Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 27;68(Pt 4):o1237. doi: 10.1107/S1600536812013086

2-(4-Fluoro­phen­yl)-5-iodo-3-phenyl­sulfinyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3344167  PMID: 22606170

Abstract

In the title compound, C20H12FIO2S, the dihedral angles between the mean plane [r.m.s. deviation = 0.014 (1) Å] of the benzofuran fragment and the pendant 4-fluoro­phenyl and phenyl rings are 8.0 (1) and 86.06 (6)°, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds. The crystal structure also exhibits weak π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.547 (2) Å, inter­planar distance = 3.397 (2) Å and slippage = 1.021 (2) Å].

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2011); Seo et al. (2011).graphic file with name e-68-o1237-scheme1.jpg

Experimental  

Crystal data  

  • C20H12FIO2S

  • M r = 462.26

  • Triclinic, Inline graphic

  • a = 8.1771 (2) Å

  • b = 9.8877 (2) Å

  • c = 11.8423 (3) Å

  • α = 103.108 (1)°

  • β = 90.872 (1)°

  • γ = 111.546 (1)°

  • V = 862.23 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 173 K

  • 0.27 × 0.26 × 0.12 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.516, T max = 0.746

  • 15186 measured reflections

  • 3974 independent reflections

  • 3696 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.060

  • S = 1.07

  • 3974 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013086/kj2197sup1.cif

e-68-o1237-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013086/kj2197Isup2.hkl

e-68-o1237-Isup2.hkl (194.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013086/kj2197Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O2i 0.95 2.38 3.297 (3) 163

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As a part of our ongoing study of 2-(4-fluorophenyl)-5-halo-3-phenylsulfinyl-1-benzofuran derivatives containing 5-chloro (Choi et al., 2011) and 5-bromo (Seo et al., 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.014 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran fragment and the pendant 4-fluorophenyl and phenyl rings are 8.0 (1)° and 86.06 (6)°, respectively. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1). The crystal packing (Fig. 2) is further stabilized by weak π–π interactions between the furan and benzene rings of neighbouring molecules, with a Cg1···Cg2ii distance of 3.547 (2) Å and an interplanar distance of 3.397 (2) Å resulting in a slippage of 1.021 (2) Å (Cg1 and Cg2are the centroids of the C1/C2/C7/O1/C8 furan ring and C2–C7 benzene ring, respectively).

Experimental

77% 3-Chloroperoxybenzoic acid (179 mg, 0.8 mmol) was added in small portions to a stirred solution of 2-(4-fluorophenyl)-5-iodo-3-phenylsulfanyl-1-benzofuran (312 mg, 0.7 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane:ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 52%, m.p. 435–436 K; Rf = 0.49 (hexane:ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å (C-aromatic). Uiso(H) =1.2Ueq(C-aromatic).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the C—H···O and π–π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [ Symmetry codes: (i) x + 1, y, z; (ii) - x, - y + 1, -z + 1; (iii) - x, - y + 1, - z + 1.]

Crystal data

C20H12FIO2S Z = 2
Mr = 462.26 F(000) = 452
Triclinic, P1 Dx = 1.780 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1771 (2) Å Cell parameters from 9967 reflections
b = 9.8877 (2) Å θ = 2.5–27.5°
c = 11.8423 (3) Å µ = 2.00 mm1
α = 103.108 (1)° T = 173 K
β = 90.872 (1)° Block, colourless
γ = 111.546 (1)° 0.27 × 0.26 × 0.12 mm
V = 862.23 (4) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3974 independent reflections
Radiation source: rotating anode 3696 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.026
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 1.8°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −12→12
Tmin = 0.516, Tmax = 0.746 l = −15→15
15186 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: difference Fourier map
wR(F2) = 0.060 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.5718P] where P = (Fo2 + 2Fc2)/3
3974 reflections (Δ/σ)max = 0.001
226 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.75 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.02004 (2) 0.736536 (19) 0.939462 (12) 0.04406 (7)
S1 0.04558 (6) 0.18031 (5) 0.55834 (4) 0.02240 (10)
F1 0.4764 (2) 0.12714 (16) 0.06431 (11) 0.0421 (3)
O1 0.29632 (18) 0.56238 (13) 0.46924 (11) 0.0224 (3)
O2 −0.10716 (18) 0.17443 (17) 0.62692 (14) 0.0317 (3)
C1 0.1437 (2) 0.36524 (19) 0.54025 (15) 0.0203 (3)
C2 0.1408 (2) 0.4983 (2) 0.61933 (15) 0.0212 (3)
C3 0.0716 (3) 0.5302 (2) 0.72497 (16) 0.0252 (4)
H3 0.0036 0.4528 0.7598 0.030*
C4 0.1067 (3) 0.6796 (2) 0.77636 (17) 0.0283 (4)
C5 0.2028 (3) 0.7961 (2) 0.72598 (18) 0.0296 (4)
H5 0.2227 0.8971 0.7644 0.035*
C6 0.2688 (3) 0.7648 (2) 0.62058 (17) 0.0267 (4)
H6 0.3329 0.8419 0.5843 0.032*
C7 0.2368 (2) 0.6155 (2) 0.57083 (15) 0.0217 (3)
C8 0.2380 (2) 0.40854 (19) 0.45144 (15) 0.0203 (3)
C9 0.2959 (2) 0.3331 (2) 0.34844 (15) 0.0212 (3)
C10 0.2368 (3) 0.1764 (2) 0.31272 (17) 0.0278 (4)
H10 0.1543 0.1169 0.3549 0.033*
C11 0.2971 (3) 0.1071 (2) 0.21679 (18) 0.0317 (4)
H11 0.2572 0.0007 0.1929 0.038*
C12 0.4154 (3) 0.1950 (2) 0.15691 (16) 0.0289 (4)
C13 0.4753 (3) 0.3489 (2) 0.18758 (17) 0.0283 (4)
H13 0.5565 0.4068 0.1439 0.034*
C14 0.4147 (3) 0.4179 (2) 0.28375 (16) 0.0248 (4)
H14 0.4545 0.5244 0.3059 0.030*
C15 0.2209 (2) 0.1910 (2) 0.65768 (16) 0.0226 (4)
C16 0.2111 (3) 0.2277 (3) 0.77601 (18) 0.0346 (5)
H16 0.1115 0.2458 0.8053 0.042*
C17 0.3483 (4) 0.2380 (3) 0.8519 (2) 0.0433 (6)
H17 0.3428 0.2630 0.9337 0.052*
C18 0.4935 (3) 0.2120 (3) 0.8089 (2) 0.0386 (5)
H18 0.5883 0.2211 0.8613 0.046*
C19 0.5009 (3) 0.1729 (2) 0.6898 (2) 0.0330 (4)
H19 0.6001 0.1541 0.6605 0.040*
C20 0.3635 (3) 0.1612 (2) 0.61308 (18) 0.0275 (4)
H20 0.3670 0.1331 0.5312 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.04049 (10) 0.06314 (12) 0.02678 (8) 0.02727 (8) 0.00553 (6) −0.00508 (7)
S1 0.0202 (2) 0.0189 (2) 0.0272 (2) 0.00549 (17) 0.00357 (17) 0.00708 (16)
F1 0.0526 (9) 0.0506 (8) 0.0284 (6) 0.0319 (7) 0.0107 (6) −0.0008 (6)
O1 0.0269 (7) 0.0166 (6) 0.0225 (6) 0.0077 (5) 0.0037 (5) 0.0036 (5)
O2 0.0197 (7) 0.0361 (8) 0.0429 (8) 0.0101 (6) 0.0104 (6) 0.0171 (6)
C1 0.0192 (8) 0.0192 (8) 0.0230 (8) 0.0079 (7) 0.0014 (7) 0.0050 (6)
C2 0.0194 (9) 0.0219 (8) 0.0220 (8) 0.0090 (7) −0.0003 (7) 0.0030 (7)
C3 0.0221 (9) 0.0305 (10) 0.0235 (9) 0.0116 (8) 0.0023 (7) 0.0046 (7)
C4 0.0250 (10) 0.0359 (10) 0.0230 (9) 0.0159 (9) −0.0008 (7) −0.0020 (7)
C5 0.0302 (11) 0.0250 (9) 0.0311 (10) 0.0141 (8) −0.0030 (8) −0.0033 (7)
C6 0.0281 (10) 0.0208 (9) 0.0300 (9) 0.0099 (8) 0.0000 (8) 0.0032 (7)
C7 0.0218 (9) 0.0223 (8) 0.0213 (8) 0.0101 (7) 0.0009 (7) 0.0029 (7)
C8 0.0201 (9) 0.0167 (8) 0.0232 (8) 0.0068 (7) −0.0004 (7) 0.0038 (6)
C9 0.0216 (9) 0.0226 (8) 0.0194 (8) 0.0097 (7) 0.0006 (7) 0.0035 (7)
C10 0.0340 (11) 0.0228 (9) 0.0260 (9) 0.0106 (8) 0.0054 (8) 0.0049 (7)
C11 0.0414 (12) 0.0258 (9) 0.0281 (10) 0.0166 (9) 0.0011 (9) 0.0008 (8)
C12 0.0311 (11) 0.0391 (11) 0.0200 (8) 0.0217 (9) 0.0011 (8) −0.0001 (8)
C13 0.0260 (10) 0.0367 (10) 0.0231 (9) 0.0131 (9) 0.0042 (7) 0.0069 (8)
C14 0.0245 (9) 0.0236 (9) 0.0247 (9) 0.0082 (8) 0.0019 (7) 0.0044 (7)
C15 0.0209 (9) 0.0199 (8) 0.0281 (9) 0.0074 (7) 0.0039 (7) 0.0089 (7)
C16 0.0363 (12) 0.0484 (13) 0.0304 (10) 0.0265 (11) 0.0095 (9) 0.0134 (9)
C17 0.0509 (15) 0.0615 (15) 0.0276 (10) 0.0328 (13) 0.0023 (10) 0.0115 (10)
C18 0.0343 (12) 0.0424 (12) 0.0439 (13) 0.0185 (10) −0.0033 (10) 0.0139 (10)
C19 0.0247 (10) 0.0329 (11) 0.0477 (12) 0.0148 (9) 0.0083 (9) 0.0157 (9)
C20 0.0280 (10) 0.0255 (9) 0.0328 (10) 0.0125 (8) 0.0089 (8) 0.0103 (8)

Geometric parameters (Å, º)

I1—C4 2.096 (2) C9—C10 1.399 (3)
S1—O2 1.4905 (15) C10—C11 1.384 (3)
S1—C1 1.7716 (18) C10—H10 0.9500
S1—C15 1.7978 (19) C11—C12 1.371 (3)
F1—C12 1.353 (2) C11—H11 0.9500
O1—C7 1.371 (2) C12—C13 1.372 (3)
O1—C8 1.380 (2) C13—C14 1.386 (3)
C1—C8 1.368 (3) C13—H13 0.9500
C1—C2 1.440 (2) C14—H14 0.9500
C2—C7 1.392 (3) C15—C16 1.377 (3)
C2—C3 1.400 (3) C15—C20 1.388 (3)
C3—C4 1.382 (3) C16—C17 1.386 (3)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.401 (3) C17—C18 1.385 (4)
C5—C6 1.383 (3) C17—H17 0.9500
C5—H5 0.9500 C18—C19 1.384 (3)
C6—C7 1.383 (3) C18—H18 0.9500
C6—H6 0.9500 C19—C20 1.388 (3)
C8—C9 1.460 (2) C19—H19 0.9500
C9—C14 1.397 (3) C20—H20 0.9500
O2—S1—C1 107.18 (8) C11—C10—H10 119.6
O2—S1—C15 106.52 (9) C9—C10—H10 119.6
C1—S1—C15 97.14 (8) C12—C11—C10 118.61 (19)
C7—O1—C8 106.99 (14) C12—C11—H11 120.7
C8—C1—C2 107.66 (15) C10—C11—H11 120.7
C8—C1—S1 126.91 (14) F1—C12—C11 118.54 (19)
C2—C1—S1 125.42 (14) F1—C12—C13 118.78 (19)
C7—C2—C3 119.34 (17) C11—C12—C13 122.67 (18)
C7—C2—C1 104.82 (15) C12—C13—C14 118.54 (19)
C3—C2—C1 135.82 (17) C12—C13—H13 120.7
C4—C3—C2 116.96 (18) C14—C13—H13 120.7
C4—C3—H3 121.5 C13—C14—C9 120.84 (18)
C2—C3—H3 121.5 C13—C14—H14 119.6
C3—C4—C5 122.95 (18) C9—C14—H14 119.6
C3—C4—I1 118.98 (15) C16—C15—C20 121.34 (18)
C5—C4—I1 118.05 (14) C16—C15—S1 119.61 (15)
C6—C5—C4 120.26 (18) C20—C15—S1 119.05 (15)
C6—C5—H5 119.9 C15—C16—C17 119.1 (2)
C4—C5—H5 119.9 C15—C16—H16 120.4
C7—C6—C5 116.56 (18) C17—C16—H16 120.4
C7—C6—H6 121.7 C18—C17—C16 120.3 (2)
C5—C6—H6 121.7 C18—C17—H17 119.9
O1—C7—C6 125.34 (17) C16—C17—H17 119.9
O1—C7—C2 110.74 (15) C19—C18—C17 120.2 (2)
C6—C7—C2 123.92 (17) C19—C18—H18 119.9
C1—C8—O1 109.79 (15) C17—C18—H18 119.9
C1—C8—C9 135.62 (16) C18—C19—C20 120.0 (2)
O1—C8—C9 114.52 (15) C18—C19—H19 120.0
C14—C9—C10 118.46 (17) C20—C19—H19 120.0
C14—C9—C8 119.83 (16) C19—C20—C15 119.06 (19)
C10—C9—C8 121.71 (17) C19—C20—H20 120.5
C11—C10—C9 120.86 (19) C15—C20—H20 120.5
O2—S1—C1—C8 −153.19 (16) C7—O1—C8—C9 −177.64 (15)
C15—S1—C1—C8 97.02 (18) C1—C8—C9—C14 −170.7 (2)
O2—S1—C1—C2 28.24 (18) O1—C8—C9—C14 5.9 (2)
C15—S1—C1—C2 −81.55 (17) C1—C8—C9—C10 8.5 (3)
C8—C1—C2—C7 −0.1 (2) O1—C8—C9—C10 −174.81 (17)
S1—C1—C2—C7 178.71 (13) C14—C9—C10—C11 1.2 (3)
C8—C1—C2—C3 −178.5 (2) C8—C9—C10—C11 −178.14 (18)
S1—C1—C2—C3 0.3 (3) C9—C10—C11—C12 −0.3 (3)
C7—C2—C3—C4 −1.2 (3) C10—C11—C12—F1 178.92 (18)
C1—C2—C3—C4 177.1 (2) C10—C11—C12—C13 −0.6 (3)
C2—C3—C4—C5 1.6 (3) F1—C12—C13—C14 −178.90 (18)
C2—C3—C4—I1 −176.41 (13) C11—C12—C13—C14 0.6 (3)
C3—C4—C5—C6 −0.5 (3) C12—C13—C14—C9 0.3 (3)
I1—C4—C5—C6 177.47 (15) C10—C9—C14—C13 −1.1 (3)
C4—C5—C6—C7 −0.9 (3) C8—C9—C14—C13 178.18 (17)
C8—O1—C7—C6 179.10 (18) O2—S1—C15—C16 −15.33 (19)
C8—O1—C7—C2 0.1 (2) C1—S1—C15—C16 95.01 (17)
C5—C6—C7—O1 −177.58 (18) O2—S1—C15—C20 164.42 (15)
C5—C6—C7—C2 1.3 (3) C1—S1—C15—C20 −85.24 (16)
C3—C2—C7—O1 178.77 (16) C20—C15—C16—C17 1.3 (3)
C1—C2—C7—O1 0.0 (2) S1—C15—C16—C17 −178.96 (18)
C3—C2—C7—C6 −0.3 (3) C15—C16—C17—C18 0.2 (4)
C1—C2—C7—C6 −179.03 (18) C16—C17—C18—C19 −1.2 (4)
C2—C1—C8—O1 0.1 (2) C17—C18—C19—C20 0.7 (3)
S1—C1—C8—O1 −178.64 (13) C18—C19—C20—C15 0.8 (3)
C2—C1—C8—C9 176.9 (2) C16—C15—C20—C19 −1.8 (3)
S1—C1—C8—C9 −1.9 (3) S1—C15—C20—C19 178.46 (15)
C7—O1—C8—C1 −0.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C19—H19···O2i 0.95 2.38 3.297 (3) 163

Symmetry code: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2197).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o498. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o2346. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013086/kj2197sup1.cif

e-68-o1237-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013086/kj2197Isup2.hkl

e-68-o1237-Isup2.hkl (194.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013086/kj2197Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES