Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1228. doi: 10.1107/S1600536812012639

1-(5-Benzyl­sulfanyl-2,2-dimethyl-2,3-dihydro-1,3,4-thia­diazol-3-yl)-2,2-dimethyl­propan-1-one

Mohd Sukeri Mohd Yusof a, Fatimah Abdul Mutalib a, Suhana Arshad b, Ibrahim Abdul Razak b,*,
PMCID: PMC3344160  PMID: 22606163

Abstract

In the title compound, C16H22N2OS2, the S atom of the thia­diazole ring and the attached methyl groups are disordered over two orientations with a refined site-occupancy ratio of 0.641 (11):0.359 (11). The thia­diazole ring is in a twist conformation in both disorder components. The mean plane through the thia­diazole ring makes dihedral angles of 77.39 (8) (major component) and 67.45 (11)° (minor component) with the benzene ring. Intra­molecular C—H⋯N inter­actions generate two S(6) ring motifs. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains parallel to the b axis.

Related literature  

For background to the pharmacological properties of thia­diazole derivatives, see: Noolvi et al. (2011); Yusuf et al. (2008). For a related structure, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-68-o1228-scheme1.jpg

Experimental  

Crystal data  

  • C16H22N2OS2

  • M r = 322.48

  • Monoclinic, Inline graphic

  • a = 16.6174 (2) Å

  • b = 10.5178 (1) Å

  • c = 9.6758 (1) Å

  • β = 96.345 (1)°

  • V = 1680.76 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.26 × 0.19 × 0.12 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.922, T max = 0.962

  • 22216 measured reflections

  • 5972 independent reflections

  • 4678 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.092

  • S = 1.02

  • 5972 reflections

  • 225 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012639/rz2718sup1.cif

e-68-o1228-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012639/rz2718Isup2.hkl

e-68-o1228-Isup2.hkl (292.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012639/rz2718Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯N1 0.98 2.36 2.9893 (15) 122
C15—H15B⋯N1 0.98 2.37 2.9803 (15) 120
C11—H11B⋯O1i 0.98 2.56 3.490 (4) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government, Universiti Malaysia Terengganu and Universiti Sains Malaysia for research facilities and the Fundamental Research Grant Scheme (FRGS) Nos. 203/PFIZIK/6711171 and FRGS 59166 to conduct this work.

supplementary crystallographic information

Comment

Thiadiazole derivatives have been reported to posses anti-cancer (Noolvi et al., 2011) and anti-depressant activity (Yusuf et al., 2008). The title compound is one of these thiadiazole derivatives, and its crystal structure is reported herein.

In the molecule of the title compound (Fig. 1), the S atom of the thiadiazole ring and the attached dimethyl groups (C10/C10X and C11/C11X) are disordered over two orientations with a refined site-occupancy ratio of 0.641 (11):0.359 (11). The disordered thiadiazole (S1/N1/N2/C8/C9 and S1X/N1/N2/C8/C9) rings are both in twist conformation (Cremer & Pople, 1975) in which the ring is twisted about the C9–S1 bond [puckering parameters: Q = 0.1477 (19) Å and φ= 167.7 (5)°] and about the S1X–C8 bond [puckering parameters: Q = 0.131 (2) Å and φ= 298.6 (8)°], respectively. The mean plane through the thiadiazole rings make dihedral angles of 77.39 (8) and 67.45 (11)°, respectively, with the benzene (C1–C6) ring. Intramolecular C14—H14B···N1 and C15—H15B···N1 interactions (Table 1) generate two S(6) ring motifs (Bernstein et al., 1995). The bond lengths and angles are within normal ranges and are comparable to those reported in a related structure (Fun et al., 2011). The crystal packing is shown in Fig. 2. Intermolecular C11—H11B···O1 (Table 1) hydrogen bonds link the molecules into one dimensional zigzag chains parallel to the b axis.

Experimental

A solution of pivaloylisothiocyanate (1.0 g, 8 mmol) in 30 ml acetone was added into a flask containing 30 ml acetone solution of s-benzyldithiocarbazate (1.5 g, 8.00 mmol). The mixture was refluxed for 4 h, then, the solution was filtered-off and left to evaporate at room temperature. Colourless crystals suitable for X-ray analyisis were obtained after one day on slow evaporation of the solvent (yield 60%, M.p. 503.5–504.5 K, IR(KBr)cm-1: 1334.72 (νC—N), 1547.95 (νCN), 1647.08 (νCO), 8944.79 (νC—S). 1H NMR (CDCl3)δp.p.m. 1.289 (s, 9H, -(CH3)3), 2.004 (s, 6H, -(CH3)2), 4.330 (s, 2H, –CH2), 7.35–7.45 (m, 2H, ar-H). 13C NMR (CDCl3)δp.p.m. 127.86–135.40 (6 C, ar-C), 144.57 (thiadiazole carbon), 176.72 (C═O), 27.06–37.50(4 C, –C-(CH3)3). Anal. Found (calc.) for C16H22N2OS2 (%): C, 59.59(58.98); H, 6.88(6.86); N, 8.69(8.66); S, 19.89(19.86).

Refinement

The S atom of the thiadiazole ring and the attached dimethyl groups (C10/C10X) and C11/C11X) are disordered over two orientations with a refined site-occupancy ratio of 0.641 (11):0.359 (11). All H atoms were positioned geometrically [C–H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids. Dashed lines indicate intramolecular hydrogen bonds. Bonds involving the minor component of the disorder are shown as empty sticks.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the c axis. The H atoms not involved in the intermolecular interactions (dashed lines) are omitted for clarity. Only major disordered components are shown.

Crystal data

C16H22N2OS2 F(000) = 688
Mr = 322.48 Dx = 1.274 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6904 reflections
a = 16.6174 (2) Å θ = 2.9–32.3°
b = 10.5178 (1) Å µ = 0.32 mm1
c = 9.6758 (1) Å T = 100 K
β = 96.345 (1)° Block, colourless
V = 1680.76 (3) Å3 0.26 × 0.19 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5972 independent reflections
Radiation source: fine-focus sealed tube 4678 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 32.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −25→13
Tmin = 0.922, Tmax = 0.962 k = −15→15
22216 measured reflections l = −12→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.5012P] where P = (Fo2 + 2Fc2)/3
5972 reflections (Δ/σ)max = 0.001
225 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.36774 (15) 0.26997 (19) 0.2500 (3) 0.0233 (4) 0.641 (11)
S1X 0.3827 (2) 0.28188 (18) 0.2089 (6) 0.0216 (6) 0.359 (11)
S2 0.214397 (18) 0.34659 (3) 0.07503 (3) 0.01843 (7)
O1 0.41502 (5) −0.14077 (8) 0.14798 (9) 0.02125 (18)
N1 0.28175 (6) 0.11644 (9) 0.08318 (10) 0.01500 (18)
N2 0.34822 (6) 0.04481 (9) 0.13754 (10) 0.01761 (19)
C1 0.09412 (8) 0.41815 (12) −0.21819 (12) 0.0227 (2)
H1A 0.1467 0.4243 −0.2475 0.027*
C2 0.03192 (8) 0.49319 (13) −0.28083 (14) 0.0279 (3)
H2A 0.0420 0.5505 −0.3528 0.033*
C3 −0.04488 (8) 0.48490 (12) −0.23872 (14) 0.0250 (3)
H3A −0.0875 0.5360 −0.2822 0.030*
C4 −0.05940 (7) 0.40174 (11) −0.13292 (13) 0.0223 (2)
H4A −0.1120 0.3961 −0.1036 0.027*
C5 0.00308 (7) 0.32658 (11) −0.06983 (12) 0.0193 (2)
H5A −0.0070 0.2701 0.0029 0.023*
C6 0.08002 (7) 0.33358 (10) −0.11244 (11) 0.0166 (2)
C7 0.14763 (7) 0.25122 (11) −0.04636 (12) 0.0183 (2)
H7A 0.1786 0.2155 −0.1190 0.022*
H7B 0.1250 0.1798 0.0036 0.022*
C8 0.28772 (7) 0.23196 (10) 0.12453 (11) 0.0161 (2)
C9 0.41461 (7) 0.11385 (10) 0.22346 (11) 0.0159 (2)
C10 0.4419 (3) 0.0577 (4) 0.3624 (4) 0.0267 (7) 0.641 (11)
H10A 0.4695 −0.0232 0.3500 0.040* 0.641 (11)
H10B 0.3949 0.0431 0.4131 0.040* 0.641 (11)
H10C 0.4794 0.1165 0.4153 0.040* 0.641 (11)
C10X 0.4118 (6) 0.0686 (8) 0.3771 (8) 0.0296 (14) 0.359 (11)
H10D 0.4294 −0.0202 0.3860 0.044* 0.359 (11)
H10E 0.3563 0.0760 0.4016 0.044* 0.359 (11)
H10F 0.4479 0.1218 0.4397 0.044* 0.359 (11)
C11 0.4847 (2) 0.1317 (4) 0.1339 (4) 0.0252 (7) 0.641 (11)
H11A 0.5099 0.0491 0.1195 0.038* 0.641 (11)
H11B 0.5251 0.1892 0.1814 0.038* 0.641 (11)
H11C 0.4639 0.1680 0.0438 0.038* 0.641 (11)
C11X 0.4988 (4) 0.1030 (7) 0.1826 (10) 0.0275 (14) 0.359 (11)
H11D 0.5184 0.0158 0.1986 0.041* 0.359 (11)
H11E 0.5346 0.1620 0.2385 0.041* 0.359 (11)
H11F 0.4983 0.1242 0.0839 0.041* 0.359 (11)
C12 0.35519 (7) −0.08096 (10) 0.10018 (11) 0.0146 (2)
C13 0.28826 (7) −0.14282 (10) −0.00111 (11) 0.0147 (2)
C14 0.28175 (7) −0.07640 (11) −0.14377 (11) 0.0178 (2)
H14A 0.3346 −0.0783 −0.1799 0.027*
H14B 0.2648 0.0120 −0.1336 0.027*
H14C 0.2417 −0.1207 −0.2086 0.027*
C15 0.20567 (7) −0.14025 (11) 0.05629 (12) 0.0202 (2)
H15A 0.1667 −0.1908 −0.0041 0.030*
H15B 0.1865 −0.0523 0.0592 0.030*
H15C 0.2112 −0.1760 0.1504 0.030*
C16 0.31270 (8) −0.28173 (10) −0.02075 (13) 0.0210 (2)
H16A 0.3649 −0.2846 −0.0588 0.031*
H16B 0.2715 −0.3239 −0.0852 0.031*
H16C 0.3173 −0.3255 0.0692 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0205 (5) 0.0179 (4) 0.0287 (7) 0.0056 (3) −0.0097 (5) −0.0087 (4)
S1X 0.0196 (8) 0.0125 (4) 0.0302 (13) −0.0001 (4) −0.0078 (8) −0.0024 (6)
S2 0.01715 (14) 0.01447 (12) 0.02242 (14) 0.00448 (10) −0.00341 (11) −0.00322 (10)
O1 0.0199 (4) 0.0168 (4) 0.0253 (4) 0.0047 (3) −0.0053 (3) −0.0004 (3)
N1 0.0120 (4) 0.0150 (4) 0.0175 (4) 0.0024 (3) −0.0007 (3) 0.0005 (3)
N2 0.0152 (5) 0.0142 (4) 0.0215 (5) 0.0033 (3) −0.0065 (4) −0.0029 (3)
C1 0.0196 (6) 0.0273 (6) 0.0219 (6) 0.0068 (5) 0.0048 (5) 0.0048 (5)
C2 0.0276 (7) 0.0321 (7) 0.0243 (6) 0.0092 (5) 0.0042 (5) 0.0108 (5)
C3 0.0204 (6) 0.0257 (6) 0.0277 (6) 0.0078 (5) −0.0030 (5) 0.0033 (5)
C4 0.0147 (5) 0.0203 (5) 0.0314 (6) 0.0012 (4) 0.0002 (5) −0.0008 (5)
C5 0.0177 (6) 0.0171 (5) 0.0227 (5) −0.0007 (4) 0.0003 (4) 0.0007 (4)
C6 0.0167 (5) 0.0152 (5) 0.0168 (5) 0.0029 (4) −0.0024 (4) −0.0018 (4)
C7 0.0169 (5) 0.0163 (5) 0.0204 (5) 0.0027 (4) −0.0037 (4) −0.0021 (4)
C8 0.0149 (5) 0.0157 (5) 0.0171 (5) 0.0023 (4) −0.0013 (4) −0.0013 (4)
C9 0.0143 (5) 0.0144 (4) 0.0180 (5) 0.0018 (4) −0.0029 (4) −0.0025 (4)
C10 0.037 (2) 0.0245 (11) 0.0163 (13) −0.0004 (14) −0.0060 (14) −0.0003 (9)
C10X 0.043 (4) 0.025 (2) 0.020 (2) −0.009 (3) 0.001 (3) 0.0002 (17)
C11 0.0236 (14) 0.0246 (14) 0.0280 (16) −0.0058 (10) 0.0061 (12) −0.0046 (11)
C11X 0.020 (2) 0.024 (2) 0.040 (4) −0.0046 (18) 0.007 (2) −0.010 (2)
C12 0.0162 (5) 0.0134 (4) 0.0142 (5) 0.0011 (4) 0.0018 (4) 0.0008 (4)
C13 0.0153 (5) 0.0136 (4) 0.0149 (5) −0.0005 (4) 0.0007 (4) −0.0004 (4)
C14 0.0199 (6) 0.0182 (5) 0.0147 (5) −0.0004 (4) −0.0004 (4) −0.0001 (4)
C15 0.0178 (6) 0.0202 (5) 0.0229 (5) −0.0037 (4) 0.0043 (5) −0.0005 (4)
C16 0.0258 (6) 0.0142 (5) 0.0223 (5) 0.0004 (4) −0.0004 (5) −0.0015 (4)

Geometric parameters (Å, º)

S1—C8 1.7448 (16) C9—C11 1.539 (3)
S1—C9 1.8473 (15) C9—C10X 1.566 (8)
S1X—C8 1.774 (2) C10—H10A 0.9800
S1X—C9 1.846 (2) C10—H10B 0.9800
S2—C8 1.7432 (11) C10—H10C 0.9800
S2—C7 1.8245 (12) C10X—H10D 0.9800
O1—C12 1.2233 (13) C10X—H10E 0.9800
N1—C8 1.2795 (14) C10X—H10F 0.9800
N1—N2 1.3913 (13) C11—H11A 0.9800
N2—C12 1.3796 (14) C11—H11B 0.9800
N2—C9 1.4942 (14) C11—H11C 0.9800
C1—C2 1.3857 (17) C11X—H11D 0.9800
C1—C6 1.3950 (16) C11X—H11E 0.9800
C1—H1A 0.9500 C11X—H11F 0.9800
C2—C3 1.3847 (18) C12—C13 1.5428 (15)
C2—H2A 0.9500 C13—C16 1.5339 (15)
C3—C4 1.3878 (18) C13—C15 1.5365 (16)
C3—H3A 0.9500 C13—C14 1.5401 (15)
C4—C5 1.3912 (17) C14—H14A 0.9800
C4—H4A 0.9500 C14—H14B 0.9800
C5—C6 1.3880 (16) C14—H14C 0.9800
C5—H5A 0.9500 C15—H15A 0.9800
C6—C7 1.5042 (16) C15—H15B 0.9800
C7—H7A 0.9900 C15—H15C 0.9800
C7—H7B 0.9900 C16—H16A 0.9800
C9—C10 1.492 (4) C16—H16B 0.9800
C9—C11X 1.499 (6) C16—H16C 0.9800
C8—S1—C9 90.02 (7) C11X—C9—S1 121.6 (2)
C8—S1X—C9 89.16 (10) C11—C9—S1 109.09 (13)
C8—S2—C7 98.83 (5) C10X—C9—S1 94.7 (3)
C8—N1—N2 111.41 (9) C9—C10—H10A 109.5
C12—N2—N1 120.42 (9) C9—C10—H10B 109.5
C12—N2—C9 122.25 (9) C9—C10—H10C 109.5
N1—N2—C9 116.98 (8) C9—C10X—H10D 109.5
C2—C1—C6 120.42 (12) C9—C10X—H10E 109.5
C2—C1—H1A 119.8 H10D—C10X—H10E 109.5
C6—C1—H1A 119.8 C9—C10X—H10F 109.5
C3—C2—C1 120.18 (12) H10D—C10X—H10F 109.5
C3—C2—H2A 119.9 H10E—C10X—H10F 109.5
C1—C2—H2A 119.9 C9—C11—H11A 109.5
C2—C3—C4 119.85 (11) C9—C11—H11B 109.5
C2—C3—H3A 120.1 C9—C11—H11C 109.5
C4—C3—H3A 120.1 C9—C11X—H11D 109.5
C3—C4—C5 119.98 (12) C9—C11X—H11E 109.5
C3—C4—H4A 120.0 H11D—C11X—H11E 109.5
C5—C4—H4A 120.0 C9—C11X—H11F 109.5
C6—C5—C4 120.45 (11) H11D—C11X—H11F 109.5
C6—C5—H5A 119.8 H11E—C11X—H11F 109.5
C4—C5—H5A 119.8 O1—C12—N2 118.84 (10)
C5—C6—C1 119.12 (11) O1—C12—C13 121.47 (9)
C5—C6—C7 120.83 (10) N2—C12—C13 119.69 (9)
C1—C6—C7 120.06 (11) C16—C13—C15 108.72 (9)
C6—C7—S2 109.24 (8) C16—C13—C14 108.32 (9)
C6—C7—H7A 109.8 C15—C13—C14 109.81 (9)
S2—C7—H7A 109.8 C16—C13—C12 107.35 (9)
C6—C7—H7B 109.8 C15—C13—C12 111.90 (9)
S2—C7—H7B 109.8 C14—C13—C12 110.64 (9)
H7A—C7—H7B 108.3 C13—C14—H14A 109.5
N1—C8—S2 122.90 (9) C13—C14—H14B 109.5
N1—C8—S1 117.51 (10) H14A—C14—H14B 109.5
S2—C8—S1 119.24 (7) C13—C14—H14C 109.5
N1—C8—S1X 117.33 (12) H14A—C14—H14C 109.5
S2—C8—S1X 118.74 (9) H14B—C14—H14C 109.5
C10—C9—N2 116.2 (2) C13—C15—H15A 109.5
C10—C9—C11X 90.4 (3) C13—C15—H15B 109.5
N2—C9—C11X 118.0 (3) H15A—C15—H15B 109.5
C10—C9—C11 112.43 (18) C13—C15—H15C 109.5
N2—C9—C11 107.73 (16) H15A—C15—H15C 109.5
N2—C9—C10X 106.4 (3) H15B—C15—H15C 109.5
C11X—C9—C10X 110.7 (3) C13—C16—H16A 109.5
N2—C9—S1X 103.56 (9) C13—C16—H16B 109.5
C11X—C9—S1X 108.7 (2) H16A—C16—H16B 109.5
C10X—C9—S1X 109.0 (3) C13—C16—H16C 109.5
C10—C9—S1 108.51 (15) H16A—C16—H16C 109.5
N2—C9—S1 102.27 (8) H16B—C16—H16C 109.5
C8—N1—N2—C12 −176.95 (10) N1—N2—C9—C11 −103.8 (2)
C8—N1—N2—C9 −3.69 (13) C12—N2—C9—C10X −77.1 (4)
C6—C1—C2—C3 0.1 (2) N1—N2—C9—C10X 109.8 (4)
C1—C2—C3—C4 0.4 (2) C12—N2—C9—S1X 168.1 (2)
C2—C3—C4—C5 −0.26 (19) N1—N2—C9—S1X −5.0 (3)
C3—C4—C5—C6 −0.34 (18) C12—N2—C9—S1 −175.75 (17)
C4—C5—C6—C1 0.79 (17) N1—N2—C9—S1 11.12 (18)
C4—C5—C6—C7 −179.04 (11) C8—S1X—C9—C10 −123.1 (4)
C2—C1—C6—C5 −0.66 (18) C8—S1X—C9—N2 8.7 (3)
C2—C1—C6—C7 179.17 (12) C8—S1X—C9—C11X 135.0 (5)
C5—C6—C7—S2 −103.10 (11) C8—S1X—C9—C11 118.0 (4)
C1—C6—C7—S2 77.07 (12) C8—S1X—C9—C10X −104.3 (5)
C8—S2—C7—C6 −176.36 (8) C8—S1X—C9—S1 −78.5 (3)
N2—N1—C8—S2 179.94 (8) C8—S1—C9—C10 −134.8 (3)
N2—N1—C8—S1 −7.0 (2) C8—S1—C9—N2 −11.51 (19)
N2—N1—C8—S1X 11.7 (3) C8—S1—C9—C11X 122.7 (5)
C7—S2—C8—N1 −4.34 (11) C8—S1—C9—C11 102.4 (3)
C7—S2—C8—S1 −177.32 (18) C8—S1—C9—C10X −119.5 (4)
C7—S2—C8—S1X 163.8 (3) C8—S1—C9—S1X 84.9 (3)
C9—S1—C8—N1 11.8 (2) N1—N2—C12—O1 178.79 (10)
C9—S1—C8—S2 −174.86 (9) C9—N2—C12—O1 5.89 (16)
C9—S1—C8—S1X −81.9 (3) N1—N2—C12—C13 −0.76 (15)
C9—S1X—C8—N1 −12.7 (3) C9—N2—C12—C13 −173.67 (9)
C9—S1X—C8—S2 178.57 (12) O1—C12—C13—C16 1.05 (14)
C9—S1X—C8—S1 82.3 (3) N2—C12—C13—C16 −179.41 (10)
C12—N2—C9—C10 −57.8 (3) O1—C12—C13—C15 120.25 (11)
N1—N2—C9—C10 129.1 (2) N2—C12—C13—C15 −60.21 (13)
C12—N2—C9—C11X 48.0 (5) O1—C12—C13—C14 −116.95 (11)
N1—N2—C9—C11X −125.2 (4) N2—C12—C13—C14 62.59 (13)
C12—N2—C9—C11 69.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14B···N1 0.98 2.36 2.9893 (15) 122
C15—H15B···N1 0.98 2.37 2.9803 (15) 120
C11—H11B···O1i 0.98 2.56 3.490 (4) 159

Symmetry code: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2718).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Fun, H.-K., Chantrapromma, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o163. [DOI] [PMC free article] [PubMed]
  6. Noolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411–4418. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Yusuf, M., Khan, R. A. & Ahmed, B. (2008). Bioorg. Med. Chem. 16, 8029–8034. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012639/rz2718sup1.cif

e-68-o1228-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012639/rz2718Isup2.hkl

e-68-o1228-Isup2.hkl (292.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012639/rz2718Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES