Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 28;68(Pt 4):o1224. doi: 10.1107/S1600536812012676

Methyl 4′,5-dichloro-2-hy­droxy-4,6-dimethyl­biphenyl-3-carboxyl­ate

Muhammad Adeel a,*, Peter Langer b, Martin Hein b, Helmut Reinke c
PMCID: PMC3344157  PMID: 22606160

Abstract

In the title compound, C16H14Cl2O3, the dihedral angle between the mean planes of the two benzene rings is 55.30 (5)°. The methyl ester group lies within the ring plane due to an intra­molecular O—H⋯O hydrogen bond [maximum deviation from the C8O2 mean plane is 0.0383 (13) Å]. In the crystal, mol­ecules are held together by rather weak C—H⋯O hydrogen bonds.

Related literature  

For pharmacological relevance of salicylates and the synthesis of the title compound, see: Adeel, Rashid et al. (2009). For related structures, see: Adeel, Ali et al. (2009); Adeel, Langer et al. (2011).graphic file with name e-68-o1224-scheme1.jpg

Experimental  

Crystal data  

  • C16H14Cl2O3

  • M r = 325.19

  • Monoclinic, Inline graphic

  • a = 4.0956 (5) Å

  • b = 13.3066 (17) Å

  • c = 13.3656 (16) Å

  • β = 92.711 (7)°

  • V = 727.59 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 173 K

  • 0.65 × 0.50 × 0.06 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.758, T max = 0.973

  • 9311 measured reflections

  • 3754 independent reflections

  • 3331 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.074

  • S = 1.04

  • 3754 reflections

  • 197 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983), 1569 Friedel pairs

  • Flack parameter: 0.05 (5)

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812012676/pv2517sup1.cif

e-68-o1224-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012676/pv2517Isup2.hkl

e-68-o1224-Isup2.hkl (180.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012676/pv2517Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1 0.77 (3) 1.80 (3) 2.523 (2) 156 (3)
C12—H12⋯O3i 0.95 2.53 3.306 (2) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Higher Education Commission of Pakistan (HEC) under the resource grant programe and the World University Service, Deutsches Kommitee, is gratefully acknowledged.

supplementary crystallographic information

Comment

Functionalized biaryls containing a 3-arylsalicylate substructure occur in a variety of pharmacologically relevant natural products (Adeel, Rashid & et al., 2009). A sterically encumbered and functionalized biaryl, the title compound, was synthesized from 4-(4-methoxyphenyl)-1,3-bis(trimethylsilyloxy)-1,3-butadiene. In this paper, the crystal structure of the title compound has been presented.

In the title compound (Fig. 1), the dihedral angle between the mean planes of the two benzene rings is 55.30 (5)°. The methyl ester group lies within the ring plane due to an intramolecular O—H···O hydrogen bond; the maximum deviation of any atom from the mean-plane of atoms C1–C8/O1/O2 is 0.0383 (13) Å for C2. In the crystal, molecules are held together by rather weak intermolecular C—H···O hydrogen bonds along the a-axis (Fig. 2 & Table 1).

Experimental

The title compound was prepared according to a previously published procedure (Adeel, Rashid et al., 2009) using 3-(Silyloxy)-2-en-1-ones (332 mg, 1.65 mmol), 1,3-bis(silyl enol ethers) (612 mg, 1.65 mmol) and TiCl4 (0.18 ml, 1.65 mmol) in CH2Cl2 (4 mL). The title compound was isolated as a colorless prisms; (190 mg, 40%, m.p. = 367–369 K). Crystallization from a saturated dichloromethane/methanol (9:1) solution at ambient temperature gave colourless crystals suitable for X-ray crystallographic studies.

Refinement

An absolute structure was determined by using 1569 Friedel pairs. The H atom bonded to O1 was located from a difference Fourier map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (methyl) or 0.95 Å (aryl) with Uiso(H) = 1.5 times Ueq(C) (methyl H) or 1.2 times Ueq(C) (aryl H); torsion angles of all methyl groups were allowed to refine.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the intermolecular (C—-H···O) and intramolecular (O—H···O and C—H···Cl) hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.

Crystal data

C16H14Cl2O3 F(000) = 336
Mr = 325.19 Dx = 1.484 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4567 reflections
a = 4.0956 (5) Å θ = 2.2–29.8°
b = 13.3066 (17) Å µ = 0.45 mm1
c = 13.3656 (16) Å T = 173 K
β = 92.711 (7)° Plate, colourless
V = 727.59 (16) Å3 0.65 × 0.50 × 0.06 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer 3754 independent reflections
Radiation source: fine-focus sealed tube 3331 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
φ and ω scans θmax = 29.9°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −5→5
Tmin = 0.758, Tmax = 0.973 k = −18→15
9311 measured reflections l = −17→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.0613P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3754 reflections Δρmax = 0.32 e Å3
197 parameters Δρmin = −0.18 e Å3
1 restraint Absolute structure: Flack (1983), 1569 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.05 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.12949 (11) 0.03726 (3) 0.31348 (3) 0.02951 (11)
Cl2 −0.24707 (13) 0.25736 (5) −0.35858 (3) 0.04068 (13)
O1 0.4723 (4) 0.47523 (11) 0.24494 (11) 0.0385 (3)
O2 0.4797 (4) 0.39445 (11) 0.39014 (10) 0.0397 (4)
O3 0.1939 (3) 0.40131 (10) 0.08937 (10) 0.0257 (3)
H3O 0.278 (6) 0.437 (2) 0.1272 (19) 0.046 (8)*
C1 0.2187 (4) 0.31271 (13) 0.24869 (12) 0.0179 (3)
C2 0.1324 (4) 0.31873 (13) 0.14433 (12) 0.0187 (3)
C3 −0.0198 (3) 0.23718 (12) 0.09202 (11) 0.0167 (3)
C4 −0.1037 (4) 0.15145 (12) 0.14643 (12) 0.0168 (3)
C5 −0.0227 (4) 0.14812 (13) 0.25056 (12) 0.0182 (3)
C6 0.1376 (4) 0.22493 (13) 0.30390 (12) 0.0190 (3)
C7 0.3994 (4) 0.40092 (14) 0.29314 (13) 0.0219 (3)
C8 0.6450 (6) 0.48150 (18) 0.43503 (17) 0.0449 (5)
H8A 0.8541 0.4918 0.4037 0.067*
H8B 0.6846 0.4701 0.5070 0.067*
H8C 0.5076 0.5412 0.4245 0.067*
C9 −0.2826 (4) 0.06380 (13) 0.09765 (13) 0.0218 (3)
H9A −0.3475 0.0810 0.0282 0.033*
H9B −0.4779 0.0486 0.1345 0.033*
H9C −0.1388 0.0049 0.0985 0.033*
C10 0.2165 (5) 0.21357 (15) 0.41504 (13) 0.0309 (4)
H10A 0.1166 0.1517 0.4391 0.046*
H10B 0.1299 0.2714 0.4507 0.046*
H10C 0.4540 0.2102 0.4273 0.046*
C11 −0.0770 (4) 0.24329 (12) −0.01993 (11) 0.0173 (3)
C12 −0.2543 (4) 0.32261 (13) −0.06551 (12) 0.0192 (3)
H12 −0.3402 0.3741 −0.0251 0.023*
C13 −0.3060 (4) 0.32687 (14) −0.16939 (12) 0.0221 (3)
H13 −0.4280 0.3805 −0.1995 0.026*
C14 −0.1769 (4) 0.25169 (15) −0.22847 (12) 0.0225 (3)
C15 0.0039 (4) 0.17324 (14) −0.18631 (13) 0.0235 (3)
H15 0.0942 0.1231 −0.2274 0.028*
C16 0.0510 (4) 0.16929 (13) −0.08213 (13) 0.0221 (3)
H16 0.1725 0.1152 −0.0526 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0416 (2) 0.02195 (19) 0.0246 (2) −0.00629 (19) −0.00240 (16) 0.00732 (18)
Cl2 0.0571 (3) 0.0497 (3) 0.01488 (19) −0.0008 (3) −0.00219 (17) −0.0013 (2)
O1 0.0570 (9) 0.0258 (7) 0.0317 (7) −0.0156 (6) −0.0074 (6) −0.0003 (6)
O2 0.0599 (9) 0.0338 (8) 0.0244 (7) −0.0174 (7) −0.0105 (6) −0.0054 (6)
O3 0.0398 (7) 0.0188 (6) 0.0184 (6) −0.0080 (5) −0.0001 (5) 0.0008 (5)
C1 0.0206 (7) 0.0157 (8) 0.0173 (7) 0.0005 (6) −0.0005 (6) −0.0032 (6)
C2 0.0214 (7) 0.0175 (8) 0.0174 (7) 0.0018 (6) 0.0028 (6) 0.0005 (6)
C3 0.0175 (7) 0.0176 (8) 0.0148 (7) 0.0043 (6) −0.0007 (5) −0.0005 (6)
C4 0.0163 (6) 0.0159 (7) 0.0180 (7) 0.0027 (6) −0.0002 (5) −0.0014 (6)
C5 0.0217 (7) 0.0160 (7) 0.0168 (7) 0.0020 (6) −0.0007 (6) 0.0038 (6)
C6 0.0192 (6) 0.0222 (8) 0.0152 (7) 0.0035 (6) −0.0017 (5) −0.0009 (6)
C7 0.0231 (8) 0.0214 (8) 0.0212 (8) 0.0000 (6) −0.0005 (6) −0.0049 (6)
C8 0.0619 (14) 0.0381 (13) 0.0331 (11) −0.0169 (10) −0.0135 (10) −0.0141 (10)
C9 0.0226 (7) 0.0184 (8) 0.0239 (8) −0.0016 (6) −0.0039 (6) 0.0010 (6)
C10 0.0473 (10) 0.0283 (10) 0.0163 (8) −0.0045 (8) −0.0079 (7) 0.0034 (7)
C11 0.0189 (7) 0.0181 (8) 0.0148 (7) −0.0018 (6) −0.0013 (5) −0.0002 (6)
C12 0.0221 (7) 0.0186 (8) 0.0167 (7) 0.0010 (6) 0.0012 (6) −0.0007 (6)
C13 0.0274 (8) 0.0201 (8) 0.0184 (8) 0.0007 (6) −0.0023 (6) 0.0025 (6)
C14 0.0237 (7) 0.0297 (9) 0.0139 (7) −0.0046 (7) −0.0002 (5) −0.0003 (7)
C15 0.0238 (7) 0.0256 (9) 0.0211 (8) 0.0011 (7) 0.0010 (6) −0.0083 (7)
C16 0.0205 (7) 0.0222 (9) 0.0231 (8) 0.0030 (6) −0.0028 (6) −0.0036 (7)

Geometric parameters (Å, º)

Cl1—C5 1.7633 (17) C8—H8B 0.9800
Cl2—C14 1.7507 (16) C8—H8C 0.9800
O1—C7 1.225 (2) C9—H9A 0.9800
O2—C7 1.325 (2) C9—H9B 0.9800
O2—C8 1.457 (2) C9—H9C 0.9800
O3—C2 1.352 (2) C10—H10A 0.9800
O3—H3O 0.77 (3) C10—H10B 0.9800
C1—C2 1.425 (2) C10—H10C 0.9800
C1—C6 1.429 (2) C11—C12 1.404 (2)
C1—C7 1.496 (2) C11—C16 1.406 (2)
C2—C3 1.419 (2) C12—C13 1.396 (2)
C3—C4 1.404 (2) C12—H12 0.9500
C3—C11 1.506 (2) C13—C14 1.394 (2)
C4—C5 1.416 (2) C13—H13 0.9500
C4—C9 1.509 (2) C14—C15 1.384 (3)
C5—C6 1.393 (2) C15—C16 1.398 (2)
C6—C10 1.513 (2) C15—H15 0.9500
C8—H8A 0.9800 C16—H16 0.9500
C7—O2—C8 116.13 (16) C4—C9—H9B 109.5
C2—O3—H3O 104 (2) H9A—C9—H9B 109.5
C2—C1—C6 119.90 (14) C4—C9—H9C 109.5
C2—C1—C7 116.10 (15) H9A—C9—H9C 109.5
C6—C1—C7 123.99 (14) H9B—C9—H9C 109.5
O3—C2—C3 116.27 (14) C6—C10—H10A 109.5
O3—C2—C1 122.25 (15) C6—C10—H10B 109.5
C3—C2—C1 121.47 (15) H10A—C10—H10B 109.5
C4—C3—C2 118.60 (14) C6—C10—H10C 109.5
C4—C3—C11 121.88 (14) H10A—C10—H10C 109.5
C2—C3—C11 119.49 (14) H10B—C10—H10C 109.5
C3—C4—C5 118.87 (14) C12—C11—C16 118.01 (14)
C3—C4—C9 121.99 (14) C12—C11—C3 121.66 (14)
C5—C4—C9 119.13 (15) C16—C11—C3 120.33 (14)
C6—C5—C4 124.26 (15) C13—C12—C11 120.89 (15)
C6—C5—Cl1 119.44 (12) C13—C12—H12 119.6
C4—C5—Cl1 116.29 (13) C11—C12—H12 119.6
C5—C6—C1 116.81 (14) C14—C13—C12 119.38 (15)
C5—C6—C10 120.19 (15) C14—C13—H13 120.3
C1—C6—C10 123.00 (14) C12—C13—H13 120.3
O1—C7—O2 120.77 (16) C15—C14—C13 121.36 (15)
O1—C7—C1 123.58 (16) C15—C14—Cl2 119.75 (13)
O2—C7—C1 115.66 (15) C13—C14—Cl2 118.88 (14)
O2—C8—H8A 109.5 C14—C15—C16 118.68 (15)
O2—C8—H8B 109.5 C14—C15—H15 120.7
H8A—C8—H8B 109.5 C16—C15—H15 120.7
O2—C8—H8C 109.5 C15—C16—C11 121.67 (15)
H8A—C8—H8C 109.5 C15—C16—H16 119.2
H8B—C8—H8C 109.5 C11—C16—H16 119.2
C4—C9—H9A 109.5
C6—C1—C2—O3 177.81 (15) C2—C1—C6—C10 −179.09 (15)
C7—C1—C2—O3 −3.4 (2) C7—C1—C6—C10 2.3 (2)
C6—C1—C2—C3 −3.0 (2) C8—O2—C7—O1 2.3 (3)
C7—C1—C2—C3 175.71 (14) C8—O2—C7—C1 −177.79 (17)
O3—C2—C3—C4 −176.93 (14) C2—C1—C7—O1 0.1 (2)
C1—C2—C3—C4 3.9 (2) C6—C1—C7—O1 178.84 (16)
O3—C2—C3—C11 5.0 (2) C2—C1—C7—O2 −179.73 (14)
C1—C2—C3—C11 −174.17 (14) C6—C1—C7—O2 −1.0 (2)
C2—C3—C4—C5 −2.3 (2) C4—C3—C11—C12 125.94 (16)
C11—C3—C4—C5 175.72 (14) C2—C3—C11—C12 −56.1 (2)
C2—C3—C4—C9 176.59 (14) C4—C3—C11—C16 −54.8 (2)
C11—C3—C4—C9 −5.4 (2) C2—C3—C11—C16 123.15 (16)
C3—C4—C5—C6 −0.2 (2) C16—C11—C12—C13 1.0 (2)
C9—C4—C5—C6 −179.04 (14) C3—C11—C12—C13 −179.75 (14)
C3—C4—C5—Cl1 −178.97 (11) C11—C12—C13—C14 −0.6 (2)
C9—C4—C5—Cl1 2.1 (2) C12—C13—C14—C15 −0.5 (2)
C4—C5—C6—C1 1.0 (2) C12—C13—C14—Cl2 179.39 (13)
Cl1—C5—C6—C1 179.78 (12) C13—C14—C15—C16 1.2 (2)
C4—C5—C6—C10 −179.32 (16) Cl2—C14—C15—C16 −178.73 (13)
Cl1—C5—C6—C10 −0.5 (2) C14—C15—C16—C11 −0.8 (2)
C2—C1—C6—C5 0.6 (2) C12—C11—C16—C15 −0.3 (2)
C7—C1—C6—C5 −178.07 (15) C3—C11—C16—C15 −179.57 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O1 0.77 (3) 1.80 (3) 2.523 (2) 156 (3)
C12—H12···O3i 0.95 2.53 3.306 (2) 139
C10—H10A···Cl1 0.98 2.45 3.029 (2) 118

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2517).

References

  1. Adeel, M., Ali, I., Langer, P. & Villinger, A. (2009). Acta Cryst. E65, o2176. [DOI] [PMC free article] [PubMed]
  2. Adeel, M., Langer, P. & Villinger, A. (2011). Acta Cryst. E67, o2336. [DOI] [PMC free article] [PubMed]
  3. Adeel, M., Rashid, M. A., Rasool, N., Ahmad, R., Villinger, A., Reinke, H., Fischer, C. & Langer, P. (2009). Synthesis, pp. 243–250.
  4. Bruker (2003). APEX2 and SAINT Bruker–Nonius Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). SADABS Bruker–Nonius Inc., Madison, Wisconsin, USA.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812012676/pv2517sup1.cif

e-68-o1224-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012676/pv2517Isup2.hkl

e-68-o1224-Isup2.hkl (180.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012676/pv2517Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES