Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1185–o1186. doi: 10.1107/S1600536812012184

4-Bromo­benzoic acid–6-(4-bromo­phen­yl)-3-methyl-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole (1/1)

Kamini Kapoor a, Vivek K Gupta a, Satya Paul b, Seema Sahi b, Rajni Kant a,*
PMCID: PMC3344123  PMID: 22606126

Abstract

In the title 1:1 co-crystal, C10H7BrN4S·C7H5BrO2, the triazolothia­diazole system is approximately planar [with a maximum deviation of 0.030 (4) Å] and forms a dihedral angle of 8.6 (1)° with the bromo­phenyl ring. In the carb­oxy­lic acid mol­ecule, the carboxyl group is rotated by 6.4 (3)° out of the benzene ring plane. The crystal structure features O—H⋯N and C—H⋯O hydrogen bonds, π–π stacking inter­actions [centroid–centroid distances = 3.713 (2), 3.670 (2) and 3.859 (3) Å] and short S⋯N [2.883 (4) Å] contacts.

Related literature  

For the biological activity of triazole derivatives, thia­diazo­les and triazolothia­diazole compounds, see: Chaturvedi et al. (1988); Holla et al. (2003); Bhat et al. (2004); Bekircan & Bektas (2006); Shawali & Sayed (2006); Mathew et al. (2007); Karthikeyan et al. (2007); Zhou et al. (2007). For related structures, see: Dinçer et al. (2005); Arshad et al. (2009); Jia et al. (2011). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-o1185-scheme1.jpg

Experimental  

Crystal data  

  • C10H7BrN4S·C7H5BrO2

  • M r = 496.19

  • Triclinic, Inline graphic

  • a = 7.7592 (3) Å

  • b = 8.0634 (4) Å

  • c = 14.9076 (7) Å

  • α = 94.090 (4)°

  • β = 92.961 (3)°

  • γ = 99.326 (4)°

  • V = 916.13 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.56 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) T min = 0.581, T max = 1.000

  • 8264 measured reflections

  • 3594 independent reflections

  • 2254 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.116

  • S = 1.01

  • 3594 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812012184/bh2421sup1.cif

e-68-o1185-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012184/bh2421Isup2.hkl

e-68-o1185-Isup2.hkl (172.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012184/bh2421Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O24—H24⋯N2i 0.82 1.87 2.674 (4) 169
C9—H9A⋯O23i 0.96 2.48 3.393 (6) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, India, for financial support.

supplementary crystallographic information

Comment

Derivatives of 1,2,4-triazole possess a wide spectrum of biological activity, such as anticancer, anticonvulsant, analgesic, antibacterial, anthelmintic, antitubercular and anti-inflammatory activities (Holla et al., 2003; Bekircan & Bektas, 2006; Zhou et al., 2007). Similarly 1,3,4-thiadiazoles were also found to possess antitumor, anti-inflammatory, antibacterial, antifungal, anticonvulsant and antitubercular properties (Bhat et al., 2004; Mathew et al., 2007). Thus triazolothiadiazole systems may be viewed as cyclic analogues of two very important components, which often display diverse pharmacological properties. Triazolothiadiazoles obtained by fusing the 1,2,4-trizole and 1,3,4-thiadiazole rings together have been reported to possess similar biological properties (Chaturvedi et al., 1988; Shawali & Sayed, 2006; Karthikeyan et al., 2007). Here we report the crystal structure of the 1:1 cocrystal of a triazolothiadiazole derivative and 4-bromobenzoic acid.

Bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) have normal values and also correspond to those observed in related structures (Dinçer et al., 2005; Arshad et al., 2009; Jia et al., 2011). The triazolothiadiazole ring is planar with a maximum deviation of 0.030 (4) Å for atom C6. The plane through the benzene ring forms dihedral angle of 8.6 (1)° with the triazolothiadiazole unit. In the molecular structure, an intramolecular C15—H15···S7 contact leads to the formation of a five-membered ring which is fused with the phenyl ring (Fig. 1).

In the crystal structure of the title compound, intermolecular O—H···N and C—H···O hydrogen bonds (Table 2) link the triazolothiadiazole molecule with 4-bromobenzoic acid (Fig. 2). In addition to these interactions, the crystal structure contains three π–π stacking interactions. The first of these is between the thiadiazole ring and its symmetry-related partner at (-x, 1-y, -z), with a distance of 3.713 (2) Å between the ring centroids, and a perpendicular distance between the rings of 3.468 Å. The second is between the triazole ring and the benzene ring at (-x, 1-y, -z), with a distance of 3.670 (2) Å between the ring centroids and a perpendicular distance between the rings of 3.427 Å. The third is between the benzene rings (C10···C15) and (C16···C21) in the asymmetric unit, with a distance of 3.859 (3) Å between the ring centroids and a perpendicular distance between the rings of 3.599 Å. A short contact distance not listed in tables, yet noteworthy, is S7···N1 with N1 at position (-x-1, -y+1, -z+2), the S···N separation being 2.883 (4) Å, which may cause steric hindrance.

Experimental

4-Amino-5-mercapto-3-methyl-1,2,4-triazole (0.130 g, 1 mmol) and 4-bromo-β-chlorocinnamic acid (0.261 g, 1 mmol) were stirred in POCl3 (3 ml) at 80 °C for 30 min. 6-(4-Bromophenyl)-3-methyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole was obtained along with 4-bromobenzoic acid after pouring the reaction mixture in crushed ice followed by washing with dilute NaOH. Finally, it was crystallized from methanol, affording white crystals.

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with O—H = 0.82 Å for OH, C—H = 0.93 Å for aromatic H, C—H = 0.96 Å for methyl H, and with Uiso(Haryl) = 1.2Ueq(Caryl), Uiso(Hmethyl) = 1.5Ueq(methyl C), and Uiso(H24) = 1.5Ueq(O24).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the asymmetric unit of the title cocrystal, with thermal ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis. The broken lines show the intermolecular O—H···N and C—H···O interactions.

Crystal data

C10H7BrN4S·C7H5BrO2 Z = 2
Mr = 496.19 F(000) = 488
Triclinic, P1 Dx = 1.799 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.7592 (3) Å Cell parameters from 2731 reflections
b = 8.0634 (4) Å θ = 3.4–28.9°
c = 14.9076 (7) Å µ = 4.56 mm1
α = 94.090 (4)° T = 293 K
β = 92.961 (3)° Block, white
γ = 99.326 (4)° 0.3 × 0.2 × 0.2 mm
V = 916.13 (7) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 3594 independent reflections
Radiation source: fine-focus sealed tube 2254 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.4°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) k = −9→9
Tmin = 0.581, Tmax = 1.000 l = −18→18
8264 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.2229P] where P = (Fo2 + 2Fc2)/3
3594 reflections (Δ/σ)max = 0.001
236 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.51 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.48693 (7) 0.65776 (8) 0.62657 (4) 0.0850 (3)
Br2 0.15874 (8) 0.27859 (8) 0.50571 (4) 0.0967 (3)
N1 −0.4623 (4) 0.3387 (4) 1.0195 (2) 0.0462 (9)
N2 −0.4261 (4) 0.1982 (4) 1.0619 (2) 0.0445 (9)
C3 −0.2777 (5) 0.1581 (5) 1.0362 (3) 0.0397 (10)
N4 −0.2150 (4) 0.2704 (4) 0.9772 (2) 0.0352 (8)
N5 −0.0694 (4) 0.2926 (4) 0.9277 (2) 0.0375 (8)
C6 −0.0778 (5) 0.4209 (5) 0.8811 (3) 0.0340 (9)
S7 −0.25764 (12) 0.52658 (14) 0.89676 (7) 0.0435 (3)
C8 −0.3311 (5) 0.3782 (5) 0.9699 (3) 0.0360 (9)
C9 −0.1926 (5) 0.0180 (5) 1.0658 (3) 0.0554 (13)
H9A −0.2529 −0.0311 1.1146 0.083*
H9B −0.0728 0.0603 1.0855 0.083*
H9C −0.1970 −0.0661 1.0164 0.083*
C10 0.0567 (5) 0.4805 (5) 0.8205 (3) 0.0361 (9)
C11 0.2088 (5) 0.4096 (5) 0.8184 (3) 0.0440 (10)
H11 0.2251 0.3262 0.8565 0.053*
C12 0.3355 (5) 0.4618 (6) 0.7602 (3) 0.0527 (12)
H12 0.4359 0.4128 0.7583 0.063*
C13 0.3124 (5) 0.5858 (6) 0.7056 (3) 0.0480 (11)
C14 0.1622 (6) 0.6563 (6) 0.7054 (3) 0.0657 (14)
H14 0.1465 0.7390 0.6667 0.079*
C15 0.0365 (6) 0.6033 (6) 0.7628 (3) 0.0547 (12)
H15 −0.0648 0.6511 0.7629 0.066*
C16 −0.2498 (6) 0.0900 (5) 0.7076 (3) 0.0474 (11)
C17 −0.2908 (7) 0.1880 (7) 0.6397 (3) 0.0694 (15)
H17 −0.4023 0.2159 0.6342 0.083*
C18 −0.1704 (8) 0.2442 (7) 0.5808 (4) 0.0782 (16)
H18 −0.1989 0.3108 0.5357 0.094*
C19 −0.0075 (7) 0.2015 (6) 0.5886 (3) 0.0596 (13)
C20 0.0382 (6) 0.1051 (6) 0.6543 (3) 0.0614 (13)
H20 0.1500 0.0776 0.6590 0.074*
C21 −0.0852 (6) 0.0486 (6) 0.7140 (3) 0.0557 (12)
H21 −0.0560 −0.0181 0.7590 0.067*
C22 −0.3841 (6) 0.0335 (6) 0.7719 (3) 0.0541 (12)
O23 −0.5243 (5) 0.0796 (5) 0.7726 (3) 0.0950 (13)
O24 −0.3345 (4) −0.0720 (4) 0.8274 (2) 0.0619 (9)
H24 −0.4124 −0.0992 0.8612 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0729 (4) 0.1007 (5) 0.0763 (4) −0.0147 (3) 0.0444 (3) 0.0090 (3)
Br2 0.1079 (5) 0.0963 (5) 0.0782 (5) −0.0219 (4) 0.0536 (4) 0.0087 (3)
N1 0.0459 (19) 0.044 (2) 0.056 (2) 0.0171 (16) 0.0223 (17) 0.0206 (18)
N2 0.0456 (19) 0.044 (2) 0.049 (2) 0.0128 (16) 0.0183 (16) 0.0164 (17)
C3 0.044 (2) 0.041 (3) 0.039 (2) 0.0135 (19) 0.0142 (19) 0.0119 (19)
N4 0.0386 (17) 0.0350 (19) 0.0361 (19) 0.0122 (15) 0.0118 (14) 0.0096 (15)
N5 0.0347 (17) 0.041 (2) 0.041 (2) 0.0145 (15) 0.0147 (14) 0.0099 (16)
C6 0.036 (2) 0.033 (2) 0.034 (2) 0.0071 (17) 0.0065 (17) 0.0032 (18)
S7 0.0403 (5) 0.0434 (7) 0.0537 (7) 0.0157 (5) 0.0182 (5) 0.0205 (5)
C8 0.037 (2) 0.039 (2) 0.038 (2) 0.0161 (18) 0.0110 (18) 0.0093 (18)
C9 0.058 (3) 0.054 (3) 0.065 (3) 0.026 (2) 0.025 (2) 0.032 (2)
C10 0.034 (2) 0.039 (2) 0.036 (2) 0.0052 (17) 0.0076 (17) 0.0027 (18)
C11 0.043 (2) 0.046 (3) 0.048 (3) 0.011 (2) 0.0139 (19) 0.014 (2)
C12 0.038 (2) 0.065 (3) 0.058 (3) 0.009 (2) 0.014 (2) 0.008 (3)
C13 0.040 (2) 0.056 (3) 0.044 (3) −0.008 (2) 0.020 (2) 0.000 (2)
C14 0.079 (3) 0.065 (4) 0.062 (3) 0.018 (3) 0.031 (3) 0.032 (3)
C15 0.061 (3) 0.059 (3) 0.054 (3) 0.024 (2) 0.023 (2) 0.026 (2)
C16 0.057 (3) 0.039 (3) 0.046 (3) 0.002 (2) 0.018 (2) 0.004 (2)
C17 0.075 (3) 0.075 (4) 0.068 (4) 0.022 (3) 0.024 (3) 0.034 (3)
C18 0.096 (4) 0.079 (4) 0.065 (4) 0.013 (3) 0.026 (3) 0.036 (3)
C19 0.068 (3) 0.055 (3) 0.050 (3) −0.011 (3) 0.024 (2) 0.002 (2)
C20 0.058 (3) 0.062 (3) 0.063 (3) 0.002 (2) 0.014 (2) 0.009 (3)
C21 0.057 (3) 0.055 (3) 0.055 (3) 0.004 (2) 0.014 (2) 0.014 (2)
C22 0.059 (3) 0.049 (3) 0.056 (3) 0.006 (2) 0.025 (2) 0.015 (2)
O23 0.092 (3) 0.107 (3) 0.112 (3) 0.055 (2) 0.064 (2) 0.065 (3)
O24 0.0582 (18) 0.075 (2) 0.058 (2) 0.0100 (17) 0.0270 (15) 0.0309 (18)

Geometric parameters (Å, º)

Br1—C13 1.888 (4) C12—C13 1.362 (6)
Br2—C19 1.895 (4) C12—H12 0.9300
N1—C8 1.301 (5) C13—C14 1.377 (6)
N1—N2 1.395 (4) C14—C15 1.367 (6)
N2—C3 1.313 (5) C14—H14 0.9300
C3—N4 1.359 (5) C15—H15 0.9300
C3—C9 1.480 (5) C16—C21 1.372 (6)
N4—C8 1.355 (4) C16—C17 1.383 (6)
N4—N5 1.375 (4) C16—C22 1.491 (6)
N5—C6 1.295 (5) C17—C18 1.362 (7)
C6—C10 1.460 (5) C17—H17 0.9300
C6—S7 1.766 (4) C18—C19 1.364 (7)
S7—C8 1.724 (4) C18—H18 0.9300
C9—H9A 0.9600 C19—C20 1.360 (7)
C9—H9B 0.9600 C20—C21 1.386 (6)
C9—H9C 0.9600 C20—H20 0.9300
C10—C15 1.380 (6) C21—H21 0.9300
C10—C11 1.394 (5) C22—O23 1.205 (5)
C11—C12 1.379 (5) C22—O24 1.315 (5)
C11—H11 0.9300 O24—H24 0.8200
C8—N1—N2 104.9 (3) C12—C13—C14 121.1 (4)
C3—N2—N1 110.0 (3) C12—C13—Br1 119.3 (3)
N2—C3—N4 107.2 (4) C14—C13—Br1 119.6 (4)
N2—C3—C9 126.9 (4) C15—C14—C13 119.1 (4)
N4—C3—C9 125.9 (3) C15—C14—H14 120.4
C8—N4—C3 106.8 (3) C13—C14—H14 120.4
C8—N4—N5 118.7 (3) C14—C15—C10 121.5 (4)
C3—N4—N5 134.5 (3) C14—C15—H15 119.3
C6—N5—N4 107.6 (3) C10—C15—H15 119.3
N5—C6—C10 122.4 (3) C21—C16—C17 118.6 (4)
N5—C6—S7 116.7 (3) C21—C16—C22 121.9 (4)
C10—C6—S7 120.9 (3) C17—C16—C22 119.5 (4)
C8—S7—C6 87.70 (18) C18—C17—C16 121.0 (5)
N1—C8—N4 111.2 (3) C18—C17—H17 119.5
N1—C8—S7 139.6 (3) C16—C17—H17 119.5
N4—C8—S7 109.2 (3) C17—C18—C19 119.2 (5)
C3—C9—H9A 109.5 C17—C18—H18 120.4
C3—C9—H9B 109.5 C19—C18—H18 120.4
H9A—C9—H9B 109.5 C20—C19—C18 121.6 (4)
C3—C9—H9C 109.5 C20—C19—Br2 119.4 (4)
H9A—C9—H9C 109.5 C18—C19—Br2 119.0 (4)
H9B—C9—H9C 109.5 C19—C20—C21 118.7 (4)
C15—C10—C11 118.2 (4) C19—C20—H20 120.6
C15—C10—C6 122.0 (4) C21—C20—H20 120.6
C11—C10—C6 119.8 (4) C16—C21—C20 120.7 (5)
C12—C11—C10 120.6 (4) C16—C21—H21 119.6
C12—C11—H11 119.7 C20—C21—H21 119.6
C10—C11—H11 119.7 O23—C22—O24 123.5 (4)
C13—C12—C11 119.5 (4) O23—C22—C16 123.2 (5)
C13—C12—H12 120.3 O24—C22—C16 113.2 (4)
C11—C12—H12 120.3 C22—O24—H24 109.5
C8—N1—N2—C3 −0.4 (5) C15—C10—C11—C12 0.3 (6)
N1—N2—C3—N4 −0.1 (5) C6—C10—C11—C12 178.6 (4)
N1—N2—C3—C9 179.6 (4) C10—C11—C12—C13 1.1 (7)
N2—C3—N4—C8 0.5 (5) C11—C12—C13—C14 −2.0 (7)
C9—C3—N4—C8 −179.2 (4) C11—C12—C13—Br1 179.6 (3)
N2—C3—N4—N5 −179.2 (4) C12—C13—C14—C15 1.6 (7)
C9—C3—N4—N5 1.1 (7) Br1—C13—C14—C15 179.9 (4)
C8—N4—N5—C6 −0.6 (5) C13—C14—C15—C10 −0.2 (8)
C3—N4—N5—C6 179.1 (4) C11—C10—C15—C14 −0.7 (7)
N4—N5—C6—C10 180.0 (3) C6—C10—C15—C14 −179.0 (4)
N4—N5—C6—S7 2.0 (4) C21—C16—C17—C18 −0.7 (8)
N5—C6—S7—C8 −2.3 (3) C22—C16—C17—C18 178.9 (5)
C10—C6—S7—C8 179.8 (3) C16—C17—C18—C19 0.6 (9)
N2—N1—C8—N4 0.8 (5) C17—C18—C19—C20 −0.4 (8)
N2—N1—C8—S7 −179.3 (4) C17—C18—C19—Br2 179.5 (4)
C3—N4—C8—N1 −0.8 (5) C18—C19—C20—C21 0.4 (8)
N5—N4—C8—N1 179.0 (3) Br2—C19—C20—C21 −179.5 (4)
C3—N4—C8—S7 179.2 (3) C17—C16—C21—C20 0.6 (7)
N5—N4—C8—S7 −1.0 (4) C22—C16—C21—C20 −178.9 (4)
C6—S7—C8—N1 −178.3 (5) C19—C20—C21—C16 −0.5 (7)
C6—S7—C8—N4 1.7 (3) C21—C16—C22—O23 173.5 (5)
N5—C6—C10—C15 171.8 (4) C17—C16—C22—O23 −6.0 (8)
S7—C6—C10—C15 −10.4 (6) C21—C16—C22—O24 −6.7 (6)
N5—C6—C10—C11 −6.5 (6) C17—C16—C22—O24 173.7 (4)
S7—C6—C10—C11 171.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O24—H24···N2i 0.82 1.87 2.674 (4) 169
C9—H9A···O23i 0.96 2.48 3.393 (6) 159

Symmetry code: (i) −x−1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2421).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Waheed, A. (2009). Acta Cryst. E65, o640. [DOI] [PMC free article] [PubMed]
  3. Bekircan, O. & Bektas, H. (2006). Molecules, 11, 469–477. [DOI] [PMC free article] [PubMed]
  4. Bhat, K. S., Prasad, D. J., Poojary, B. & Holla, B. S. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 1595–1603.
  5. Chaturvedi, B., Tiwari, N. & Nizamuddin (1988). Agric. Biol. Chem. 52, 1229–1232.
  6. Dinçer, M., Özdemir, N., Çetin, A., Cansız, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, o665–o667. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767. [DOI] [PubMed]
  9. Jia, W., Wang, Z., Jia, X., Zhang, J. & Wang, W. (2011). Acta Cryst. E67, o1093. [DOI] [PMC free article] [PubMed]
  10. Karthikeyan, M. S., Holla, B. S., Kalluraya, B. & Kumari, N. S. (2007). Monatsh. Chem. 138, 1309–1316.
  11. Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840. [DOI] [PubMed]
  12. Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  13. Shawali, A. S. & Sayed, A. R. (2006). J. Sulfur Chem. 27, 233–244.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Zhou, S., Zhang, L., Jin, J., Zhang, A., Lei, X., Lin, J., He, J. & Zhang, H. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 419–432.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812012184/bh2421sup1.cif

e-68-o1185-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012184/bh2421Isup2.hkl

e-68-o1185-Isup2.hkl (172.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012184/bh2421Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES