 0.13701 (19) 0.50318 (8) 0.37478 (17) 0.0222 (5)
C10 0.19815 (18) 0.45619 (8) 0.41975 (18) 0.0220 (5)
C11 0.29307 (18) 0.46056 (8) 0.49625 (18) 0.0218 (5)
C12 0.35534 (19) 0.41555 (8) 0.53271 (18) 0.0225 (5)
C13 0.32176 (19) 0.36595 (8) 0.48802 (18) 0.0225 (5)
C14 0.22155 (19) 0.36049 (8) 0.41905 (18) 0.0211 (5)
C15 0.32687 (18) 0.51051 (9) 0.54559 (18) 0.0221 (5)
C16 0.3947 (2) 0.32124 (9) 0.51117 (18) 0.0256 (5)
C17 0.18686 (18) 0.30606 (8) 0.38398 (18) 0.0228 (5)
C18 0.1762 (2) 0.26602 (9) 0.46277 (19) 0.0268 (5)
H18 0.1886 0.2742 0.5396 0.032*
C19 0.1478 (2) 0.21416 (9) 0.4326 (2) 0.0278 (5)
H19 0.1418 0.1872 0.4879 0.033*
C20 0.12838 (18) 0.20240 (9) 0.3206 (2) 0.0248 (5)
C21 0.13611 (18) 0.24202 (9) 0.24038 (19) 0.0248 (5)
H21 0.1213 0.2339 0.1639 0.030*
C22 0.16527 (18) 0.29310 (9) 0.27145 (18) 0.0242 (5)
H22 0.1708 0.3199 0.2159 0.029*
C23 0.1006 (2) 0.11064 (9) 0.3630 (2) 0.0355 (6)
H23A 0.0808 0.0770 0.3263 0.053*
H23B 0.0430 0.1185 0.4204 0.053*
H23C 0.1777 0.1078 0.3980 0.053*
C24 0.69808 (19) 0.63961 (8) 1.01349 (18) 0.0218 (5)
C25 0.7659 (2) 0.64074 (9) 1.12243 (18) 0.0259 (5)
H25A 0.8455 0.6540 1.1092 0.031*
H25B 0.7717 0.6043 1.1535 0.031*
C26 0.7052 (2) 0.67681 (9) 1.20495 (18) 0.0262 (5)
H26A 0.6265 0.6630 1.2203 0.031*
H26B 0.7496 0.6780 1.2763 0.031*
C27 0.69672 (18) 0.73163 (9) 1.15568 (18) 0.0233 (5)
C28 0.71185 (19) 0.77700 (9) 1.22026 (19) 0.0269 (5)
H28 0.7195 0.7738 1.2992 0.032*
C29 0.71595 (19) 0.82680 (9) 1.1717 (2) 0.0290 (5)
H29 0.7253 0.8575 1.2172 0.035*
C30 0.7064 (2) 0.83184 (9) 1.0572 (2) 0.0279 (5)
H30 0.7140 0.8658 1.0233 0.033*
C31 0.68564 (19) 0.78737 (9) 0.99132 (19) 0.0252 (5)
H31 0.6764 0.7912 0.9127 0.030*
C32 0.67824 (18) 0.73687 (8) 1.03971 (19) 0.0229 (5)
C33 0.65311 (18) 0.68813 (8) 0.97334 (18) 0.0219 (5)
C34 0.58428 (18) 0.68879 (8) 0.87531 (18) 0.0213 (5)
C35 0.56000 (18) 0.64163 (8) 0.81431 (18) 0.0210 (5)
C36 0.61077 (18) 0.59420 (8) 0.85423 (18) 0.0213 (5)
C37 0.67812 (19) 0.59281 (8) 0.95346 (18) 0.0215 (5)
C38 0.5298 (2) 0.73604 (9) 0.8308 (2) 0.0275 (5)
C39 0.58701 (18) 0.54667 (9) 0.79306 (18) 0.0215 (5)
C40 0.72664 (19) 0.54034 (8) 0.99069 (17) 0.0209 (5)
C41 0.6805 (2) 0.51357 (9) 1.08273 (19) 0.0266 (5)
H41 0.6193 0.5293 1.1237 0.032*
C42 0.7230 (2) 0.46448 (9) 1.11451 (19) 0.0282 (5)
H42 0.6908 0.4467 1.1769 0.034*
C43 0.81266 (19) 0.44099 (9) 1.05564 (18) 0.0244 (5)
C44 0.8609 (2) 0.46710 (9) 0.96590 (19) 0.0253 (5)
H44 0.9237 0.4517 0.9266 0.030*
C45 0.81622 (19) 0.51622 (8) 0.93386 (18) 0.0240 (5)
H45 0.8482 0.5337 0.8710 0.029*
C46 0.9325 (2) 0.36427 (10) 1.0298 (2) 0.0368 (6)
H46A 0.9475 0.3295 1.0640 0.055*
H46B 1.0041 0.3852 1.0303 0.055*
H46C 0.9052 0.3593 0.9525 0.055*
H1 0.4837 (17) 0.3901 (6) 0.6221 (18) 0.020 (6)*
H2 0.466 (2) 0.4511 (6) 0.633 (2) 0.044 (8)*
H3 0.469 (2) 0.6121 (6) 0.690 (2) 0.037 (7)*
H4 0.460 (2) 0.6715 (6) 0.695 (2) 0.034 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0352 (9) 0.0210 (8) 0.0348 (9) −0.0020 (7) −0.0035 (8) −0.0052 (7)
O2 0.0406 (10) 0.0253 (9) 0.0326 (9) 0.0105 (7) 0.0036 (8) 0.0064 (7)
N1 0.0324 (11) 0.0285 (11) 0.0292 (11) 0.0001 (9) −0.0087 (9) −0.0013 (9)
N2 0.0327 (11) 0.0217 (11) 0.0312 (11) −0.0024 (9) −0.0098 (9) −0.0009 (9)
N3 0.0395 (12) 0.0264 (11) 0.0360 (12) 0.0011 (10) −0.0081 (10) 0.0000 (9)
N4 0.0426 (12) 0.0272 (11) 0.0431 (13) 0.0031 (10) −0.0126 (11) 0.0005 (10)
N5 0.0344 (11) 0.0204 (11) 0.0254 (10) 0.0015 (9) −0.0075 (9) 0.0019 (9)
N6 0.0275 (10) 0.0229 (10) 0.0240 (10) 0.0010 (8) −0.0055 (8) 0.0010 (8)
C1 0.0230 (11) 0.0243 (11) 0.0187 (10) −0.0033 (9) 0.0022 (9) −0.0005 (9)
C2 0.0256 (11) 0.0244 (11) 0.0226 (11) −0.0036 (9) −0.0024 (10) −0.0009 (9)
C3 0.0243 (11) 0.0280 (12) 0.0246 (11) −0.0025 (9) −0.0003 (10) −0.0016 (10)
C4 0.0249 (11) 0.0267 (12) 0.0190 (11) 0.0006 (9) 0.0006 (9) −0.0039 (9)
C5 0.0280 (12) 0.0300 (13) 0.0245 (12) −0.0007 (10) −0.0009 (10) −0.0031 (10)
C6 0.0370 (13) 0.0264 (12) 0.0243 (12) 0.0070 (10) −0.0035 (11) −0.0011 (10)
C7 0.0352 (13) 0.0240 (12) 0.0213 (11) −0.0032 (10) −0.0014 (10) −0.0053 (9)
C8 0.0301 (12) 0.0242 (12) 0.0204 (11) −0.0010 (9) −0.0024 (10) −0.0037 (9)
C9 0.0270 (11) 0.0222 (11) 0.0174 (10) 0.0000 (9) 0.0013 (9) −0.0037 (9)
C10 0.0220 (11) 0.0244 (11) 0.0199 (11) −0.0014 (9) 0.0044 (9) −0.0006 (9)
C11 0.0222 (11) 0.0205 (11) 0.0228 (11) −0.0030 (9) 0.0025 (9) −0.0018 (9)
C12 0.0233 (11) 0.0238 (11) 0.0205 (11) −0.0027 (9) 0.0033 (9) 0.0002 (9)
C13 0.0269 (11) 0.0213 (11) 0.0194 (11) −0.0003 (9) 0.0017 (9) 0.0018 (9)
C14 0.0255 (11) 0.0200 (11) 0.0180 (10) −0.0019 (9) 0.0035 (9) −0.0004 (9)
C15 0.0218 (11) 0.0222 (11) 0.0221 (11) 0.0009 (9) −0.0009 (9) −0.0005 (9)
C16 0.0327 (12) 0.0219 (12) 0.0220 (11) −0.0069 (10) −0.0011 (10) −0.0020 (9)
C17 0.0223 (11) 0.0224 (11) 0.0238 (11) −0.0005 (9) 0.0010 (10) −0.0008 (9)
C18 0.0326 (12) 0.0253 (12) 0.0225 (11) −0.0028 (10) −0.0016 (10) −0.0028 (10)
C19 0.0330 (12) 0.0224 (12) 0.0279 (12) −0.0025 (10) 0.0010 (11) 0.0024 (10)
C20 0.0212 (11) 0.0221 (11) 0.0311 (12) −0.0010 (9) 0.0008 (10) −0.0064 (10)
C21 0.0227 (11) 0.0276 (12) 0.0239 (11) −0.0003 (9) −0.0008 (10) −0.0044 (10)
C22 0.0241 (11) 0.0273 (12) 0.0212 (11) 0.0005 (9) 0.0033 (10) 0.0007 (9)
C23 0.0446 (15) 0.0202 (12) 0.0415 (15) −0.0017 (11) −0.0057 (13) −0.0033 (11)
C24 0.0239 (11) 0.0224 (11) 0.0191 (11) −0.0022 (9) 0.0000 (9) 0.0012 (9)
C25 0.0321 (12) 0.0221 (11) 0.0232 (12) −0.0008 (9) −0.0065 (10) −0.0004 (9)
C26 0.0326 (12) 0.0269 (12) 0.0190 (11) −0.0045 (10) −0.0032 (10) 0.0012 (9)
C27 0.0222 (11) 0.0253 (12) 0.0223 (11) −0.0014 (9) 0.0005 (10) −0.0021 (9)
C28 0.0280 (12) 0.0277 (12) 0.0250 (12) 0.0024 (10) −0.0025 (10) −0.0041 (10)
C29 0.0259 (12) 0.0286 (12) 0.0323 (13) 0.0041 (10) −0.0031 (11) −0.0106 (10)
C30 0.0296 (12) 0.0191 (11) 0.0349 (13) 0.0007 (9) −0.0021 (11) −0.0006 (10)
C31 0.0272 (11) 0.0239 (12) 0.0246 (12) 0.0012 (9) −0.0014 (10) −0.0003 (10)
C32 0.0210 (11) 0.0214 (11) 0.0266 (12) −0.0008 (9) 0.0033 (10) −0.0022 (9)
C33 0.0227 (11) 0.0238 (11) 0.0195 (11) −0.0012 (9) 0.0031 (9) 0.0002 (9)
C34 0.0242 (11) 0.0191 (11) 0.0206 (11) −0.0007 (9) 0.0009 (9) 0.0009 (9)
C35 0.0222 (11) 0.0222 (11) 0.0187 (11) −0.0015 (9) 0.0016 (9) −0.0004 (9)
C36 0.0250 (11) 0.0187 (11) 0.0201 (11) −0.0016 (9) 0.0016 (9) −0.0011 (9)
C37 0.0263 (11) 0.0199 (11) 0.0183 (10) −0.0016 (9) 0.0019 (9) 0.0028 (9)
C38 0.0295 (12) 0.0256 (12) 0.0274 (12) 0.0002 (10) −0.0029 (10) −0.0034 (10)
C39 0.0212 (11) 0.0242 (11) 0.0193 (10) 0.0030 (9) 0.0003 (9) 0.0037 (9)
C40 0.0256 (11) 0.0199 (11) 0.0170 (10) −0.0032 (9) −0.0042 (9) −0.0005 (9)
C41 0.0278 (12) 0.0273 (12) 0.0248 (11) 0.0025 (10) 0.0029 (10) 0.0012 (10)
C42 0.0332 (13) 0.0277 (12) 0.0240 (12) −0.0001 (10) 0.0045 (11) 0.0057 (10)
C43 0.0285 (12) 0.0224 (11) 0.0223 (11) 0.0008 (9) −0.0043 (10) 0.0018 (9)
C44 0.0263 (11) 0.0261 (12) 0.0236 (11) 0.0002 (9) 0.0022 (10) −0.0038 (10)
C45 0.0301 (12) 0.0226 (11) 0.0191 (11) −0.0052 (9) 0.0007 (10) 0.0010 (9)
C46 0.0420 (14) 0.0291 (13) 0.0392 (15) 0.0112 (11) 0.0017 (13) 0.0003 (11)

Geometric parameters (Å, º)

O1—C20 1.376 (3) C20—C21 1.387 (3)
O1—C23 1.431 (3) C21—C22 1.378 (3)
O2—C43 1.370 (3) C21—H21 0.9500
O2—C46 1.427 (3) C22—H22 0.9500
N1—C15 1.148 (3) C23—H23A 0.9800
N2—C12 1.364 (3) C23—H23B 0.9800
N2—H1 0.879 (9) C23—H23C 0.9800
N2—H2 0.887 (10) C24—C37 1.396 (3)
N3—C16 1.153 (3) C24—C33 1.408 (3)
N4—C38 1.153 (3) C24—C25 1.511 (3)
N5—C35 1.351 (3) C25—C26 1.518 (3)
N5—H3 0.884 (10) C25—H25A 0.9900
N5—H4 0.881 (10) C25—H25B 0.9900
N6—C39 1.152 (3) C26—C27 1.503 (3)
C1—C14 1.388 (3) C26—H26A 0.9900
C1—C10 1.405 (3) C26—H26B 0.9900
C1—C2 1.522 (3) C27—C28 1.388 (3)
C2—C3 1.521 (3) C27—C32 1.406 (3)
C2—H2A 0.9900 C28—C29 1.382 (3)
C2—H2B 0.9900 C28—H28 0.9500
C3—C4 1.499 (3) C29—C30 1.378 (3)
C3—H3A 0.9900 C29—H29 0.9500
C3—H3B 0.9900 C30—C31 1.387 (3)
C4—C5 1.381 (3) C30—H30 0.9500
C4—C9 1.416 (3) C31—C32 1.399 (3)
C5—C6 1.398 (3) C31—H31 0.9500
C5—H5 0.9500 C32—C33 1.487 (3)
C6—C7 1.383 (3) C33—C34 1.407 (3)
C6—H6 0.9500 C34—C35 1.419 (3)
C7—C8 1.384 (3) C34—C38 1.443 (3)
C7—H7 0.9500 C35—C36 1.410 (3)
C8—C9 1.399 (3) C36—C37 1.410 (3)
C8—H8 0.9500 C36—C39 1.426 (3)
C9—C10 1.474 (3) C37—C40 1.499 (3)
C10—C11 1.421 (3) C40—C45 1.383 (3)
C11—C12 1.407 (3) C40—C41 1.401 (3)
C11—C15 1.440 (3) C41—C42 1.380 (3)
C12—C13 1.410 (3) C41—H41 0.9500
C13—C14 1.417 (3) C42—C43 1.389 (3)
C13—C16 1.429 (3) C42—H42 0.9500
C14—C17 1.486 (3) C43—C44 1.381 (3)
C17—C18 1.386 (3) C44—C45 1.391 (3)
C17—C22 1.404 (3) C44—H44 0.9500
C18—C19 1.391 (3) C45—H45 0.9500
C18—H18 0.9500 C46—H46A 0.9800
C19—C20 1.387 (3) C46—H46B 0.9800
C19—H19 0.9500 C46—H46C 0.9800
C20—O1—C23 116.44 (18) H23A—C23—H23B 109.5
C43—O2—C46 117.81 (17) O1—C23—H23C 109.5
C12—N2—H1 116.5 (15) H23A—C23—H23C 109.5
C12—N2—H2 119.4 (18) H23B—C23—H23C 109.5
H1—N2—H2 123 (2) C37—C24—C33 119.9 (2)
C35—N5—H3 121.0 (18) C37—C24—C25 122.62 (19)
C35—N5—H4 122.4 (17) C33—C24—C25 117.50 (19)
H3—N5—H4 116 (2) C24—C25—C26 109.51 (19)
C14—C1—C10 120.3 (2) C24—C25—H25A 109.8
C14—C1—C2 121.95 (19) C26—C25—H25A 109.8
C10—C1—C2 117.62 (19) C24—C25—H25B 109.8
C3—C2—C1 109.93 (18) C26—C25—H25B 109.8
C3—C2—H2A 109.7 H25A—C25—H25B 108.2
C1—C2—H2A 109.7 C27—C26—C25 108.80 (17)
C3—C2—H2B 109.7 C27—C26—H26A 109.9
C1—C2—H2B 109.7 C25—C26—H26A 109.9
H2A—C2—H2B 108.2 C27—C26—H26B 109.9
C4—C3—C2 110.02 (18) C25—C26—H26B 109.9
C4—C3—H3A 109.7 H26A—C26—H26B 108.3
C2—C3—H3A 109.7 C28—C27—C32 119.2 (2)
C4—C3—H3B 109.7 C28—C27—C26 122.0 (2)
C2—C3—H3B 109.7 C32—C27—C26 118.74 (19)
H3A—C3—H3B 108.2 C29—C28—C27 121.1 (2)
C5—C4—C9 119.7 (2) C29—C28—H28 119.5
C5—C4—C3 122.7 (2) C27—C28—H28 119.5
C9—C4—C3 117.7 (2) C30—C29—C28 119.9 (2)
C4—C5—C6 120.8 (2) C30—C29—H29 120.1
C4—C5—H5 119.6 C28—C29—H29 120.1
C6—C5—H5 119.6 C29—C30—C31 120.1 (2)
C7—C6—C5 119.4 (2) C29—C30—H30 120.0
C7—C6—H6 120.3 C31—C30—H30 120.0
C5—C6—H6 120.3 C30—C31—C32 120.6 (2)
C6—C7—C8 120.6 (2) C30—C31—H31 119.7
C6—C7—H7 119.7 C32—C31—H31 119.7
C8—C7—H7 119.7 C31—C32—C27 118.9 (2)
C7—C8—C9 120.5 (2) C31—C32—C33 122.7 (2)
C7—C8—H8 119.7 C27—C32—C33 118.35 (19)
C9—C8—H8 119.7 C24—C33—C34 119.70 (19)
C8—C9—C4 118.7 (2) C24—C33—C32 117.69 (19)
C8—C9—C10 123.2 (2) C34—C33—C32 122.59 (19)
C4—C9—C10 118.07 (19) C33—C34—C35 121.59 (19)
C1—C10—C11 119.1 (2) C33—C34—C38 123.69 (19)
C1—C10—C9 118.7 (2) C35—C34—C38 114.69 (19)
C11—C10—C9 122.21 (19) N5—C35—C36 121.38 (19)
C12—C11—C10 121.5 (2) N5—C35—C34 121.51 (19)
C12—C11—C15 116.2 (2) C36—C35—C34 117.11 (19)
C10—C11—C15 122.23 (19) C35—C36—C37 121.83 (19)
N2—C12—C13 121.0 (2) C35—C36—C39 117.39 (19)
N2—C12—C11 121.7 (2) C37—C36—C39 120.71 (19)
C13—C12—C11 117.3 (2) C24—C37—C36 119.81 (19)
C12—C13—C14 121.6 (2) C24—C37—C40 122.10 (19)
C12—C13—C16 117.7 (2) C36—C37—C40 118.09 (18)
C14—C13—C16 120.6 (2) N4—C38—C34 173.6 (2)
C1—C14—C13 119.5 (2) N6—C39—C36 175.8 (2)
C1—C14—C17 122.6 (2) C45—C40—C41 117.9 (2)
C13—C14—C17 117.90 (19) C45—C40—C37 121.21 (18)
N1—C15—C11 175.0 (2) C41—C40—C37 120.86 (19)
N3—C16—C13 176.7 (2) C42—C41—C40 120.6 (2)
C18—C17—C22 117.8 (2) C42—C41—H41 119.7
C18—C17—C14 120.3 (2) C40—C41—H41 119.7
C22—C17—C14 121.90 (19) C41—C42—C43 120.3 (2)
C17—C18—C19 121.9 (2) C41—C42—H42 119.8
C17—C18—H18 119.1 C43—C42—H42 119.8
C19—C18—H18 119.1 O2—C43—C44 124.35 (19)
C20—C19—C18 119.0 (2) O2—C43—C42 115.62 (19)
C20—C19—H19 120.5 C44—C43—C42 120.0 (2)
C18—C19—H19 120.5 C43—C44—C45 119.1 (2)
O1—C20—C19 123.6 (2) C43—C44—H44 120.5
O1—C20—C21 116.1 (2) C45—C44—H44 120.5
C19—C20—C21 120.2 (2) C40—C45—C44 122.0 (2)
C22—C21—C20 120.1 (2) C40—C45—H45 119.0
C22—C21—H21 119.9 C44—C45—H45 119.0
C20—C21—H21 119.9 O2—C46—H46A 109.5
C21—C22—C17 121.0 (2) O2—C46—H46B 109.5
C21—C22—H22 119.5 H46A—C46—H46B 109.5
C17—C22—H22 119.5 O2—C46—H46C 109.5
O1—C23—H23A 109.5 H46A—C46—H46C 109.5
O1—C23—H23B 109.5 H46B—C46—H46C 109.5
C14—C1—C2—C3 142.7 (2) C37—C24—C25—C26 −137.3 (2)
C10—C1—C2—C3 −33.8 (3) C33—C24—C25—C26 42.0 (3)
C1—C2—C3—C4 57.0 (2) C24—C25—C26—C27 −59.1 (2)
C2—C3—C4—C5 139.7 (2) C25—C26—C27—C28 −141.3 (2)
C2—C3—C4—C9 −38.9 (3) C25—C26—C27—C32 35.7 (3)
C9—C4—C5—C6 1.5 (3) C32—C27—C28—C29 −3.9 (3)
C3—C4—C5—C6 −177.0 (2) C26—C27—C28—C29 173.1 (2)
C4—C5—C6—C7 2.9 (3) C27—C28—C29—C30 −0.8 (3)
C5—C6—C7—C8 −4.0 (3) C28—C29—C30—C31 3.9 (3)
C6—C7—C8—C9 0.6 (3) C29—C30—C31—C32 −2.2 (3)
C7—C8—C9—C4 3.9 (3) C30—C31—C32—C27 −2.5 (3)
C7—C8—C9—C10 −177.96 (19) C30—C31—C32—C33 178.4 (2)
C5—C4—C9—C8 −4.9 (3) C28—C27—C32—C31 5.5 (3)
C3—C4—C9—C8 173.76 (19) C26—C27—C32—C31 −171.6 (2)
C5—C4—C9—C10 176.82 (19) C28—C27—C32—C33 −175.32 (19)
C3—C4—C9—C10 −4.5 (3) C26—C27—C32—C33 7.6 (3)
C14—C1—C10—C11 −7.3 (3) C37—C24—C33—C34 2.6 (3)
C2—C1—C10—C11 169.22 (19) C25—C24—C33—C34 −176.74 (18)
C14—C1—C10—C9 173.81 (19) C37—C24—C33—C32 −179.21 (18)
C2—C1—C10—C9 −9.7 (3) C25—C24—C33—C32 1.5 (3)
C8—C9—C10—C1 −147.5 (2) C31—C32—C33—C24 151.2 (2)
C4—C9—C10—C1 30.7 (3) C27—C32—C33—C24 −27.9 (3)
C8—C9—C10—C11 33.7 (3) C31—C32—C33—C34 −30.6 (3)
C4—C9—C10—C11 −148.1 (2) C27—C32—C33—C34 150.2 (2)
C1—C10—C11—C12 5.4 (3) C24—C33—C34—C35 −0.9 (3)
C9—C10—C11—C12 −175.76 (19) C32—C33—C34—C35 −179.01 (19)
C1—C10—C11—C15 −171.03 (18) C24—C33—C34—C38 176.9 (2)
C9—C10—C11—C15 7.8 (3) C32—C33—C34—C38 −1.2 (3)
C10—C11—C12—N2 −178.0 (2) C33—C34—C35—N5 177.97 (19)
C15—C11—C12—N2 −1.4 (3) C38—C34—C35—N5 0.0 (3)
C10—C11—C12—C13 1.6 (3) C33—C34—C35—C36 −1.9 (3)
C15—C11—C12—C13 178.25 (18) C38—C34—C35—C36 −179.84 (19)
N2—C12—C13—C14 172.7 (2) N5—C35—C36—C37 −176.77 (19)
C11—C12—C13—C14 −6.9 (3) C34—C35—C36—C37 3.1 (3)
N2—C12—C13—C16 −9.5 (3) N5—C35—C36—C39 0.3 (3)
C11—C12—C13—C16 170.85 (19) C34—C35—C36—C39 −179.80 (18)
C10—C1—C14—C13 2.2 (3) C33—C24—C37—C36 −1.4 (3)
C2—C1—C14—C13 −174.18 (19) C25—C24—C37—C36 177.87 (19)
C10—C1—C14—C17 −178.03 (18) C33—C24—C37—C40 178.31 (18)
C2—C1—C14—C17 5.6 (3) C25—C24—C37—C40 −2.4 (3)
C12—C13—C14—C1 5.1 (3) C35—C36—C37—C24 −1.5 (3)
C16—C13—C14—C1 −172.57 (19) C39—C36—C37—C24 −178.50 (19)
C12—C13—C14—C17 −174.65 (18) C35—C36—C37—C40 178.76 (18)
C16—C13—C14—C17 7.6 (3) C39—C36—C37—C40 1.7 (3)
C1—C14—C17—C18 −129.0 (2) C24—C37—C40—C45 −108.3 (2)
C13—C14—C17—C18 50.8 (3) C36—C37—C40—C45 71.4 (3)
C1—C14—C17—C22 51.8 (3) C24—C37—C40—C41 73.3 (3)
C13—C14—C17—C22 −128.4 (2) C36—C37—C40—C41 −107.0 (2)
C22—C17—C18—C19 1.5 (3) C45—C40—C41—C42 −0.5 (3)
C14—C17—C18—C19 −177.7 (2) C37—C40—C41—C42 177.9 (2)
C17—C18—C19—C20 −0.7 (3) C40—C41—C42—C43 0.2 (4)
C23—O1—C20—C19 −4.4 (3) C46—O2—C43—C44 −2.8 (3)
C23—O1—C20—C21 175.8 (2) C46—O2—C43—C42 176.1 (2)
C18—C19—C20—O1 179.52 (19) C41—C42—C43—O2 −177.9 (2)
C18—C19—C20—C21 −0.7 (3) C41—C42—C43—C44 1.0 (4)
O1—C20—C21—C22 −178.95 (18) O2—C43—C44—C45 177.0 (2)
C19—C20—C21—C22 1.2 (3) C42—C43—C44—C45 −1.8 (3)
C20—C21—C22—C17 −0.4 (3) C41—C40—C45—C44 −0.3 (3)
C18—C17—C22—C21 −1.0 (3) C37—C40—C45—C44 −178.8 (2)
C14—C17—C22—C21 178.30 (19) C43—C44—C45—C40 1.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N6 0.89 (1) 2.25 (2) 3.081 (3) 157 (3)
N5—H3···N1 0.88 (1) 2.36 (1) 3.213 (3) 162 (2)
N2—H1···O1i 0.88 (2) 2.56 (2) 3.271 (3) 139 (2)

Symmetry code: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5850).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Al-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027–o1028. [DOI] [PMC free article] [PubMed]
  3. Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011a). Acta Cryst. E67, o2873. [DOI] [PMC free article] [PubMed]
  4. Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449. [DOI] [PMC free article] [PubMed]
  5. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260–1272.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337–12342. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011798/bt5850sup1.cif

e-68-o1157-sup1.cif (30.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011798/bt5850Isup2.hkl

e-68-o1157-Isup2.hkl (390.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011798/bt5850Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES