Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1170. doi: 10.1107/S160053681201197X

2-[(1-Methyl-1H-pyrrol-2-yl)methyl­idene]propane­dinitrile

Abdullah M Asiri a,b,, Hassan M Faidallah a, Shaeel A Al-Thabaiti a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3344110  PMID: 22606113

Abstract

In the title compound, C9H7N3, the N-bound methyl group and vinyl H atom are syn. The 12 non-H atoms comprising the mol­ecule are essentially coplanar (r.m.s. deviation = 0.071 Å). Supra­molecular tapes feature in the crystal packing, orientated perpendicular to [10-1], and are formed by C—H⋯N inter­actions involving each cyano N atom. The tapes are connected into layers via π–π inter­actions occurring between translationally related pyrrole rings [ring centroid–centroid distance = 3.8754 (10) Å]; the layers stack along the b axis.

Related literature  

For the anti-cancer effects of related compounds, see: Rostom et al. (2011). For structural studies of di-carbonitrile compounds, see: Asiri et al. (2011); Al-Youbi et al. (2012).graphic file with name e-68-o1170-scheme1.jpg

Experimental  

Crystal data  

  • C9H7N3

  • M r = 157.18

  • Triclinic, Inline graphic

  • a = 3.8754 (2) Å

  • b = 8.7795 (5) Å

  • c = 12.1773 (7) Å

  • α = 97.517 (5)°

  • β = 90.962 (5)°

  • γ = 98.689 (5)°

  • V = 405.76 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.980, T max = 0.996

  • 5871 measured reflections

  • 1866 independent reflections

  • 1463 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.124

  • S = 1.01

  • 1866 reflections

  • 137 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201197X/bt5851sup1.cif

e-68-o1170-sup1.cif (13.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201197X/bt5851Isup2.hkl

e-68-o1170-Isup2.hkl (91.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201197X/bt5851Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N3i 0.976 (19) 2.612 (19) 3.579 (2) 170.8 (16)
C6—H6⋯N2ii 0.969 (17) 2.515 (17) 3.469 (2) 167.8 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Arylidenes are considered as key intermediates for the synthesis of a variety of heterocycles of biological importance, such as pyridine, pyridazine and quinoline derivatives. Previous studies have shown that the derived compounds exhibit a variety of biological activities, including anti-cancer effects (Rostom et al., 2011). In continuation of structural studies of di-carbonitrile compounds (Asiri et al., 2011; Al-Youbi et al., 2012), the title compound, (I), was investigated.

In (I), Fig. 1, the N-bound methyl group and vinyl-H atom are syn. The 12 non-hydrogen atoms are co-planar having a r.m.s. deviation = 0.071 Å, with the maximum deviations being 0.118 (2) Å for the C1 atom and -0.084 (2) Å for the N2 atom.

In the crystal packing, each cyano-N atom participates in a C—H···N interaction, Table 1, with a centrosymmetrically related molecule to form a supramolecular tape. The tape is orientated along [101] and comprises alternating 10-membered {···HC3N}2 and 16-membered {···HC6N}2 synthons, Fig. 2. The tapes are connected into layers viaπ—π interactions occurring between translationally related pyrrazole rings [ring centroid..centroid distance = 3.8754 (10) Å for symmetry operation 1 + x, y, z]. The layers stack along the b axis, Fig. 3.

Experimental

A mixture of 1-methylpyrrole-2-carboxaldehyde (1.1 g, 0.01 mmol) and malononitrile (1.1 g, 0.01 mmol) in absolute ethanol (50 ml) was refluxed for 2 h. The reaction mixture was allowed to cool, and the formed precipitate was filtered, washed with water, dried and recrystallized from ethanol. Yield: 72%. M.pt: 427–229 K.

Refinement

All H-atoms were located in a difference map and were refined freely, the range of C—H bond lengths = 0.952 (19) to 1.002 (19) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular tape in (I) with C—H···N interactions shown as blue dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the c axis of the unit-cell contents of (I) showing the stacking of layers along the b axis. The C—H···N and π—π interactions are shown as blue and purple dashed lines, respectively.

Crystal data

C9H7N3 Z = 2
Mr = 157.18 F(000) = 164
Triclinic, P1 Dx = 1.286 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 3.8754 (2) Å Cell parameters from 1724 reflections
b = 8.7795 (5) Å θ = 2.4–27.5°
c = 12.1773 (7) Å µ = 0.08 mm1
α = 97.517 (5)° T = 100 K
β = 90.962 (5)° Prism, light-brown
γ = 98.689 (5)° 0.25 × 0.15 × 0.05 mm
V = 405.76 (4) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1866 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1463 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.039
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −5→5
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −11→11
Tmin = 0.980, Tmax = 0.996 l = −15→15
5871 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.1622P] where P = (Fo2 + 2Fc2)/3
1866 reflections (Δ/σ)max = 0.001
137 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.29 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3583 (3) 0.18886 (15) 0.26433 (10) 0.0202 (3)
N2 0.2317 (4) 0.71488 (16) 0.02337 (11) 0.0267 (3)
N3 0.8617 (4) 0.78536 (16) 0.32981 (11) 0.0267 (3)
C1 0.1644 (5) 0.0922 (2) 0.16953 (14) 0.0250 (4)
C2 0.4697 (4) 0.13538 (19) 0.35574 (13) 0.0234 (4)
C3 0.6539 (4) 0.25848 (19) 0.42647 (13) 0.0246 (4)
C4 0.6548 (4) 0.39208 (19) 0.37650 (12) 0.0220 (4)
C5 0.4681 (4) 0.34899 (17) 0.27400 (12) 0.0188 (3)
C6 0.3763 (4) 0.43469 (17) 0.19062 (12) 0.0185 (3)
C7 0.4655 (4) 0.59152 (18) 0.18566 (12) 0.0190 (3)
C8 0.3370 (4) 0.65898 (17) 0.09541 (12) 0.0202 (3)
C9 0.6828 (4) 0.69787 (17) 0.26673 (12) 0.0196 (3)
H11 0.106 (5) −0.015 (3) 0.1842 (17) 0.041 (6)*
H12 0.308 (5) 0.090 (2) 0.1053 (17) 0.038 (5)*
H13 −0.050 (5) 0.132 (2) 0.1524 (16) 0.033 (5)*
H2 0.412 (5) 0.027 (2) 0.3608 (15) 0.025 (4)*
H3 0.763 (5) 0.250 (2) 0.4978 (16) 0.031 (5)*
H4 0.769 (5) 0.500 (2) 0.4051 (14) 0.024 (4)*
H6 0.220 (4) 0.378 (2) 0.1311 (14) 0.020 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0225 (7) 0.0198 (7) 0.0189 (6) 0.0031 (5) 0.0018 (5) 0.0047 (5)
N2 0.0320 (8) 0.0269 (7) 0.0215 (7) 0.0040 (6) −0.0007 (6) 0.0056 (6)
N3 0.0310 (8) 0.0241 (7) 0.0245 (7) 0.0008 (6) −0.0021 (6) 0.0062 (6)
C1 0.0282 (9) 0.0221 (8) 0.0235 (8) 0.0002 (7) −0.0013 (7) 0.0037 (6)
C2 0.0255 (8) 0.0227 (8) 0.0244 (8) 0.0054 (6) 0.0050 (6) 0.0097 (6)
C3 0.0254 (8) 0.0301 (9) 0.0201 (8) 0.0054 (7) 0.0008 (6) 0.0089 (6)
C4 0.0209 (8) 0.0249 (8) 0.0204 (8) 0.0024 (6) 0.0018 (6) 0.0046 (6)
C5 0.0188 (7) 0.0196 (7) 0.0182 (7) 0.0022 (6) 0.0029 (6) 0.0045 (6)
C6 0.0179 (7) 0.0213 (8) 0.0163 (7) 0.0034 (6) 0.0018 (6) 0.0023 (6)
C7 0.0195 (7) 0.0221 (8) 0.0162 (7) 0.0042 (6) 0.0023 (6) 0.0041 (6)
C8 0.0214 (8) 0.0201 (7) 0.0191 (8) 0.0028 (6) 0.0022 (6) 0.0023 (6)
C9 0.0208 (7) 0.0201 (7) 0.0198 (8) 0.0041 (6) 0.0037 (6) 0.0079 (6)

Geometric parameters (Å, º)

N1—C2 1.352 (2) C3—C4 1.390 (2)
N1—C5 1.3949 (19) C3—H3 0.977 (19)
N1—C1 1.463 (2) C4—C5 1.410 (2)
N2—C8 1.157 (2) C4—H4 1.002 (19)
N3—C9 1.152 (2) C5—C6 1.412 (2)
C1—H11 0.97 (2) C6—C7 1.378 (2)
C1—H12 0.97 (2) C6—H6 0.969 (17)
C1—H13 0.98 (2) C7—C8 1.431 (2)
C2—C3 1.386 (2) C7—C9 1.431 (2)
C2—H2 0.952 (19)
C2—N1—C5 108.97 (13) C3—C4—C5 107.69 (14)
C2—N1—C1 124.98 (13) C3—C4—H4 127.8 (10)
C5—N1—C1 126.02 (13) C5—C4—H4 124.5 (10)
N1—C1—H11 110.6 (12) N1—C5—C4 106.64 (13)
N1—C1—H12 109.7 (11) N1—C5—C6 120.42 (13)
H11—C1—H12 106.9 (17) C4—C5—C6 132.91 (14)
N1—C1—H13 111.0 (11) C7—C6—C5 128.23 (14)
H11—C1—H13 109.4 (17) C7—C6—H6 115.2 (10)
H12—C1—H13 109.2 (16) C5—C6—H6 116.5 (10)
N1—C2—C3 109.17 (14) C6—C7—C8 120.18 (13)
N1—C2—H2 118.3 (11) C6—C7—C9 124.54 (13)
C3—C2—H2 132.5 (11) C8—C7—C9 115.29 (13)
C2—C3—C4 107.53 (14) N2—C8—C7 179.15 (16)
C2—C3—H3 125.1 (11) N3—C9—C7 178.23 (16)
C4—C3—H3 127.3 (11)
C5—N1—C2—C3 −0.11 (17) C1—N1—C5—C6 3.9 (2)
C1—N1—C2—C3 177.99 (14) C3—C4—C5—N1 −0.10 (17)
N1—C2—C3—C4 0.05 (18) C3—C4—C5—C6 177.75 (16)
C2—C3—C4—C5 0.04 (18) N1—C5—C6—C7 −178.89 (14)
C2—N1—C5—C4 0.13 (17) C4—C5—C6—C7 3.5 (3)
C1—N1—C5—C4 −177.94 (14) C5—C6—C7—C8 −177.93 (14)
C2—N1—C5—C6 −178.05 (13) C5—C6—C7—C9 1.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···N3i 0.976 (19) 2.612 (19) 3.579 (2) 170.8 (16)
C6—H6···N2ii 0.969 (17) 2.515 (17) 3.469 (2) 167.8 (14)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5851).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Al-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027–o1028. [DOI] [PMC free article] [PubMed]
  3. Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2449. [DOI] [PMC free article] [PubMed]
  4. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  5. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Rostom, S. A. F., Faidallah, H. M. & Al Saadi, M. S. M. (2011). Med. Chem. Res. 20, 1260–1272.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201197X/bt5851sup1.cif

e-68-o1170-sup1.cif (13.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201197X/bt5851Isup2.hkl

e-68-o1170-Isup2.hkl (91.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201197X/bt5851Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES