Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1163. doi: 10.1107/S1600536812011841

(2E)-1-(2,6-Dichloro-3-fluoro­phen­yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one

A S Praveen a, Jerry P Jasinski b,*, James A Golen b, H S Yathirajan a, B Narayana c
PMCID: PMC3344105  PMID: 22606108

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C16H11Cl2FO2. The F atom equally populates both meta positions of the 6-dichloro-3-fluoro­phenyl ring in each mol­ecule, resulting in 0.5 occupancy for both the F and H atoms in these positions. The dihedral angle between the mean planes of the benzene rings are 77.5 (2) and 89.8 (8)°in the two mol­ecules. In the crystal, weak C—H⋯F and C—H⋯O inter­actions involving the half-occupied H and F atoms are observed. Weak π–π stacking inter­actions [centroid—centroid distance = 3.150 (2) Å] also contribute to the crystal stability.

Related literature  

For the pharmacological importance of chalcones, see: Dominguez et al. (2001); Li et al. (1995); Mei et al. (2001); Sarojini et al. (2006). For related structures, see: Betz et al. (2012); Yathirajan et al. (2007). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-o1163-scheme1.jpg

Experimental  

Crystal data  

  • C16H11Cl2FO2

  • M r = 325.15

  • Monoclinic, Inline graphic

  • a = 11.9035 (6) Å

  • b = 10.4472 (5) Å

  • c = 23.7435 (12) Å

  • β = 92.296 (4)°

  • V = 2950.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 173 K

  • 0.24 × 0.20 × 0.17 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.900, T max = 0.927

  • 15257 measured reflections

  • 7015 independent reflections

  • 5165 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.145

  • S = 1.06

  • 7015 reflections

  • 401 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011841/bt5846sup1.cif

e-68-o1163-sup1.cif (35.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011841/bt5846Isup2.hkl

e-68-o1163-Isup2.hkl (343.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011841/bt5846Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F1Ai 0.95 2.79 3.657 (7) 153
C4—H4A⋯F1ii 0.95 2.75 3.410 (5) 127
C11—H11A⋯O3ii 0.95 2.56 3.451 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

ASP thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Many Chalcones are known to exhibit various biological properties such as antimalarial (Li et al., 1995), antifungal (Dominguez et al., 2001) and antibacterial activity (Mei et al., 2001). They are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006). Crystal structures of some related chalcones, viz., (2E)-1-(2,4-dichlorophenyl)-3-(2-hydroxy-3-methoxyphenyl)prop-2-en-1-one (Yathirajan et al., 2007) and (2E)-1-(2,6-dichloro-3-fluorophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (Betz et al., 2012) have been reported. As part of our ongoing studies on chalcones, the title compound (I), C16H11Cl2FO2, was synthesized and its crystal structure is reported.

In (I) two molecules crystallize in the asymmetric unit (Fig. 1). In the 2,6-dichloro-3-fluorophenyl ring, the fluorine atom equally populates both meta positions of the phenyl ring in each molecule (C2 & C4; C18 & C20) resulting in 0.5 occupancy for both the fluorine and hydrogen atoms (H2A & H4A; H18A & H20A) in these positions. The dihedral angle between the mean planes of the benzene rings in each molecule is 77.5 (2)° and 89.8 (8)°, respectively. Bond lengths are in normal ranges (Allen et al., 1987). Crystal packing is enhanced by weak C—H···F and C—H···O intermolecular interactions (Table 1) from both half-occupied H and F atoms supporting parallel chains along the b axis (Fig. 2) aa well as weak π–π stacking interactions (Table 2).

Experimental

To a stirred solution of 1-(2,6-dichloro-3-fluorophenyl)ethanone (1 g, 4.8 mmol) and 4-methoxybenzaldehyde (0.65 g, 4.8 mmol) in ethanol (10 ml), powdered KOH (0.40 g, 7.2 mmol) was added at 273 K. The reaction mixture was stirred at room temperature for 3 h. After completion of the reaction, the reaction mixture was poured to ice cold water and acidified with 1.5 N HCl (pH 3). The solid precipitated was filtered and dried to afford 1.4 g of the title compound, (I,) in 89% yield. X-ray quality crystals were obtained by slow evaporation of a tetrahydrofuran solution (m.p.: 361–362 K).

Refinement

All of the H atoms were placed in their calculated positions and refined using the riding model with C—H lengths of 0.95 Å (CH) or 0.98 Å (CH3). The isotropic displacement parameters for these atoms were set from 1.19 to 1.20 (CH), or 1.49 (CH3) times Ueq of the parent atom. Overlapping of the F atoms in the meta position of the phenyl ring in each molecule resulted in H2A, H4A, H18A, H20A and F1, F1A, F2, F2A being refined at 0.50 occupancy. C2—F1 and C4—F1A bond distances were fixed at 1.33 (2) Å, C18—F2 and C20—F2A bond distances were fixed at 1.33 (06) Å.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids for two molecules in the asymmetric unit.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the a axis.

Crystal data

C16H11Cl2FO2 F(000) = 1328
Mr = 325.15 Dx = 1.464 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3879 reflections
a = 11.9035 (6) Å θ = 3.1–30.0°
b = 10.4472 (5) Å µ = 0.45 mm1
c = 23.7435 (12) Å T = 173 K
β = 92.296 (4)° Block, colorless
V = 2950.3 (3) Å3 0.24 × 0.20 × 0.17 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 7015 independent reflections
Radiation source: Enhance (Mo) X-ray Source 5165 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 16.1500 pixels mm-1 θmax = 27.9°, θmin = 3.1°
ω scans h = −10→15
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −13→10
Tmin = 0.900, Tmax = 0.927 l = −30→31
15257 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.042P)2 + 3.2887P] where P = (Fo2 + 2Fc2)/3
7015 reflections (Δ/σ)max < 0.001
401 parameters Δρmax = 0.67 e Å3
4 restraints Δρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.73833 (6) 0.53784 (8) 0.11864 (4) 0.0566 (2)
Cl2 0.73589 (8) 0.86623 (10) 0.29381 (4) 0.0697 (3)
Cl3 0.75952 (8) 0.51754 (10) 0.41195 (6) 0.0931 (4)
Cl4 0.75948 (8) 0.21696 (11) 0.22698 (4) 0.0719 (3)
F1 0.5430 (3) 0.4344 (3) 0.16850 (18) 0.0600 (10) 0.50
F1A 0.5483 (5) 0.7210 (7) 0.3246 (2) 0.121 (2) 0.50
F2 0.9551 (3) 0.6350 (3) 0.3500 (2) 0.0771 (13) 0.50
F2A 0.9515 (4) 0.3907 (7) 0.2061 (2) 0.118 (2) 0.50
O1 0.91972 (15) 0.72821 (19) 0.18987 (9) 0.0473 (5)
O2 0.57619 (15) 1.3317 (2) −0.00869 (9) 0.0499 (5)
O3 0.57623 (15) 0.3266 (2) 0.33521 (10) 0.0514 (5)
O4 1.00724 (16) −0.28448 (19) 0.48786 (9) 0.0499 (5)
C1 0.6802 (2) 0.5932 (3) 0.17975 (13) 0.0418 (6)
C2 0.5874 (2) 0.5310 (3) 0.20029 (16) 0.0554 (8)
H2A 0.5557 0.4601 0.1804 0.066* 0.50
C3 0.5411 (3) 0.5714 (3) 0.24921 (17) 0.0611 (9)
H3A 0.4776 0.5287 0.2634 0.073*
C4 0.5875 (3) 0.6741 (4) 0.27727 (14) 0.0570 (9)
H4A 0.5564 0.7018 0.3114 0.068* 0.50
C5 0.6787 (2) 0.7381 (3) 0.25700 (12) 0.0451 (7)
C6 0.7264 (2) 0.6993 (2) 0.20724 (11) 0.0355 (5)
C7 0.8245 (2) 0.7701 (2) 0.18319 (11) 0.0361 (6)
C8 0.8000 (2) 0.8855 (2) 0.15059 (11) 0.0360 (5)
H8A 0.8614 0.9377 0.1405 0.043*
C9 0.6966 (2) 0.9225 (2) 0.13400 (11) 0.0357 (6)
H9A 0.6362 0.8733 0.1475 0.043*
C10 0.6665 (2) 1.0297 (2) 0.09763 (11) 0.0345 (5)
C11 0.5534 (2) 1.0535 (3) 0.08407 (13) 0.0447 (7)
H11A 0.4979 1.0002 0.0997 0.054*
C12 0.5196 (2) 1.1523 (3) 0.04865 (13) 0.0470 (7)
H12A 0.4420 1.1663 0.0400 0.056*
C13 0.5993 (2) 1.2302 (3) 0.02593 (12) 0.0376 (6)
C14 0.7130 (2) 1.2079 (3) 0.03816 (12) 0.0402 (6)
H14A 0.7680 1.2607 0.0219 0.048*
C15 0.7457 (2) 1.1101 (3) 0.07347 (12) 0.0386 (6)
H15A 0.8235 1.0964 0.0818 0.046*
C16 0.4637 (3) 1.3482 (3) −0.02947 (16) 0.0602 (9)
H16A 0.4596 1.4221 −0.0549 0.090*
H16B 0.4148 1.3628 0.0022 0.090*
H16C 0.4390 1.2712 −0.0500 0.090*
C17 0.8124 (3) 0.4772 (3) 0.34698 (17) 0.0618 (9)
C18 0.9025 (3) 0.5439 (3) 0.3250 (3) 0.0935 (18)
H18A 0.9327 0.6150 0.3454 0.112* 0.50
C19 0.9488 (3) 0.5117 (5) 0.2757 (3) 0.104 (2)
H19A 1.0113 0.5562 0.2616 0.125*
C20 0.9013 (3) 0.4145 (4) 0.2488 (2) 0.0862 (15)
H20A 0.9319 0.3914 0.2139 0.103* 0.50
C21 0.8131 (2) 0.3439 (3) 0.26580 (15) 0.0562 (9)
C22 0.7669 (2) 0.3748 (3) 0.31718 (14) 0.0465 (7)
C23 0.6745 (2) 0.2949 (3) 0.34163 (12) 0.0406 (6)
C24 0.7103 (2) 0.1816 (3) 0.37319 (12) 0.0400 (6)
H24A 0.6546 0.1310 0.3902 0.048*
C25 0.8174 (2) 0.1453 (2) 0.37936 (11) 0.0360 (6)
H25A 0.8709 0.1979 0.3617 0.043*
C26 0.86199 (19) 0.0345 (2) 0.40993 (11) 0.0328 (5)
C27 0.9691 (2) −0.0094 (3) 0.39798 (11) 0.0367 (6)
H27A 1.0117 0.0353 0.3713 0.044*
C28 1.0141 (2) −0.1161 (3) 0.42405 (12) 0.0418 (6)
H28A 1.0864 −0.1458 0.4146 0.050*
C29 0.9545 (2) −0.1804 (2) 0.46389 (11) 0.0356 (5)
C30 0.8491 (2) −0.1371 (3) 0.47756 (12) 0.0404 (6)
H30A 0.8083 −0.1801 0.5055 0.049*
C31 0.8035 (2) −0.0312 (3) 0.45043 (12) 0.0396 (6)
H31A 0.7307 −0.0026 0.4596 0.048*
C32 0.9572 (3) −0.3425 (3) 0.53478 (13) 0.0508 (7)
H32A 1.0056 −0.4118 0.5494 0.076*
H32B 0.8835 −0.3773 0.5230 0.076*
H32C 0.9479 −0.2783 0.5644 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0398 (4) 0.0599 (5) 0.0693 (5) 0.0048 (3) −0.0089 (3) −0.0187 (4)
Cl2 0.0707 (6) 0.0786 (6) 0.0601 (5) −0.0014 (5) 0.0070 (4) −0.0206 (5)
Cl3 0.0633 (6) 0.0740 (6) 0.1389 (10) 0.0131 (5) −0.0371 (6) −0.0454 (7)
Cl4 0.0612 (5) 0.0891 (7) 0.0663 (6) 0.0046 (5) 0.0130 (4) 0.0001 (5)
F1 0.0344 (17) 0.0391 (17) 0.106 (3) −0.0165 (14) −0.0007 (17) −0.0054 (19)
F1A 0.111 (4) 0.154 (6) 0.102 (4) 0.008 (4) 0.048 (3) 0.035 (4)
F2 0.061 (2) 0.0393 (19) 0.129 (4) −0.0120 (18) −0.026 (2) −0.012 (2)
F2A 0.077 (3) 0.191 (7) 0.086 (4) 0.000 (4) 0.016 (3) 0.056 (4)
O1 0.0286 (9) 0.0475 (11) 0.0655 (13) 0.0027 (8) −0.0018 (8) 0.0070 (10)
O2 0.0358 (10) 0.0515 (12) 0.0622 (13) 0.0030 (9) −0.0004 (9) 0.0201 (10)
O3 0.0288 (9) 0.0486 (11) 0.0764 (15) 0.0101 (9) −0.0027 (9) −0.0001 (11)
O4 0.0418 (10) 0.0481 (11) 0.0606 (13) 0.0136 (9) 0.0100 (9) 0.0170 (10)
C1 0.0287 (12) 0.0377 (14) 0.0585 (18) 0.0052 (11) −0.0052 (11) 0.0057 (13)
C2 0.0306 (14) 0.0423 (16) 0.093 (3) −0.0017 (12) −0.0051 (15) 0.0131 (17)
C3 0.0391 (16) 0.056 (2) 0.089 (3) 0.0004 (15) 0.0112 (16) 0.0328 (19)
C4 0.0467 (17) 0.070 (2) 0.0554 (19) 0.0143 (16) 0.0148 (14) 0.0232 (17)
C5 0.0413 (15) 0.0473 (16) 0.0468 (16) 0.0065 (13) −0.0002 (12) 0.0086 (13)
C6 0.0270 (12) 0.0346 (13) 0.0445 (14) 0.0044 (10) −0.0036 (10) 0.0077 (11)
C7 0.0307 (12) 0.0364 (13) 0.0410 (14) −0.0006 (10) −0.0006 (10) −0.0016 (11)
C8 0.0323 (12) 0.0354 (13) 0.0402 (14) −0.0037 (10) 0.0011 (10) 0.0012 (11)
C9 0.0312 (12) 0.0336 (13) 0.0424 (14) −0.0019 (10) 0.0034 (10) 0.0000 (11)
C10 0.0287 (11) 0.0339 (13) 0.0409 (14) −0.0003 (10) 0.0013 (10) 0.0003 (11)
C11 0.0280 (12) 0.0464 (15) 0.0602 (18) −0.0030 (11) 0.0065 (12) 0.0119 (14)
C12 0.0273 (12) 0.0516 (17) 0.0621 (19) 0.0025 (12) 0.0019 (12) 0.0139 (15)
C13 0.0318 (12) 0.0367 (13) 0.0442 (15) 0.0015 (11) −0.0005 (10) 0.0028 (12)
C14 0.0308 (12) 0.0400 (14) 0.0499 (16) −0.0041 (11) 0.0027 (11) 0.0063 (12)
C15 0.0274 (12) 0.0395 (14) 0.0486 (15) −0.0014 (11) −0.0029 (10) 0.0029 (12)
C16 0.0421 (16) 0.059 (2) 0.078 (2) 0.0068 (15) −0.0109 (15) 0.0170 (18)
C17 0.0412 (16) 0.0400 (16) 0.102 (3) 0.0077 (13) −0.0227 (17) 0.0070 (17)
C18 0.048 (2) 0.050 (2) 0.178 (5) −0.0162 (18) −0.052 (3) 0.047 (3)
C19 0.041 (2) 0.103 (4) 0.166 (5) −0.017 (2) −0.022 (3) 0.098 (4)
C20 0.0372 (18) 0.099 (3) 0.121 (4) −0.001 (2) −0.007 (2) 0.073 (3)
C21 0.0315 (14) 0.0593 (19) 0.078 (2) 0.0049 (13) −0.0020 (14) 0.0289 (18)
C22 0.0287 (13) 0.0353 (14) 0.075 (2) 0.0052 (11) −0.0088 (13) 0.0157 (14)
C23 0.0303 (13) 0.0363 (14) 0.0549 (17) 0.0047 (11) −0.0011 (11) −0.0043 (13)
C24 0.0309 (12) 0.0375 (13) 0.0518 (16) 0.0017 (11) 0.0052 (11) 0.0027 (12)
C25 0.0317 (12) 0.0324 (12) 0.0440 (15) 0.0010 (10) 0.0020 (10) −0.0013 (11)
C26 0.0286 (11) 0.0312 (12) 0.0384 (14) 0.0008 (10) −0.0013 (10) −0.0047 (11)
C27 0.0290 (12) 0.0388 (13) 0.0425 (14) 0.0020 (10) 0.0054 (10) 0.0031 (12)
C28 0.0287 (12) 0.0472 (15) 0.0498 (16) 0.0081 (11) 0.0069 (11) 0.0037 (13)
C29 0.0326 (12) 0.0328 (12) 0.0412 (14) 0.0046 (10) −0.0009 (10) 0.0014 (11)
C30 0.0361 (13) 0.0418 (14) 0.0439 (15) 0.0021 (12) 0.0094 (11) 0.0047 (12)
C31 0.0298 (12) 0.0402 (14) 0.0496 (16) 0.0057 (11) 0.0096 (11) 0.0015 (12)
C32 0.0507 (17) 0.0482 (17) 0.0536 (18) 0.0037 (14) 0.0040 (14) 0.0162 (14)

Geometric parameters (Å, º)

Cl1—C1 1.732 (3) C14—H14A 0.9500
Cl2—C5 1.724 (3) C15—H15A 0.9500
Cl3—C17 1.741 (4) C16—H16A 0.9800
Cl4—C21 1.723 (4) C16—H16B 0.9800
O1—C7 1.220 (3) C16—H16C 0.9800
O2—C13 1.363 (3) C17—C22 1.381 (4)
O2—C16 1.419 (3) C17—C18 1.398 (6)
O3—C23 1.219 (3) C18—C19 1.354 (7)
O4—C29 1.369 (3) C18—H18A 0.9500
O4—C32 1.420 (3) C19—C20 1.315 (7)
C1—C2 1.387 (4) C19—H19A 0.9500
C1—C6 1.388 (4) C20—C21 1.359 (5)
C2—C3 1.372 (5) C20—H20A 0.9500
C2—H2A 0.9500 C21—C22 1.396 (5)
C3—C4 1.368 (5) C22—C23 1.516 (4)
C3—H3A 0.9500 C23—C24 1.456 (4)
C4—C5 1.378 (4) C24—C25 1.333 (3)
C4—H4A 0.9500 C24—H24A 0.9500
C5—C6 1.391 (4) C25—C26 1.455 (3)
C6—C7 1.514 (3) C25—H25A 0.9500
C7—C8 1.456 (4) C26—C31 1.391 (4)
C8—C9 1.335 (3) C26—C27 1.395 (3)
C8—H8A 0.9500 C27—C28 1.373 (4)
C9—C10 1.450 (4) C27—H27A 0.9500
C9—H9A 0.9500 C28—C29 1.379 (4)
C10—C11 1.393 (3) C28—H28A 0.9500
C10—C15 1.403 (3) C29—C30 1.384 (3)
C11—C12 1.381 (4) C30—C31 1.381 (4)
C11—H11A 0.9500 C30—H30A 0.9500
C12—C13 1.376 (4) C31—H31A 0.9500
C12—H12A 0.9500 C32—H32A 0.9800
C13—C14 1.393 (3) C32—H32B 0.9800
C14—C15 1.368 (4) C32—H32C 0.9800
C13—O2—C16 118.0 (2) H16B—C16—H16C 109.5
C29—O4—C32 117.7 (2) C22—C17—C18 119.0 (4)
C2—C1—C6 120.9 (3) C22—C17—Cl3 119.5 (3)
C2—C1—Cl1 119.3 (2) C18—C17—Cl3 121.4 (3)
C6—C1—Cl1 119.8 (2) C19—C18—C17 122.9 (4)
C3—C2—C1 120.5 (3) C19—C18—H18A 118.5
C3—C2—H2A 119.8 C17—C18—H18A 118.5
C1—C2—H2A 119.8 C20—C19—C18 115.5 (4)
C4—C3—C2 119.0 (3) C20—C19—H19A 122.3
C4—C3—H3A 120.5 C18—C19—H19A 122.3
C2—C3—H3A 120.5 C19—C20—C21 126.7 (5)
C3—C4—C5 121.3 (3) C19—C20—H20A 116.7
C3—C4—H4A 119.3 C21—C20—H20A 116.7
C5—C4—H4A 119.3 C20—C21—C22 118.0 (4)
C4—C5—C6 120.6 (3) C20—C21—Cl4 122.2 (3)
C4—C5—Cl2 120.0 (3) C22—C21—Cl4 119.7 (2)
C6—C5—Cl2 119.4 (2) C17—C22—C21 117.9 (3)
C1—C6—C5 117.7 (2) C17—C22—C23 120.4 (3)
C1—C6—C7 120.6 (2) C21—C22—C23 121.6 (3)
C5—C6—C7 121.7 (2) O3—C23—C24 123.1 (3)
O1—C7—C8 122.1 (2) O3—C23—C22 120.6 (2)
O1—C7—C6 120.2 (2) C24—C23—C22 116.3 (2)
C8—C7—C6 117.7 (2) C25—C24—C23 123.2 (3)
C9—C8—C7 124.0 (2) C25—C24—H24A 118.4
C9—C8—H8A 118.0 C23—C24—H24A 118.4
C7—C8—H8A 118.0 C24—C25—C26 127.5 (2)
C8—C9—C10 127.0 (2) C24—C25—H25A 116.2
C8—C9—H9A 116.5 C26—C25—H25A 116.2
C10—C9—H9A 116.5 C31—C26—C27 117.7 (2)
C11—C10—C15 117.2 (2) C31—C26—C25 123.7 (2)
C11—C10—C9 119.3 (2) C27—C26—C25 118.6 (2)
C15—C10—C9 123.5 (2) C28—C27—C26 121.2 (2)
C12—C11—C10 122.0 (2) C28—C27—H27A 119.4
C12—C11—H11A 119.0 C26—C27—H27A 119.4
C10—C11—H11A 119.0 C27—C28—C29 120.1 (2)
C13—C12—C11 119.5 (2) C27—C28—H28A 119.9
C13—C12—H12A 120.3 C29—C28—H28A 119.9
C11—C12—H12A 120.3 O4—C29—C28 115.6 (2)
O2—C13—C12 124.8 (2) O4—C29—C30 124.6 (2)
O2—C13—C14 115.3 (2) C28—C29—C30 119.9 (2)
C12—C13—C14 119.9 (2) C31—C30—C29 119.7 (2)
C15—C14—C13 120.2 (2) C31—C30—H30A 120.2
C15—C14—H14A 119.9 C29—C30—H30A 120.2
C13—C14—H14A 119.9 C30—C31—C26 121.3 (2)
C14—C15—C10 121.2 (2) C30—C31—H31A 119.3
C14—C15—H15A 119.4 C26—C31—H31A 119.3
C10—C15—H15A 119.4 O4—C32—H32A 109.5
O2—C16—H16A 109.5 O4—C32—H32B 109.5
O2—C16—H16B 109.5 H32A—C32—H32B 109.5
H16A—C16—H16B 109.5 O4—C32—H32C 109.5
O2—C16—H16C 109.5 H32A—C32—H32C 109.5
H16A—C16—H16C 109.5 H32B—C32—H32C 109.5
C6—C1—C2—C3 −1.8 (4) C22—C17—C18—C19 −0.9 (5)
Cl1—C1—C2—C3 178.8 (2) Cl3—C17—C18—C19 177.1 (3)
C1—C2—C3—C4 0.2 (5) C17—C18—C19—C20 1.7 (6)
C2—C3—C4—C5 0.8 (5) C18—C19—C20—C21 −1.0 (6)
C3—C4—C5—C6 −0.3 (4) C19—C20—C21—C22 −0.5 (5)
C3—C4—C5—Cl2 −179.4 (2) C19—C20—C21—Cl4 −179.1 (3)
C2—C1—C6—C5 2.2 (4) C18—C17—C22—C21 −0.7 (4)
Cl1—C1—C6—C5 −178.3 (2) Cl3—C17—C22—C21 −178.7 (2)
C2—C1—C6—C7 −177.3 (2) C18—C17—C22—C23 175.9 (3)
Cl1—C1—C6—C7 2.2 (3) Cl3—C17—C22—C23 −2.2 (4)
C4—C5—C6—C1 −1.2 (4) C20—C21—C22—C17 1.3 (4)
Cl2—C5—C6—C1 177.96 (19) Cl4—C21—C22—C17 180.0 (2)
C4—C5—C6—C7 178.3 (3) C20—C21—C22—C23 −175.1 (3)
Cl2—C5—C6—C7 −2.5 (3) Cl4—C21—C22—C23 3.5 (4)
C1—C6—C7—O1 −79.7 (3) C17—C22—C23—O3 86.1 (4)
C5—C6—C7—O1 100.9 (3) C21—C22—C23—O3 −97.5 (3)
C1—C6—C7—C8 98.1 (3) C17—C22—C23—C24 −93.0 (3)
C5—C6—C7—C8 −81.3 (3) C21—C22—C23—C24 83.4 (3)
O1—C7—C8—C9 167.9 (3) O3—C23—C24—C25 178.7 (3)
C6—C7—C8—C9 −9.8 (4) C22—C23—C24—C25 −2.2 (4)
C7—C8—C9—C10 −174.4 (2) C23—C24—C25—C26 179.9 (3)
C8—C9—C10—C11 179.2 (3) C24—C25—C26—C31 −18.7 (4)
C8—C9—C10—C15 1.2 (4) C24—C25—C26—C27 160.9 (3)
C15—C10—C11—C12 −0.4 (4) C31—C26—C27—C28 1.8 (4)
C9—C10—C11—C12 −178.5 (3) C25—C26—C27—C28 −177.7 (2)
C10—C11—C12—C13 −0.1 (5) C26—C27—C28—C29 −1.6 (4)
C16—O2—C13—C12 −9.4 (4) C32—O4—C29—C28 170.9 (3)
C16—O2—C13—C14 170.9 (3) C32—O4—C29—C30 −8.3 (4)
C11—C12—C13—O2 −178.8 (3) C27—C28—C29—O4 −179.2 (2)
C11—C12—C13—C14 0.9 (5) C27—C28—C29—C30 0.0 (4)
O2—C13—C14—C15 178.6 (3) O4—C29—C30—C31 −179.7 (3)
C12—C13—C14—C15 −1.1 (4) C28—C29—C30—C31 1.2 (4)
C13—C14—C15—C10 0.6 (4) C29—C30—C31—C26 −0.8 (4)
C11—C10—C15—C14 0.1 (4) C27—C26—C31—C30 −0.6 (4)
C9—C10—C15—C14 178.2 (3) C25—C26—C31—C30 178.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···F1Ai 0.95 2.79 3.657 (7) 153
C4—H4A···F1ii 0.95 2.75 3.410 (5) 127
C11—H11A···O3ii 0.95 2.56 3.451 (3) 156

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Selected geometric parmeters (Å): Cg···Cg π stacking interactions, Cg1, Cg3 are the centroids of rings C1—C6 and C17—C22 [Symmetry codes: (i) x, y, z]

CgI···CgJ Cg···Cg (Å) CgI Perp (Å) Cgj Perp (Å)
Cg1···Cg3i 3.650 (2) 3.620 3.604

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5846).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Betz, R., Gerber, T., Hosten, E., Praveen, A. S., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o512. [DOI] [PMC free article] [PubMed]
  3. Dominguez, J. N., Charris, J. E., Lobo, G., de Dominguez, N. G., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J. & Rosenthal, P. J. (2001). Eur. J. Med. Chem. 36, 555–560. [DOI] [PubMed]
  4. Li, R., Chen, X., Gong, B., Dominguez, J. N., Davidson, E., Kurzban, G., Miller, R. E., Nuzum, E. O. & Rosenthal, P. J. (1995). J. Med. Chem. 38, 5031–5037. [DOI] [PubMed]
  5. Mei, L., Prapon, W. & Mei, L. G. (2001). J. Med. Chem. 44, 4443–4452.
  6. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini & Bolte, M. (2007). Acta Cryst. E63, o428–o429. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011841/bt5846sup1.cif

e-68-o1163-sup1.cif (35.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011841/bt5846Isup2.hkl

e-68-o1163-Isup2.hkl (343.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011841/bt5846Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES