Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 28;68(Pt 4):o1201. doi: 10.1107/S1600536812012391

4,4′-Bipyridine–trans,trans-hexa-2,4-dienedioic acid (1/1)

Suk-Hee Moon a, Ki-Min Park b,*
PMCID: PMC3344138  PMID: 22606141

Abstract

The title cocrystal, C10H8N2·C6H6O4, crystallizes with half-mol­ecules of 4,4′-bipyridine and trans,trans-hexa-2,4-dienedioic acid in the asymmetric unit, as each is located about a crystallographic inversion center. The bipyridine molecule is planar from symmetry. In the dicarboxylic acid molecule, the O—C—C—C torsion angle is −13.0 (2)°. In the crystal, O—H⋯N and C—H⋯O hydrogen bonds generate a three-dimensional network.

Related literature  

For cocrystals of carb­oxy­lic acid and pyridine, see: Bhogala & Nangia (2003); Hou et al. (2008); Jiang & Hou (2012). For background to the applications of cocrystals, see: Bhogala & Nangia (2003); Gao et al. (2004); Hori et al. (2009); Weyna et al. (2009).graphic file with name e-68-o1201-scheme1.jpg

Experimental  

Crystal data  

  • C10H8N2·C6H6O4

  • M r = 298.29

  • Triclinic, Inline graphic

  • a = 5.8481 (5) Å

  • b = 7.6348 (6) Å

  • c = 8.4677 (7) Å

  • α = 91.837 (5)°

  • β = 92.584 (5)°

  • γ = 111.907 (4)°

  • V = 349.93 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.40 × 0.26 × 0.24 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.960, T max = 0.976

  • 5973 measured reflections

  • 1517 independent reflections

  • 1336 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.116

  • S = 1.04

  • 1517 reflections

  • 104 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812012391/sj5219sup1.cif

e-68-o1201-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012391/sj5219Isup2.hkl

e-68-o1201-Isup2.hkl (74.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012391/sj5219Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.06 (2) 1.58 (2) 2.6148 (14) 164 (2)
C2—H2⋯O2i 0.95 2.65 3.5130 (15) 151
C3—H3⋯O2ii 0.95 2.58 3.4457 (16) 152
C4—H4⋯O1iii 0.95 2.58 3.4848 (17) 160
C8—H8⋯O2iv 0.95 2.56 3.3555 (17) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2011-0026744).

supplementary crystallographic information

Comment

Considerable effort has been devoted to form co-crystals made up of two or more components because of their potential applications in pharmaceutical chemisty (Weyna et al., 2009), supramolecular chemistry (Bhogala & Nangia, 2003; Gao et al., 2004) and materials chemistry (Hori et al., 2009). In particular, numerous studies have focused on hydrogen bonding between carboxylic acid and pyridine molecules (Bhogala & Nangia, 2003; Hou et al., 2008; Jiang & Hou, 2012). We report here the structure of a co-crystal of trans, trans-hexa-2,4-dienedioic acid with 4,4'-bipyridine in the solid state.

The title compound is shown in Fig. 1. The asymmetric unit contains half-molecules of 4,4'-bipyridine and trans,trans-1,3 -butadiene-1,4-dicarboxylic acid each located on crystallographic inversion centers. Both components are planar by symmetry and tilted by 32.02 (7)° with respect to each other.

In the crystal, the dicarboxylic acid molecules are arranged side by side by intermolecular C—H···O hydrogen bonds between the dicarboxylic acid molecules, leading to the formation of a one dimensional chain. Moreover, intermolecular O—H···N and C—H···O hydrogen bonds between dicarboxylic acid and 4,4'-bipyridine molecules generate a three-dimensional network (Fig. 2, Table 1).

Experimental

A mixture of stoichiometric amounts of trans, trans-hexa-2,4-dienedioic acid and 4,4'-bipyridine in DMF (in a 1:1 volume ratio) was heated until the two components dissolved and was then kept at room temperature. Upon slow evaporation of the solvent, X–ray quality single crystals were obtained.

Refinement

The carboxyl-H atom was located in a difference Fourier map and refined isotropically. Csp2 H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. (Symmetry codes: i) -x + 1, -y + 1, -z + 1; ii) -x, -y + 3, -z.)

Fig. 2.

Fig. 2.

Crystal packing of the title compound with intermolecular O—H···N and C—H···O hydrogen bonds shown as dashed lines. (Symmetry codes: i) -x + 1, -y + 1, -z + 1; ii) -x, -y + 2, -z + 1; iii) x, y - 1, z + 1; iv) -x + 1, -y + 2, -z + 1; v) x + 1, y + 1, z + 1; vi) -x + 1, -y + 2, -z.)

Crystal data

C10H8N2·C6H6O4 Z = 1
Mr = 298.29 F(000) = 156
Triclinic, P1 Dx = 1.415 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.8481 (5) Å Cell parameters from 4151 reflections
b = 7.6348 (6) Å θ = 2.4–28.4°
c = 8.4677 (7) Å µ = 0.10 mm1
α = 91.837 (5)° T = 173 K
β = 92.584 (5)° Block, colourless
γ = 111.907 (4)° 0.40 × 0.26 × 0.24 mm
V = 349.93 (5) Å3

Data collection

Bruker APEXII CCD diffractometer 1517 independent reflections
Radiation source: fine-focus sealed tube 1336 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.960, Tmax = 0.976 k = −9→9
5973 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.0753P] where P = (Fo2 + 2Fc2)/3
1517 reflections (Δ/σ)max < 0.001
104 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.05949 (18) 1.05053 (14) 0.23387 (13) 0.0414 (3)
H1 0.184 (4) 0.987 (3) 0.271 (3) 0.084 (7)*
O2 0.37461 (17) 1.23144 (14) 0.09959 (12) 0.0394 (3)
C1 0.1653 (2) 1.18769 (18) 0.13952 (14) 0.0285 (3)
C2 −0.0033 (2) 1.28402 (18) 0.09016 (15) 0.0299 (3)
H2 −0.1740 1.2262 0.1077 0.036*
C3 0.0786 (2) 1.44912 (17) 0.02208 (14) 0.0288 (3)
H3 0.2485 1.5031 0.0013 0.035*
N1 0.3031 (2) 0.85144 (15) 0.34658 (13) 0.0331 (3)
C4 0.2266 (3) 0.7745 (2) 0.48325 (17) 0.0374 (3)
H4 0.1161 0.8150 0.5389 0.045*
C5 0.3007 (3) 0.6385 (2) 0.54775 (16) 0.0350 (3)
H5 0.2419 0.5882 0.6458 0.042*
C6 0.4615 (2) 0.57572 (16) 0.46878 (14) 0.0262 (3)
C7 0.5464 (3) 0.6613 (2) 0.32875 (16) 0.0351 (3)
H7 0.6611 0.6270 0.2719 0.042*
C8 0.4627 (3) 0.79683 (19) 0.27252 (16) 0.0362 (3)
H8 0.5224 0.8532 0.1766 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0346 (5) 0.0401 (6) 0.0593 (7) 0.0222 (4) 0.0127 (5) 0.0259 (5)
O2 0.0314 (5) 0.0469 (6) 0.0488 (6) 0.0229 (4) 0.0109 (4) 0.0174 (5)
C1 0.0283 (6) 0.0293 (6) 0.0319 (6) 0.0148 (5) 0.0032 (5) 0.0056 (5)
C2 0.0260 (6) 0.0327 (7) 0.0355 (6) 0.0156 (5) 0.0037 (5) 0.0077 (5)
C3 0.0270 (6) 0.0324 (6) 0.0316 (6) 0.0156 (5) 0.0042 (5) 0.0067 (5)
N1 0.0322 (6) 0.0287 (6) 0.0407 (6) 0.0141 (5) −0.0015 (5) 0.0074 (4)
C4 0.0397 (7) 0.0387 (7) 0.0434 (7) 0.0248 (6) 0.0073 (6) 0.0078 (6)
C5 0.0406 (7) 0.0390 (7) 0.0339 (7) 0.0234 (6) 0.0080 (5) 0.0106 (5)
C6 0.0253 (6) 0.0255 (6) 0.0291 (6) 0.0110 (5) −0.0015 (5) 0.0030 (5)
C7 0.0372 (7) 0.0377 (7) 0.0373 (7) 0.0205 (6) 0.0084 (5) 0.0114 (6)
C8 0.0395 (7) 0.0351 (7) 0.0382 (7) 0.0176 (6) 0.0055 (6) 0.0135 (6)

Geometric parameters (Å, º)

O1—C1 1.3162 (15) C4—C5 1.3839 (18)
O1—H1 1.06 (2) C4—H4 0.9500
O2—C1 1.2096 (16) C5—C6 1.3907 (17)
C1—C2 1.4873 (16) C5—H5 0.9500
C2—C3 1.3310 (18) C6—C7 1.3929 (18)
C2—H2 0.9500 C6—C6ii 1.492 (2)
C3—C3i 1.452 (2) C7—C8 1.3872 (17)
C3—H3 0.9500 C7—H7 0.9500
N1—C8 1.3286 (17) C8—H8 0.9500
N1—C4 1.3337 (18)
C1—O1—H1 110.3 (13) C5—C4—H4 118.5
O2—C1—O1 124.23 (11) C4—C5—C6 119.86 (12)
O2—C1—C2 124.24 (11) C4—C5—H5 120.1
O1—C1—C2 111.52 (10) C6—C5—H5 120.1
C3—C2—C1 121.76 (12) C5—C6—C7 116.57 (11)
C3—C2—H2 119.1 C5—C6—C6ii 121.53 (14)
C1—C2—H2 119.1 C7—C6—C6ii 121.90 (14)
C2—C3—C3i 123.31 (15) C8—C7—C6 119.78 (12)
C2—C3—H3 118.3 C8—C7—H7 120.1
C3i—C3—H3 118.3 C6—C7—H7 120.1
C8—N1—C4 117.62 (11) N1—C8—C7 123.05 (12)
N1—C4—C5 123.05 (12) N1—C8—H8 118.5
N1—C4—H4 118.5 C7—C8—H8 118.5
O2—C1—C2—C3 −13.0 (2) C4—C5—C6—C6ii −177.69 (14)
O1—C1—C2—C3 166.14 (12) C5—C6—C7—C8 −2.2 (2)
C1—C2—C3—C3i −177.53 (14) C6ii—C6—C7—C8 177.72 (14)
C8—N1—C4—C5 −1.8 (2) C4—N1—C8—C7 1.8 (2)
N1—C4—C5—C6 −0.3 (2) C6—C7—C8—N1 0.2 (2)
C4—C5—C6—C7 2.3 (2)

Symmetry codes: (i) −x, −y+3, −z; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 1.06 (2) 1.58 (2) 2.6148 (14) 164 (2)
C2—H2···O2iii 0.95 2.65 3.5130 (15) 151
C3—H3···O2iv 0.95 2.58 3.4457 (16) 152
C4—H4···O1v 0.95 2.58 3.4848 (17) 160
C8—H8···O2vi 0.95 2.56 3.3555 (17) 141

Symmetry codes: (iii) x−1, y, z; (iv) −x+1, −y+3, −z; (v) −x, −y+2, −z+1; (vi) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5219).

References

  1. Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554.
  2. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gao, X. C., Friscic, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–236. [DOI] [PubMed]
  5. Hori, A., Takatani, S., Miyamoto, T. K. & Hasegawa, M. (2009). CrystEngComm, 11, 567–569.
  6. Hou, G.-G., Liu, L.-L., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2008). Acta Cryst. E64, o997. [DOI] [PMC free article] [PubMed]
  7. Jiang, Y.-K. & Hou, G.-G. (2012). Acta Cryst. E68, o6. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812012391/sj5219sup1.cif

e-68-o1201-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012391/sj5219Isup2.hkl

e-68-o1201-Isup2.hkl (74.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012391/sj5219Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES