Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1235. doi: 10.1107/S1600536812012172

4-(4-Nitro­phen­yl)morpholine

Li-Jiao Wang a, Wei-Wei Li b,*, Sheng-Yong Yang a, Li Yang a
PMCID: PMC3344165  PMID: 22606168

Abstract

Aromatic π–π stacking inter­actions stabilize the crystal structure of the title compound, C10H12N2O3, the perpendic­ular distance between parallel planes being 3.7721 (8) Å. The morpholine ring adopts a chair comformation.

Related literature  

For the biological activity and synthesis of 4-(4-nitro­phen­yl)morpholine derivatives, see: Wang et al. (2010). For a related structure, see: Yang et al. (2011).graphic file with name e-68-o1235-scheme1.jpg

Experimental  

Crystal data  

  • C10H12N2O3

  • M r = 208.22

  • Orthorhombic, Inline graphic

  • a = 14.5445 (6) Å

  • b = 8.3832 (3) Å

  • c = 16.2341 (6) Å

  • V = 1979.42 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.35 × 0.33 × 0.30 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) T min = 0.992, T max = 1.000

  • 4949 measured reflections

  • 2023 independent reflections

  • 1377 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.121

  • S = 1.03

  • 2023 reflections

  • 184 parameters

  • All H-atom parameters refined

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012172/kj2195sup1.cif

e-68-o1235-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012172/kj2195Isup2.hkl

e-68-o1235-Isup2.hkl (99.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012172/kj2195Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

supplementary crystallographic information

Comment

4-(4-nitrophenyl)morpholine derivatives are of great importance due to their anticancer activity (Wang et al., 2010;). The title compound is one of the key intermediates in our synthetic investigations of antitumor drugs. We synthesized the title compound and report its crystal structure in this paper.

In the title compound, C10H12N2O3, (Fig. 1) the bond lengths and angles are within normal ranges (Yang et al., 2011). Aromatic π–π stacking interactions help to stabilize the crystal structure (Fig. 2). The perpendicular distance between the parallel ring planes is 3.7721 (8) Å, the distance between the centres of gravity CgCg(-x,-y,1 - z) is 3.8499 (11) Å.

Experimental

The title compound was prepared by a method similar to that of Shudong Wang et al. (2010), which Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of dichloromethane.

Refinement

All H atoms were positioned in the difference map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. The dotted line indicates the Cg—Cg(-x,-y,1 - z) distance.

Crystal data

C10H12N2O3 Dx = 1.397 Mg m3
Mr = 208.22 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 1704 reflections
a = 14.5445 (6) Å θ = 2.9–29.2°
b = 8.3832 (3) Å µ = 0.11 mm1
c = 16.2341 (6) Å T = 293 K
V = 1979.42 (13) Å3 Block, yellow
Z = 8 0.35 × 0.33 × 0.30 mm
F(000) = 880

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2023 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1377 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
Detector resolution: 16.0874 pixels mm-1 θmax = 26.4°, θmin = 2.9°
ω scans h = −9→18
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) k = −6→10
Tmin = 0.992, Tmax = 1.000 l = −20→12
4949 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: difference Fourier map
wR(F2) = 0.121 All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.050P)2 + 0.3012P] where P = (Fo2 + 2Fc2)/3
2023 reflections (Δ/σ)max < 0.001
184 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.11977 (11) 0.40333 (15) 0.24876 (9) 0.0774 (5)
O2 0.15361 (12) −0.3154 (2) 0.66760 (10) 0.0931 (6)
O3 0.09389 (13) −0.47156 (17) 0.57725 (10) 0.0907 (6)
N1 0.12607 (10) 0.15429 (16) 0.36653 (8) 0.0488 (4)
N2 0.12312 (11) −0.3406 (2) 0.59853 (11) 0.0642 (5)
C1 0.17590 (18) 0.4172 (3) 0.31932 (13) 0.0674 (6)
H1A 0.2408 (16) 0.378 (2) 0.3051 (12) 0.083 (7)*
H1B 0.1775 (14) 0.531 (2) 0.3339 (12) 0.072 (6)*
C2 0.14099 (17) 0.3205 (2) 0.39042 (13) 0.0587 (5)
H2A 0.1869 (14) 0.327 (2) 0.4354 (12) 0.067 (6)*
H2B 0.0823 (14) 0.367 (2) 0.4102 (12) 0.068 (6)*
C3 0.07821 (15) 0.1361 (3) 0.28780 (11) 0.0567 (5)
H3A 0.0113 (15) 0.159 (2) 0.2958 (12) 0.081 (7)*
H3B 0.0813 (13) 0.028 (2) 0.2697 (11) 0.064 (6)*
C4 0.11879 (17) 0.2413 (2) 0.22354 (13) 0.0647 (5)
H4A 0.0814 (13) 0.237 (2) 0.1743 (13) 0.072 (6)*
H4B 0.1848 (14) 0.205 (2) 0.2122 (12) 0.077 (6)*
C5 0.12154 (11) 0.03660 (19) 0.42504 (10) 0.0440 (4)
C6 0.08684 (14) −0.1153 (2) 0.40613 (12) 0.0589 (5)
H6 0.0618 (13) −0.137 (2) 0.3546 (12) 0.069 (6)*
C7 0.08671 (14) −0.2364 (2) 0.46268 (12) 0.0598 (5)
H7 0.0634 (14) −0.340 (2) 0.4490 (12) 0.078 (6)*
C8 0.12173 (12) −0.2108 (2) 0.54007 (11) 0.0501 (4)
C9 0.15440 (14) −0.0625 (2) 0.56225 (12) 0.0563 (5)
H9 0.1773 (13) −0.045 (2) 0.6160 (13) 0.065 (6)*
C10 0.15375 (13) 0.0592 (2) 0.50585 (11) 0.0536 (5)
H10 0.1772 (13) 0.161 (2) 0.5228 (11) 0.064 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1061 (12) 0.0596 (8) 0.0664 (9) 0.0081 (8) −0.0178 (9) 0.0111 (7)
O2 0.1083 (13) 0.0960 (12) 0.0748 (11) −0.0164 (10) −0.0257 (10) 0.0297 (9)
O3 0.1163 (13) 0.0583 (9) 0.0974 (12) −0.0137 (9) −0.0058 (10) 0.0163 (8)
N1 0.0586 (9) 0.0459 (7) 0.0418 (8) −0.0054 (7) −0.0048 (7) −0.0049 (6)
N2 0.0576 (10) 0.0686 (11) 0.0665 (11) 0.0035 (9) 0.0008 (9) 0.0131 (9)
C1 0.0868 (16) 0.0538 (12) 0.0615 (13) −0.0091 (12) −0.0020 (12) 0.0044 (10)
C2 0.0720 (13) 0.0498 (10) 0.0544 (11) −0.0060 (10) 0.0003 (11) −0.0067 (9)
C3 0.0624 (13) 0.0599 (12) 0.0477 (11) −0.0024 (10) −0.0086 (9) −0.0048 (9)
C4 0.0829 (15) 0.0636 (12) 0.0478 (11) 0.0061 (12) −0.0116 (11) 0.0029 (9)
C5 0.0428 (9) 0.0475 (8) 0.0418 (9) −0.0013 (8) 0.0019 (7) −0.0054 (7)
C6 0.0722 (13) 0.0569 (11) 0.0476 (11) −0.0143 (10) −0.0093 (10) −0.0055 (9)
C7 0.0682 (12) 0.0497 (10) 0.0617 (12) −0.0106 (10) −0.0015 (10) −0.0030 (9)
C8 0.0467 (9) 0.0521 (9) 0.0514 (10) 0.0024 (8) 0.0028 (8) 0.0037 (8)
C9 0.0626 (12) 0.0622 (11) 0.0443 (10) −0.0015 (9) −0.0044 (9) −0.0042 (8)
C10 0.0656 (11) 0.0495 (9) 0.0458 (10) −0.0081 (9) −0.0035 (9) −0.0069 (8)

Geometric parameters (Å, º)

O1—C1 1.411 (2) C3—H3B 0.958 (19)
O1—C4 1.418 (2) C3—C4 1.488 (3)
O2—N2 1.224 (2) C4—H4A 0.97 (2)
O3—N2 1.227 (2) C4—H4B 1.02 (2)
N1—C2 1.463 (2) C5—C6 1.404 (2)
N1—C3 1.463 (2) C5—C10 1.406 (2)
N1—C5 1.371 (2) C6—H6 0.93 (2)
N2—C8 1.444 (2) C6—C7 1.369 (3)
C1—H1A 1.03 (2) C7—H7 0.96 (2)
C1—H1B 0.98 (2) C7—C8 1.373 (3)
C1—C2 1.499 (3) C8—C9 1.378 (2)
C2—H2A 0.99 (2) C9—H9 0.95 (2)
C2—H2B 0.99 (2) C9—C10 1.371 (3)
C3—H3A 1.00 (2) C10—H10 0.957 (18)
C1—O1—C4 108.61 (15) O1—C4—C3 111.68 (18)
C2—N1—C3 113.67 (15) O1—C4—H4A 106.5 (11)
C5—N1—C2 120.60 (14) O1—C4—H4B 109.0 (11)
C5—N1—C3 120.47 (14) C3—C4—H4A 109.4 (11)
O2—N2—O3 122.50 (17) C3—C4—H4B 108.9 (11)
O2—N2—C8 118.51 (17) H4A—C4—H4B 111.5 (16)
O3—N2—C8 118.98 (17) N1—C5—C6 121.23 (15)
O1—C1—H1A 108.8 (12) N1—C5—C10 122.24 (15)
O1—C1—H1B 106.8 (11) C6—C5—C10 116.50 (16)
O1—C1—C2 112.60 (18) C5—C6—H6 121.2 (12)
H1A—C1—H1B 110.1 (17) C7—C6—C5 121.78 (18)
C2—C1—H1A 108.2 (12) C7—C6—H6 117.0 (12)
C2—C1—H1B 110.3 (12) C6—C7—H7 121.1 (12)
N1—C2—C1 111.18 (17) C6—C7—C8 119.81 (18)
N1—C2—H2A 110.4 (11) C8—C7—H7 119.1 (12)
N1—C2—H2B 109.4 (11) C7—C8—N2 119.25 (17)
C1—C2—H2A 108.0 (11) C7—C8—C9 120.55 (17)
C1—C2—H2B 109.2 (11) C9—C8—N2 120.20 (17)
H2A—C2—H2B 108.6 (16) C8—C9—H9 120.3 (11)
N1—C3—H3A 109.2 (12) C10—C9—C8 119.62 (18)
N1—C3—H3B 110.2 (11) C10—C9—H9 120.1 (11)
N1—C3—C4 111.20 (16) C5—C10—H10 120.4 (11)
H3A—C3—H3B 105.7 (16) C9—C10—C5 121.68 (17)
C4—C3—H3A 111.2 (12) C9—C10—H10 117.9 (11)
C4—C3—H3B 109.2 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2195).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Oxford Diffraction (2006). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wang, S. D., Midgley, C. A., Scaerou, F., Grabarek, J. B., Griffiths, G., Jackson, W., Kontopidis, G., McClue, S. J., McInnes, C., Meades, C., Mezna, M., Plater, A., Stuart, I., Thomas, M. P., Wood, G., Clarke, R. G., Blake, D. G., Zheleva, D. I., Lane, D. P., Jackson, R. C., Glover, D. M. & Fischer, P. M. (2010). J. Med. Chem. 53, 4367–4378. [DOI] [PubMed]
  5. Yang, L.-L., Zheng, R.-L., Li, G.-B., Sun, Q.-Z. & Xie, Y.-M. (2011). Acta Cryst. E67, o754. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012172/kj2195sup1.cif

e-68-o1235-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012172/kj2195Isup2.hkl

e-68-o1235-Isup2.hkl (99.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012172/kj2195Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES