Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1234. doi: 10.1107/S1600536812010963

4-Bromo-N-(4-meth­oxy-2-nitro­phen­yl)benzamide

Weerawat Sripet a, Suchada Chantrapromma a,*,, Pumsak Ruanwas a, Hoong-Kun Fun b,§
PMCID: PMC3344164  PMID: 22606167

Abstract

In the title compound, C14H11BrN2O4, the amide segment makes dihedral angles of 23.4 (2) and 20.5 (2)° with the benzene rings, while the dihedral angle between the bezene rings is 2.90 (8)°. The nitro and meth­oxy groups are almost coplanar with their bound benzene ring, with the r.m.s. deviation for the 11 non-H atoms being 0.0265 (1) Å. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into [2-10] chains by weak C—H⋯O and C—H⋯Br inter­actions, which form an R 2 2(8) motif between pairs of mol­ecules in the chain. A Br⋯O [3.2018 (12) Å] short contact also occurs.

Related literature  

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Johnston & Taylor (2011); Li & Cui (2011); Saeed et al. (2008). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-o1234-scheme1.jpg

Experimental  

Crystal data  

  • C14H11BrN2O4

  • M r = 351.15

  • Triclinic, Inline graphic

  • a = 6.1219 (2) Å

  • b = 7.6519 (3) Å

  • c = 14.3504 (6) Å

  • α = 89.197 (1)°

  • β = 84.795 (1)°

  • γ = 77.983 (1)°

  • V = 654.78 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 100 K

  • 0.54 × 0.27 × 0.17 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.281, T max = 0.616

  • 14195 measured reflections

  • 3725 independent reflections

  • 3558 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.080

  • S = 1.12

  • 3725 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010963/hb6654sup1.cif

e-68-o1234-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010963/hb6654Isup2.hkl

e-68-o1234-Isup2.hkl (182.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010963/hb6654Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.84 (3) 1.99 (3) 2.6318 (19) 132 (2)
C3—H3A⋯O4i 0.95 2.57 3.475 (2) 160
C12—H12A⋯O1ii 0.95 2.41 3.358 (2) 172
C10—H10A⋯Br1iii 0.95 2.93 3.863 (2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

WS thanks the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors thank Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

As part of our research in medicinal chemistry, the title benzamide derivative (I) was synthesized with a hope that it may exhibit anticancer and/or anti-alzheimer activities. Herein, its crystal structure was reported.

The molecule of the title benzamide derivative (Fig. 1), C14H11BrN2O4, is not planar as the plane of the middle N-C=O segment makes the dihedral angles of 23.4 (2) and 20.5 (2) ° with the C1–C6 and C8–C13 benzene rings, respectively whereas the dihedral angle between the two benzene rings is 2.90 (8)°. In the 4-methoxy-2-nitrophenyl moiety, the nitro and methoxy groups are co-planar with the bound benzene ring with the r.m.s. deviation of 0.0265 (1) Å for the eleven non-H atoms [C8–C14/N2/O2–O4] and the torsion angles O2–N2–C9–C8 = -3.8 (2)°, O3–N2–C9–C8 = 175.88 (15)° and C14–O4–C11–C12 = 3.5 (2)°. An intramolecular N1—H1N1···O2 hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995). Bond distances are comparable with those in related structures (Johnston & Taylor, 2011; Li & Cui, 2011 and Saeed et al., 2008).

In the crystal (Fig. 2), the molecules are linked into [210] chains by weak C—H···O and C—H···Br interactions forming R22(8) motifs. Br1···O2iii[3.2018 (12) Å; (iii) = -x, 2-y, -z] short contact is presented.

Experimental

A mixture of 4-bromobenzoyl chloride (0.20 g, 0.91 mmol) and 4-metoxy-2-nitroaniline (0.23 g, 1.40 mmol) in anhydrous acetone (20 ml) was refluxed for 4 h. An orange solid was formed, which was filtered and washed with water. Orange blocks of the title compound were recrystallized from ethylacetate by slow evaporation of the solvent at room temperature after a week, Mp. 434-436 K.

Refinement

Amide H atom was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.95 Å for aromatic and CH and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.75 Å from Br1 and the deepest hole is located at 0.85 Å from Br1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The N—H···O hydrogen bond is drawn as dash line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the c axis. Hydrogen bonds were drawn as dashed lines.

Crystal data

C14H11BrN2O4 Z = 2
Mr = 351.15 F(000) = 352
Triclinic, P1 Dx = 1.781 Mg m3
Hall symbol: -P 1 Melting point = 434–436 K
a = 6.1219 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.6519 (3) Å Cell parameters from 3725 reflections
c = 14.3504 (6) Å θ = 2.9–30.0°
α = 89.197 (1)° µ = 3.16 mm1
β = 84.795 (1)° T = 100 K
γ = 77.983 (1)° Block, orange
V = 654.78 (4) Å3 0.54 × 0.27 × 0.17 mm

Data collection

Bruker APEX DUO CCD area-detector diffractometer 3725 independent reflections
Radiation source: sealed tube 3558 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
φ and ω scans θmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.281, Tmax = 0.616 k = −10→10
14195 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.2246P] where P = (Fo2 + 2Fc2)/3
3725 reflections (Δ/σ)max = 0.001
195 parameters Δρmax = 0.93 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.43080 (2) 1.27590 (2) 0.081247 (10) 0.02080 (7)
O1 0.2430 (2) 0.77009 (18) 0.38411 (9) 0.0252 (3)
O4 1.2328 (2) 0.25761 (17) 0.36805 (9) 0.0225 (2)
O3 1.0773 (2) 0.5836 (2) 0.08860 (9) 0.0292 (3)
O2 0.7257 (2) 0.70628 (18) 0.09318 (9) 0.0240 (3)
N1 0.4593 (2) 0.69155 (19) 0.24641 (10) 0.0182 (3)
N2 0.8886 (2) 0.61497 (18) 0.12882 (9) 0.0183 (3)
C2 −0.1093 (3) 0.9574 (2) 0.28387 (11) 0.0183 (3)
H2A −0.1492 0.9142 0.3441 0.022*
C3 −0.2720 (3) 1.0681 (2) 0.23633 (11) 0.0181 (3)
H3A −0.4229 1.0997 0.2629 0.022*
C4 −0.2085 (3) 1.1314 (2) 0.14887 (11) 0.0165 (3)
C5 0.0114 (3) 1.0909 (2) 0.10918 (11) 0.0178 (3)
H5A 0.0518 1.1394 0.0504 0.021*
C6 0.1719 (3) 0.9777 (2) 0.15721 (11) 0.0179 (3)
H6A 0.3227 0.9473 0.1305 0.021*
C1 0.1126 (3) 0.9086 (2) 0.24441 (11) 0.0163 (3)
C7 0.2764 (3) 0.7849 (2) 0.29928 (11) 0.0176 (3)
C8 0.6493 (3) 0.5785 (2) 0.27797 (11) 0.0164 (3)
C9 0.8567 (3) 0.5414 (2) 0.22300 (10) 0.0166 (3)
C10 1.0464 (3) 0.4333 (2) 0.25465 (11) 0.0175 (3)
H10A 1.1836 0.4113 0.2159 0.021*
C11 1.0359 (3) 0.3573 (2) 0.34300 (11) 0.0173 (3)
C12 0.8314 (3) 0.3867 (2) 0.39815 (11) 0.0187 (3)
H12A 0.8215 0.3326 0.4579 0.022*
C13 0.6427 (3) 0.4951 (2) 0.36556 (11) 0.0184 (3)
H13A 0.5048 0.5132 0.4038 0.022*
C14 1.2322 (3) 0.1852 (2) 0.46014 (13) 0.0249 (3)
H14A 1.3862 0.1315 0.4731 0.037*
H14B 1.1412 0.0937 0.4650 0.037*
H14C 1.1689 0.2807 0.5057 0.037*
H1N1 0.467 (4) 0.710 (4) 0.1886 (19) 0.028 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01483 (10) 0.02630 (10) 0.01952 (10) −0.00065 (6) −0.00143 (6) 0.00490 (6)
O1 0.0244 (6) 0.0295 (6) 0.0164 (5) 0.0048 (5) 0.0024 (4) 0.0015 (5)
O4 0.0157 (6) 0.0283 (6) 0.0209 (6) 0.0013 (4) −0.0021 (4) 0.0057 (4)
O3 0.0174 (6) 0.0415 (7) 0.0236 (6) 0.0013 (5) 0.0065 (5) 0.0085 (5)
O2 0.0190 (6) 0.0306 (6) 0.0189 (5) 0.0019 (5) 0.0001 (4) 0.0063 (5)
N1 0.0159 (6) 0.0215 (6) 0.0146 (6) 0.0012 (5) 0.0004 (5) 0.0015 (5)
N2 0.0187 (7) 0.0196 (6) 0.0156 (6) −0.0027 (5) 0.0005 (5) 0.0015 (5)
C2 0.0176 (7) 0.0208 (7) 0.0153 (6) −0.0020 (5) 0.0009 (5) 0.0004 (5)
C3 0.0138 (7) 0.0211 (7) 0.0180 (7) −0.0015 (5) 0.0016 (5) 0.0001 (5)
C4 0.0136 (7) 0.0180 (6) 0.0171 (7) −0.0012 (5) −0.0011 (5) 0.0004 (5)
C5 0.0156 (7) 0.0196 (7) 0.0168 (7) −0.0017 (5) 0.0018 (5) 0.0012 (5)
C6 0.0146 (7) 0.0195 (6) 0.0180 (7) −0.0015 (5) 0.0020 (5) 0.0007 (5)
C1 0.0147 (7) 0.0165 (6) 0.0163 (6) −0.0010 (5) −0.0001 (5) −0.0001 (5)
C7 0.0157 (7) 0.0172 (6) 0.0184 (7) −0.0008 (5) 0.0002 (5) 0.0001 (5)
C8 0.0142 (7) 0.0174 (6) 0.0166 (6) −0.0009 (5) −0.0012 (5) 0.0000 (5)
C9 0.0172 (7) 0.0177 (6) 0.0142 (6) −0.0032 (5) 0.0007 (5) 0.0009 (5)
C10 0.0142 (7) 0.0190 (6) 0.0185 (7) −0.0025 (5) 0.0010 (5) −0.0001 (5)
C11 0.0140 (7) 0.0182 (6) 0.0192 (7) −0.0016 (5) −0.0027 (5) 0.0005 (5)
C12 0.0191 (7) 0.0196 (6) 0.0160 (7) −0.0016 (5) −0.0002 (5) 0.0024 (5)
C13 0.0152 (7) 0.0208 (7) 0.0174 (7) −0.0012 (5) 0.0013 (5) 0.0012 (5)
C14 0.0237 (9) 0.0254 (8) 0.0233 (8) 0.0014 (6) −0.0053 (6) 0.0037 (6)

Geometric parameters (Å, º)

Br1—C4 1.8975 (16) C5—H5A 0.9500
O1—C7 1.224 (2) C6—C1 1.399 (2)
O4—C11 1.3615 (19) C6—H6A 0.9500
O4—C14 1.426 (2) C1—C7 1.499 (2)
O3—N2 1.2220 (19) C8—C13 1.403 (2)
O2—N2 1.2395 (19) C8—C9 1.410 (2)
N1—C7 1.367 (2) C9—C10 1.387 (2)
N1—C8 1.404 (2) C10—C11 1.389 (2)
N1—H1N1 0.84 (3) C10—H10A 0.9500
N2—C9 1.4692 (19) C11—C12 1.397 (2)
C2—C3 1.390 (2) C12—C13 1.389 (2)
C2—C1 1.400 (2) C12—H12A 0.9500
C2—H2A 0.9500 C13—H13A 0.9500
C3—C4 1.391 (2) C14—H14A 0.9800
C3—H3A 0.9500 C14—H14B 0.9800
C4—C5 1.387 (2) C14—H14C 0.9800
C5—C6 1.394 (2)
C11—O4—C14 117.04 (13) O1—C7—C1 121.42 (14)
C7—N1—C8 127.66 (14) N1—C7—C1 114.35 (13)
C7—N1—H1N1 117.3 (19) C13—C8—N1 121.83 (14)
C8—N1—H1N1 114.8 (19) C13—C8—C9 116.34 (14)
O3—N2—O2 122.41 (14) N1—C8—C9 121.82 (14)
O3—N2—C9 118.06 (14) C10—C9—C8 122.13 (14)
O2—N2—C9 119.53 (13) C10—C9—N2 115.12 (13)
C3—C2—C1 121.01 (14) C8—C9—N2 122.75 (14)
C3—C2—H2A 119.5 C9—C10—C11 120.04 (14)
C1—C2—H2A 119.5 C9—C10—H10A 120.0
C2—C3—C4 118.32 (14) C11—C10—H10A 120.0
C2—C3—H3A 120.8 O4—C11—C10 115.23 (14)
C4—C3—H3A 120.8 O4—C11—C12 125.42 (14)
C5—C4—C3 122.18 (15) C10—C11—C12 119.35 (14)
C5—C4—Br1 119.02 (11) C13—C12—C11 119.98 (14)
C3—C4—Br1 118.80 (12) C13—C12—H12A 120.0
C4—C5—C6 118.73 (14) C11—C12—H12A 120.0
C4—C5—H5A 120.6 C12—C13—C8 122.10 (14)
C6—C5—H5A 120.6 C12—C13—H13A 119.0
C5—C6—C1 120.52 (14) C8—C13—H13A 119.0
C5—C6—H6A 119.7 O4—C14—H14A 109.5
C1—C6—H6A 119.7 O4—C14—H14B 109.5
C6—C1—C2 119.17 (14) H14A—C14—H14B 109.5
C6—C1—C7 123.21 (14) O4—C14—H14C 109.5
C2—C1—C7 117.61 (13) H14A—C14—H14C 109.5
O1—C7—N1 124.23 (15) H14B—C14—H14C 109.5
C1—C2—C3—C4 −0.9 (2) N1—C8—C9—C10 178.41 (14)
C2—C3—C4—C5 −1.5 (2) C13—C8—C9—N2 178.41 (14)
C2—C3—C4—Br1 177.86 (12) N1—C8—C9—N2 −1.0 (2)
C3—C4—C5—C6 2.4 (2) O3—N2—C9—C10 −3.6 (2)
Br1—C4—C5—C6 −176.97 (12) O2—N2—C9—C10 176.71 (14)
C4—C5—C6—C1 −0.9 (2) O3—N2—C9—C8 175.88 (15)
C5—C6—C1—C2 −1.3 (2) O2—N2—C9—C8 −3.8 (2)
C5—C6—C1—C7 179.40 (14) C8—C9—C10—C11 0.2 (2)
C3—C2—C1—C6 2.2 (2) N2—C9—C10—C11 179.64 (14)
C3—C2—C1—C7 −178.44 (14) C14—O4—C11—C10 176.68 (14)
C8—N1—C7—O1 −6.9 (3) C14—O4—C11—C12 −3.5 (2)
C8—N1—C7—C1 173.95 (14) C9—C10—C11—O4 −178.33 (14)
C6—C1—C7—O1 157.07 (16) C9—C10—C11—C12 1.8 (2)
C2—C1—C7—O1 −22.2 (2) O4—C11—C12—C13 178.40 (15)
C6—C1—C7—N1 −23.7 (2) C10—C11—C12—C13 −1.8 (2)
C2—C1—C7—N1 156.97 (15) C11—C12—C13—C8 −0.3 (2)
C7—N1—C8—C13 23.9 (2) N1—C8—C13—C12 −178.36 (15)
C7—N1—C8—C9 −156.70 (16) C9—C8—C13—C12 2.2 (2)
C13—C8—C9—C10 −2.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2 0.84 (3) 1.99 (3) 2.6318 (19) 132 (2)
C3—H3A···O4i 0.95 2.57 3.475 (2) 160
C12—H12A···O1ii 0.95 2.41 3.358 (2) 172
C10—H10A···Br1iii 0.95 2.93 3.863 (2) 167

Symmetry codes: (i) x−2, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x+2, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6654).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Johnston, D. H. & Taylor, C. R. (2011). Acta Cryst. E67, o2735. [DOI] [PMC free article] [PubMed]
  6. Li, H.-L. & Cui, J.-T. (2011). Acta Cryst. E67, o1596. [DOI] [PMC free article] [PubMed]
  7. Saeed, A., Hussain, S. & Flörke, U. (2008). Acta Cryst E64, o705. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010963/hb6654sup1.cif

e-68-o1234-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010963/hb6654Isup2.hkl

e-68-o1234-Isup2.hkl (182.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010963/hb6654Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES