Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1242. doi: 10.1107/S1600536812012901

3,6-Diiodo-9H-carbazole

Yu-Zhong Xie a,*, Jing-Yi Jin a, Guang-De Jin a
PMCID: PMC3344172  PMID: 22606175

Abstract

In the title compound, C12H7I2N, the tricyclic aromatic ring system is essentially planar, with an r.m.s. deviation of 0.0272 Å. The two I atoms are marginally out of plane, with the C—I bonds angled at 3.9 (2) and 1.1 (2)° with respect to the planes of their respective benzene rings, above and below the plane of the carbazole ring system. No classical hydrogen bonds are observed in the crystal structure.

Related literature  

For the synthesis of the title compound, see: Tucker (1926); Lengvinaite et al. (2007). For related compounds, see: Grigalevicius et al. (2007); Cui et al. (2009); Tian et al. (2010); Klejevskaja et al. (2007). For their applications, see: Zhang et al. (2009); Zhong’an et al. (2010); Lu et al. (2006); Grigalev­icius et al. (2006, 2011).graphic file with name e-68-o1242-scheme1.jpg

Experimental  

Crystal data  

  • C12H7I2N

  • M r = 418.99

  • Orthorhombic, Inline graphic

  • a = 11.8823 (14) Å

  • b = 7.8835 (9) Å

  • c = 24.835 (3) Å

  • V = 2326.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.37 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.18 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.371, T max = 0.445

  • 12303 measured reflections

  • 2456 independent reflections

  • 1879 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.052

  • S = 1.05

  • 2456 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012901/pk2397sup1.cif

e-68-o1242-sup1.cif (15.3KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812012901/pk2397Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012901/pk2397Isup3.hkl

e-68-o1242-Isup3.hkl (118.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012901/pk2397Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Science Foundation of Yanbian University

supplementary crystallographic information

Comment

Carbazole moieties are an important construction block for hole-transporting and electroluminescent materials. 3,6-diiodo-9H-carbazole has been used to design and synthesize carbazole derivatives. We report herein the crystal structure of the title compound. The molecular structure is shown in Fig. 1. All bond lengths and angles are within normal ranges. The tricyclic aromatic ring system is essentially planar with an r.m.s. deviation of 0.0272 Å. There are no classical hydrogen bonds observed in the crystal structure.

Experimental

The title compound was synthesized according to a literature method (Tucker, 1926). Colorless crystals were obtained from a solution in chloroform upon slow evaporation of the solvent.

Refinement

The nitrogen-bound H atom was located in a difference Fourier map and refined freely (N—H = 0.75 (3) Å). Carbon-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title coumpound. Displacement ellipsoids are drawn at 30% probability level..

Crystal data

C12H7I2N F(000) = 1536
Mr = 418.99 Dx = 2.392 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 12303 reflections
a = 11.8823 (14) Å θ = 1.6–26.8°
b = 7.8835 (9) Å µ = 5.37 mm1
c = 24.835 (3) Å T = 293 K
V = 2326.4 (5) Å3 Block, colorless
Z = 8 0.23 × 0.21 × 0.18 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2456 independent reflections
Radiation source: fine-focus sealed tube 1879 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 26.8°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −8→15
Tmin = 0.371, Tmax = 0.445 k = −9→9
12303 measured reflections l = −31→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0193P)2 + 0.8116P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
2456 reflections Δρmax = 0.57 e Å3
141 parameters Δρmin = −0.56 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00021 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.7583 (3) 0.4740 (4) 0.77946 (15) 0.0445 (9)
H11 0.8290 0.5240 0.7822 0.053*
C12 0.6978 (3) 0.4308 (4) 0.82476 (14) 0.0406 (9)
H12 0.7277 0.4525 0.8587 0.049*
H1N 0.807 (3) 0.511 (4) 0.6716 (13) 0.032 (11)*
I2 0.35650 (2) 0.22435 (4) 0.536173 (10) 0.06040 (11)
I1 0.50690 (2) 0.28678 (4) 0.891514 (9) 0.04915 (10)
N1 0.7525 (3) 0.4684 (4) 0.67876 (13) 0.0460 (8)
C5 0.4904 (3) 0.2882 (4) 0.63769 (13) 0.0387 (8)
H5 0.4264 0.2467 0.6548 0.046*
C4 0.5818 (3) 0.3460 (4) 0.66751 (12) 0.0333 (8)
C6 0.4967 (3) 0.2939 (5) 0.58238 (14) 0.0432 (9)
C9 0.6766 (3) 0.4125 (4) 0.64077 (14) 0.0402 (9)
C1 0.5918 (3) 0.3545 (4) 0.82033 (13) 0.0373 (8)
C2 0.5437 (3) 0.3208 (4) 0.77121 (13) 0.0357 (8)
H2 0.4730 0.2705 0.7690 0.043*
C3 0.6032 (3) 0.3638 (4) 0.72449 (12) 0.0333 (8)
C8 0.6826 (3) 0.4177 (5) 0.58496 (14) 0.0478 (10)
H8 0.7461 0.4603 0.5677 0.057*
C7 0.5931 (3) 0.3587 (5) 0.55598 (14) 0.0492 (10)
H7 0.5954 0.3612 0.5186 0.059*
C10 0.7105 (3) 0.4408 (4) 0.72961 (14) 0.0375 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.033 (2) 0.047 (2) 0.054 (2) −0.0035 (18) 0.0000 (19) −0.0083 (18)
C12 0.040 (2) 0.043 (2) 0.0391 (19) 0.0011 (17) −0.0046 (17) −0.0074 (16)
I2 0.0586 (2) 0.0815 (2) 0.04106 (16) −0.00842 (15) −0.01063 (13) 0.00035 (13)
I1 0.04885 (17) 0.06034 (18) 0.03825 (14) −0.00679 (13) 0.00108 (12) 0.00815 (11)
N1 0.0340 (19) 0.055 (2) 0.0490 (18) −0.0110 (17) 0.0093 (18) 0.0011 (16)
C5 0.036 (2) 0.040 (2) 0.039 (2) 0.0034 (17) 0.0027 (17) 0.0040 (16)
C4 0.034 (2) 0.0312 (18) 0.0345 (18) 0.0029 (15) 0.0017 (16) 0.0029 (14)
C6 0.044 (2) 0.048 (2) 0.0375 (19) −0.0003 (19) −0.0025 (17) −0.0026 (17)
C9 0.036 (2) 0.043 (2) 0.042 (2) 0.0021 (17) 0.0030 (17) 0.0004 (16)
C1 0.038 (2) 0.0355 (19) 0.0385 (18) 0.0031 (17) 0.0052 (17) 0.0040 (16)
C2 0.0298 (18) 0.034 (2) 0.0427 (19) −0.0003 (15) −0.0044 (16) 0.0050 (15)
C3 0.0312 (19) 0.0328 (19) 0.0358 (18) 0.0010 (15) 0.0002 (15) 0.0010 (14)
C8 0.041 (2) 0.061 (3) 0.041 (2) 0.003 (2) 0.0151 (18) 0.0017 (18)
C7 0.055 (3) 0.059 (3) 0.0341 (19) 0.005 (2) 0.0050 (19) −0.0020 (17)
C10 0.0331 (19) 0.037 (2) 0.043 (2) 0.0003 (16) 0.0043 (17) −0.0027 (16)

Geometric parameters (Å, º)

C11—C12 1.378 (5) C5—H5 0.9300
C11—C10 1.387 (5) C4—C9 1.409 (5)
C11—H11 0.9300 C4—C3 1.445 (4)
C12—C1 1.400 (5) C6—C7 1.415 (5)
C12—H12 0.9300 C9—C8 1.389 (5)
I2—C6 2.096 (4) C1—C2 1.373 (4)
I1—C1 2.104 (3) C2—C3 1.400 (4)
N1—C10 1.375 (4) C2—H2 0.9300
N1—C9 1.378 (5) C3—C10 1.418 (5)
N1—H1N 0.75 (3) C8—C7 1.366 (5)
C5—C6 1.376 (5) C8—H8 0.9300
C5—C4 1.391 (5) C7—H7 0.9300
C12—C11—C10 117.9 (3) C8—C9—C4 121.5 (3)
C12—C11—H11 121.0 C2—C1—C12 121.8 (3)
C10—C11—H11 121.0 C2—C1—I1 119.8 (3)
C11—C12—C1 120.8 (3) C12—C1—I1 118.3 (3)
C11—C12—H12 119.6 C1—C2—C3 118.6 (3)
C1—C12—H12 119.6 C1—C2—H2 120.7
C10—N1—C9 109.9 (3) C3—C2—H2 120.7
C10—N1—H1N 127 (3) C2—C3—C10 118.9 (3)
C9—N1—H1N 123 (3) C2—C3—C4 134.4 (3)
C6—C5—C4 118.5 (3) C10—C3—C4 106.7 (3)
C6—C5—H5 120.7 C7—C8—C9 118.4 (4)
C4—C5—H5 120.7 C7—C8—H8 120.8
C5—C4—C9 119.7 (3) C9—C8—H8 120.8
C5—C4—C3 133.7 (3) C8—C7—C6 120.6 (3)
C9—C4—C3 106.6 (3) C8—C7—H7 119.7
C5—C6—C7 121.2 (3) C6—C7—H7 119.7
C5—C6—I2 119.6 (3) N1—C10—C11 129.9 (3)
C7—C6—I2 118.9 (3) N1—C10—C3 108.2 (3)
N1—C9—C8 129.8 (3) C11—C10—C3 121.9 (3)
N1—C9—C4 108.7 (3)
C10—C11—C12—C1 0.5 (5) C5—C4—C3—C2 4.6 (7)
C6—C5—C4—C9 1.7 (5) C9—C4—C3—C2 −179.0 (4)
C6—C5—C4—C3 177.7 (4) C5—C4—C3—C10 −176.4 (4)
C4—C5—C6—C7 −0.8 (5) C9—C4—C3—C10 0.1 (4)
C4—C5—C6—I2 −175.7 (2) N1—C9—C8—C7 −177.6 (4)
C10—N1—C9—C8 178.7 (4) C4—C9—C8—C7 1.0 (5)
C10—N1—C9—C4 0.0 (4) C9—C8—C7—C6 −0.1 (6)
C5—C4—C9—N1 177.0 (3) C5—C6—C7—C8 0.0 (6)
C3—C4—C9—N1 0.0 (4) I2—C6—C7—C8 174.9 (3)
C5—C4—C9—C8 −1.8 (5) C9—N1—C10—C11 178.8 (4)
C3—C4—C9—C8 −178.8 (3) C9—N1—C10—C3 0.0 (4)
C11—C12—C1—C2 −0.4 (5) C12—C11—C10—N1 −179.0 (4)
C11—C12—C1—I1 178.5 (3) C12—C11—C10—C3 −0.4 (5)
C12—C1—C2—C3 0.3 (5) C2—C3—C10—N1 179.1 (3)
I1—C1—C2—C3 −178.6 (2) C4—C3—C10—N1 −0.1 (4)
C1—C2—C3—C10 −0.2 (5) C2—C3—C10—C11 0.3 (5)
C1—C2—C3—C4 178.7 (4) C4—C3—C10—C11 −178.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2397).

References

  1. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cui, J., Duan, M. & Cai, L. (2009). Acta Cryst. E65, o216. [DOI] [PMC free article] [PubMed]
  3. Grigalevicius, S., Ma, L., Grazulevicius, J. V. & Xie, Z. (2006). Synth. Met. 156, 46–50.
  4. Grigalevicius, S., Ma, L., Qian, G., Xie, Z., Forster, M. & Scherf, U. (2007). Macromol. Chem. Phys. 208, 349–355.
  5. Grigalevicius, S., Zhang, B., Xie, Z., Forster, M. & Scherf, U. (2011). Org. Electron. 12, 2253–2257.
  6. Klejevskaja, B., Burbulis, E., Michaleviciute, A., Ostrauskaite, J., Grazuleviius, J. V. & Jankauskas, V. (2007). Synth. Met. 157, 968–973.
  7. Lengvinaite, S., Grazulevicius, J. V., Jankauskas, V. & Grigalevicius, S. (2007). Synth. Met. 157, 529–533.
  8. Lu, J., Xia, P. F., Lo, P. K., Tao, Y. & Wong, M. S. (2006). Chem. Mater. 18, 6194–6203.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Tian, N., Lenkeit, D., Pelz, S., Fischer, L. H., Escudero, D., Schiewek, R., Klink, D., Schmitz, O. J., Gonzalez, L., Schaferling, M. & Holder, E. (2010). Eur. J. Inorg. Chem. pp. 4875–4885.
  11. Tucker, S. H. (1926). J. Chem. Soc. pp. 546–553.
  12. Zhang, H., Wang, S., Li, Y., Zhang, B., Du, C., Wan, X. & Chen, Y. (2009). Tetrahedron, 65, 4455–4463.
  13. Zhong’an, L., Zuoquan, J., Guofu, Q., Wenbo, W., Gui, Y., Yunqi, L., Jingui, Q. & Zhen, L. (2010). Macromol. Chem. Phys. 211, 1820–1825.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012901/pk2397sup1.cif

e-68-o1242-sup1.cif (15.3KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812012901/pk2397Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012901/pk2397Isup3.hkl

e-68-o1242-Isup3.hkl (118.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012901/pk2397Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES