Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1246. doi: 10.1107/S1600536812012603

1-(4-Bromo­phenyl­sulfin­yl)-2-methyl­naphtho­[2,1-b]furan

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3344175  PMID: 22606178

Abstract

In the title compound, C19H13BrO2S, the 4-bromo­phenyl ring makes a dihedral angle of 83.75 (4)° with the mean plane of the naphtho­furan fragment [r.m.s. deviation = 0.024 (2) Å]. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers. These dimers are connected by weak π–π inter­actions between the central naphtho­furan benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.483 (2) Å, inter­planar distance = 3.416 (2) Å and slippage = 0.680 (2) Å].

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2007, 2012).graphic file with name e-68-o1246-scheme1.jpg

Experimental  

Crystal data  

  • C19H13BrO2S

  • M r = 385.26

  • Triclinic, Inline graphic

  • a = 8.7124 (1) Å

  • b = 9.4857 (1) Å

  • c = 10.2898 (1) Å

  • α = 82.883 (1)°

  • β = 71.126 (1)°

  • γ = 75.672 (1)°

  • V = 778.74 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.78 mm−1

  • T = 173 K

  • 0.33 × 0.29 × 0.27 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.462, T max = 0.517

  • 14577 measured reflections

  • 3853 independent reflections

  • 3461 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.080

  • S = 1.05

  • 3853 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012603/sj5222sup1.cif

e-68-o1246-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012603/sj5222Isup2.hkl

e-68-o1246-Isup2.hkl (188.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012603/sj5222Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O2i 0.95 2.35 3.221 (2) 152

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As a part of our ongoing study of 2-methylnaphtho[2,1-b]furan derivatives containing 1-phenylsulfinyl (Choi et al., 2007) and 1-(4-methylphenylsulfinyl) (Choi et al., 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.024 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle between the 4-bromophenyl ring and the mean plane of the naphthofuran fragment is 83.75 (4)°. In the crystal structure, molecules are linked via pairs of C—H···O hydrogen bonds (Fig. 2 & Table 1), forming inversion dimers. These dimers are connected by weak π–π interactions between the central naphthofuran benzene rings of neighbouring molecules, with a Cg···Cgii distance of 3.483 (2) Å and an interplanar distance of 3.416 (2) Å resulting in a slippage of 0.680 (2) Å (Fig. 2, Cg is the centroid of the C2/C3/C8/C9/C10/C11 benzene ring).

Experimental

77% 3-Chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 1-(4-bromophenylsulfanyl)-2-methylnaphtho [2,1-b]furan (295 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 74%, m.p. 466–467 K; Rf = 0.59 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of the methyl H atoms were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O and π–π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y + 1, - z ; (ii) - x + 1 , - y + 1, - z + 1.]

Crystal data

C19H13BrO2S Z = 2
Mr = 385.26 F(000) = 388
Triclinic, P1 Dx = 1.643 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.7124 (1) Å Cell parameters from 7454 reflections
b = 9.4857 (1) Å θ = 2.5–28.3°
c = 10.2898 (1) Å µ = 2.78 mm1
α = 82.883 (1)° T = 173 K
β = 71.126 (1)° Block, colourless
γ = 75.672 (1)° 0.33 × 0.29 × 0.27 mm
V = 778.74 (2) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3853 independent reflections
Radiation source: rotating anode 3461 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.031
Detector resolution: 10.0 pixels mm-1 θmax = 28.3°, θmin = 2.1°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −12→12
Tmin = 0.462, Tmax = 0.517 l = −13→13
14577 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: difference Fourier map
wR(F2) = 0.080 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.3115P] where P = (Fo2 + 2Fc2)/3
3853 reflections (Δ/σ)max = 0.002
209 parameters Δρmax = 0.62 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.00152 (2) −0.12635 (2) −0.16983 (2) 0.03951 (8)
S1 0.35059 (5) 0.29100 (5) 0.20858 (4) 0.02531 (10)
O1 0.39380 (18) 0.19036 (15) 0.57662 (13) 0.0339 (3)
O2 0.34216 (16) 0.44277 (15) 0.14815 (14) 0.0308 (3)
C1 0.4076 (2) 0.27335 (19) 0.36023 (17) 0.0248 (3)
C2 0.5387 (2) 0.31553 (19) 0.39413 (17) 0.0241 (3)
C3 0.6643 (2) 0.39490 (19) 0.32814 (17) 0.0236 (3)
C4 0.6876 (2) 0.46220 (19) 0.19438 (17) 0.0243 (3)
H4 0.6154 0.4567 0.1439 0.029*
C5 0.8127 (2) 0.5349 (2) 0.1373 (2) 0.0295 (4)
H5 0.8265 0.5795 0.0475 0.035*
C6 0.9214 (2) 0.5446 (2) 0.2102 (2) 0.0357 (4)
H6 1.0098 0.5933 0.1689 0.043*
C7 0.8993 (3) 0.4836 (2) 0.3402 (2) 0.0357 (4)
H7 0.9721 0.4918 0.3892 0.043*
C8 0.7706 (2) 0.4086 (2) 0.40403 (19) 0.0295 (4)
C9 0.7452 (3) 0.3495 (2) 0.5420 (2) 0.0357 (4)
H9 0.8165 0.3611 0.5910 0.043*
C10 0.6220 (3) 0.2772 (2) 0.60542 (19) 0.0353 (4)
H10 0.6045 0.2392 0.6976 0.042*
C11 0.5225 (2) 0.2618 (2) 0.52789 (18) 0.0293 (4)
C12 0.3248 (2) 0.2003 (2) 0.47280 (19) 0.0301 (4)
C13 0.1834 (3) 0.1278 (3) 0.5032 (2) 0.0419 (5)
H13A 0.1309 0.1541 0.4299 0.063*
H13B 0.1017 0.1594 0.5912 0.063*
H13C 0.2243 0.0219 0.5087 0.063*
C14 0.5374 (2) 0.17880 (19) 0.10434 (17) 0.0234 (3)
C15 0.5817 (3) 0.0335 (2) 0.14588 (19) 0.0313 (4)
H15 0.5173 −0.0031 0.2308 0.038*
C16 0.7191 (3) −0.0578 (2) 0.0640 (2) 0.0333 (4)
H16 0.7497 −0.1574 0.0916 0.040*
C17 0.8116 (2) −0.0017 (2) −0.05890 (19) 0.0283 (4)
C18 0.7683 (2) 0.1426 (2) −0.10104 (18) 0.0286 (4)
H18 0.8335 0.1792 −0.1855 0.034*
C19 0.6289 (2) 0.2341 (2) −0.01936 (17) 0.0259 (3)
H19 0.5970 0.3332 −0.0480 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03626 (13) 0.03675 (14) 0.04460 (13) −0.00190 (9) −0.01114 (9) −0.01442 (9)
S1 0.0229 (2) 0.0272 (2) 0.0268 (2) −0.00701 (17) −0.01025 (16) 0.00538 (16)
O1 0.0371 (7) 0.0337 (8) 0.0231 (6) −0.0025 (6) −0.0056 (5) 0.0069 (5)
O2 0.0278 (6) 0.0283 (7) 0.0344 (7) −0.0035 (5) −0.0129 (5) 0.0092 (5)
C1 0.0234 (8) 0.0242 (9) 0.0231 (8) −0.0015 (7) −0.0060 (6) 0.0016 (6)
C2 0.0258 (8) 0.0217 (8) 0.0212 (7) 0.0024 (6) −0.0078 (6) −0.0021 (6)
C3 0.0239 (8) 0.0210 (8) 0.0239 (8) 0.0013 (6) −0.0079 (6) −0.0047 (6)
C4 0.0247 (8) 0.0214 (8) 0.0261 (8) −0.0015 (7) −0.0089 (6) −0.0025 (6)
C5 0.0287 (9) 0.0254 (9) 0.0324 (9) −0.0046 (7) −0.0069 (7) −0.0034 (7)
C6 0.0304 (9) 0.0314 (11) 0.0481 (11) −0.0095 (8) −0.0112 (8) −0.0084 (8)
C7 0.0330 (10) 0.0342 (11) 0.0458 (11) −0.0035 (8) −0.0194 (9) −0.0117 (8)
C8 0.0307 (9) 0.0272 (10) 0.0318 (9) 0.0023 (7) −0.0147 (7) −0.0092 (7)
C9 0.0418 (11) 0.0343 (11) 0.0346 (10) 0.0050 (8) −0.0240 (9) −0.0080 (8)
C10 0.0452 (11) 0.0334 (11) 0.0232 (8) 0.0054 (9) −0.0152 (8) −0.0022 (7)
C11 0.0313 (9) 0.0271 (9) 0.0240 (8) 0.0020 (7) −0.0077 (7) −0.0001 (7)
C12 0.0284 (9) 0.0273 (10) 0.0272 (8) −0.0004 (7) −0.0040 (7) 0.0026 (7)
C13 0.0353 (11) 0.0409 (12) 0.0419 (11) −0.0124 (9) −0.0024 (9) 0.0092 (9)
C14 0.0276 (8) 0.0228 (9) 0.0229 (8) −0.0076 (7) −0.0114 (6) 0.0020 (6)
C15 0.0411 (10) 0.0259 (10) 0.0266 (8) −0.0120 (8) −0.0092 (8) 0.0058 (7)
C16 0.0460 (11) 0.0202 (9) 0.0339 (9) −0.0064 (8) −0.0143 (8) 0.0017 (7)
C17 0.0314 (9) 0.0274 (9) 0.0300 (9) −0.0063 (7) −0.0132 (7) −0.0061 (7)
C18 0.0326 (9) 0.0314 (10) 0.0236 (8) −0.0103 (8) −0.0096 (7) 0.0018 (7)
C19 0.0325 (9) 0.0229 (9) 0.0245 (8) −0.0073 (7) −0.0130 (7) 0.0044 (6)

Geometric parameters (Å, º)

Br1—C17 1.8932 (19) C8—C9 1.428 (3)
S1—O2 1.4899 (13) C9—C10 1.360 (3)
S1—C1 1.7621 (17) C9—H9 0.9500
S1—C14 1.7966 (19) C10—C11 1.395 (3)
O1—C12 1.369 (2) C10—H10 0.9500
O1—C11 1.378 (2) C12—C13 1.486 (3)
C1—C12 1.360 (2) C13—H13A 0.9800
C1—C2 1.451 (2) C13—H13B 0.9800
C2—C11 1.382 (2) C13—H13C 0.9800
C2—C3 1.424 (2) C14—C19 1.384 (2)
C3—C4 1.417 (2) C14—C15 1.389 (3)
C3—C8 1.427 (2) C15—C16 1.381 (3)
C4—C5 1.366 (2) C15—H15 0.9500
C4—H4 0.9500 C16—C17 1.385 (3)
C5—C6 1.411 (3) C16—H16 0.9500
C5—H5 0.9500 C17—C18 1.380 (3)
C6—C7 1.363 (3) C18—C19 1.390 (3)
C6—H6 0.9500 C18—H18 0.9500
C7—C8 1.413 (3) C19—H19 0.9500
C7—H7 0.9500
O2—S1—C1 110.36 (8) C9—C10—H10 121.8
O2—S1—C14 107.32 (8) C11—C10—H10 121.8
C1—S1—C14 97.62 (8) O1—C11—C2 111.20 (16)
C12—O1—C11 106.47 (13) O1—C11—C10 123.59 (16)
C12—C1—C2 107.38 (15) C2—C11—C10 125.21 (18)
C12—C1—S1 119.35 (14) C1—C12—O1 110.59 (16)
C2—C1—S1 133.18 (13) C1—C12—C13 133.92 (18)
C11—C2—C3 118.75 (16) O1—C12—C13 115.46 (16)
C11—C2—C1 104.35 (15) C12—C13—H13A 109.5
C3—C2—C1 136.87 (15) C12—C13—H13B 109.5
C4—C3—C2 124.19 (15) H13A—C13—H13B 109.5
C4—C3—C8 118.74 (16) C12—C13—H13C 109.5
C2—C3—C8 117.06 (15) H13A—C13—H13C 109.5
C5—C4—C3 120.72 (16) H13B—C13—H13C 109.5
C5—C4—H4 119.6 C19—C14—C15 120.80 (17)
C3—C4—H4 119.6 C19—C14—S1 120.37 (14)
C4—C5—C6 120.68 (17) C15—C14—S1 118.69 (13)
C4—C5—H5 119.7 C16—C15—C14 120.14 (17)
C6—C5—H5 119.7 C16—C15—H15 119.9
C7—C6—C5 119.72 (18) C14—C15—H15 119.9
C7—C6—H6 120.1 C15—C16—C17 118.89 (18)
C5—C6—H6 120.1 C15—C16—H16 120.6
C6—C7—C8 121.57 (17) C17—C16—H16 120.6
C6—C7—H7 119.2 C18—C17—C16 121.34 (18)
C8—C7—H7 119.2 C18—C17—Br1 119.83 (14)
C7—C8—C3 118.50 (17) C16—C17—Br1 118.84 (15)
C7—C8—C9 121.04 (17) C17—C18—C19 119.77 (16)
C3—C8—C9 120.45 (18) C17—C18—H18 120.1
C10—C9—C8 122.03 (18) C19—C18—H18 120.1
C10—C9—H9 119.0 C14—C19—C18 119.05 (16)
C8—C9—H9 119.0 C14—C19—H19 120.5
C9—C10—C11 116.45 (17) C18—C19—H19 120.5
O2—S1—C1—C12 135.73 (15) C12—O1—C11—C10 178.95 (18)
C14—S1—C1—C12 −112.55 (16) C3—C2—C11—O1 178.96 (15)
O2—S1—C1—C2 −48.3 (2) C1—C2—C11—O1 0.4 (2)
C14—S1—C1—C2 63.40 (19) C3—C2—C11—C10 −0.8 (3)
C12—C1—C2—C11 0.2 (2) C1—C2—C11—C10 −179.41 (18)
S1—C1—C2—C11 −176.07 (15) C9—C10—C11—O1 179.36 (18)
C12—C1—C2—C3 −177.9 (2) C9—C10—C11—C2 −0.9 (3)
S1—C1—C2—C3 5.8 (3) C2—C1—C12—O1 −0.8 (2)
C11—C2—C3—C4 −176.38 (17) S1—C1—C12—O1 176.13 (13)
C1—C2—C3—C4 1.6 (3) C2—C1—C12—C13 −178.5 (2)
C11—C2—C3—C8 2.4 (3) S1—C1—C12—C13 −1.6 (3)
C1—C2—C3—C8 −179.6 (2) C11—O1—C12—C1 1.0 (2)
C2—C3—C4—C5 −179.11 (17) C11—O1—C12—C13 179.19 (18)
C8—C3—C4—C5 2.1 (3) O2—S1—C14—C19 −9.52 (16)
C3—C4—C5—C6 0.0 (3) C1—S1—C14—C19 −123.69 (14)
C4—C5—C6—C7 −1.5 (3) O2—S1—C14—C15 174.66 (14)
C5—C6—C7—C8 0.9 (3) C1—S1—C14—C15 60.49 (15)
C6—C7—C8—C3 1.2 (3) C19—C14—C15—C16 0.4 (3)
C6—C7—C8—C9 −177.87 (19) S1—C14—C15—C16 176.20 (15)
C4—C3—C8—C7 −2.7 (3) C14—C15—C16—C17 0.4 (3)
C2—C3—C8—C7 178.44 (17) C15—C16—C17—C18 −0.5 (3)
C4—C3—C8—C9 176.43 (17) C15—C16—C17—Br1 179.21 (14)
C2—C3—C8—C9 −2.5 (3) C16—C17—C18—C19 −0.2 (3)
C7—C8—C9—C10 179.9 (2) Br1—C17—C18—C19 −179.89 (13)
C3—C8—C9—C10 0.8 (3) C15—C14—C19—C18 −1.1 (3)
C8—C9—C10—C11 0.9 (3) S1—C14—C19—C18 −176.81 (13)
C12—O1—C11—C2 −0.9 (2) C17—C18—C19—C14 1.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C19—H19···O2i 0.95 2.35 3.221 (2) 152

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5222).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o549. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1731–o1732.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012603/sj5222sup1.cif

e-68-o1246-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012603/sj5222Isup2.hkl

e-68-o1246-Isup2.hkl (188.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012603/sj5222Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES