Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1247. doi: 10.1107/S1600536812013281

(2-Bromo­phen­yl)(4-hy­droxy-1,1-dioxo-2H-1,2-benzothia­zin-3-yl)methanone

Nazia Sattar a, Hamid Latif Siddiqui a,*, Waseeq Ahmad Siddiqui b, Muhammad Akram c, Masood Parvez d
PMCID: PMC3344176  PMID: 22606179

Abstract

In the title mol­ecule, C15H10BrNO4S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.554 (7) and 0.198 (8) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The mol­ecular structure is consolidated by intra­molecular O—H⋯O inter­actions and the crystal packing features N—H⋯O and C—H⋯O hydrogen bonds.

Related literature  

For the first synthesis of benzothia­zine, see: Braun (1923). For background information on the synthesis of related compounds, see: Siddiqui et al. (2007). For the biological activity of 1,2-benzothia­zine derivatives, see: Lombardino & Wiseman (1972); Gupta et al. (1993, 2002); Zia-ur-Rehman et al. (2006); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008).graphic file with name e-68-o1247-scheme1.jpg

Experimental  

Crystal data  

  • C15H10BrNO4S

  • M r = 380.21

  • Monoclinic, Inline graphic

  • a = 12.0433 (4) Å

  • b = 8.5491 (3) Å

  • c = 14.7841 (5) Å

  • β = 106.3950 (19)°

  • V = 1460.27 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.98 mm−1

  • T = 173 K

  • 0.14 × 0.12 × 0.08 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.681, T max = 0.797

  • 6205 measured reflections

  • 3339 independent reflections

  • 2528 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.106

  • S = 1.10

  • 3339 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013281/aa2054sup1.cif

e-68-o1247-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013281/aa2054Isup2.hkl

e-68-o1247-Isup2.hkl (160.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013281/aa2054Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.81 (5) 2.08 (5) 2.861 (4) 160 (4)
C13—H13⋯O2ii 0.95 2.59 3.305 (5) 132
O3—H3O⋯O4 0.84 1.80 2.530 (4) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

supplementary crystallographic information

Comment

Since the time first benzothiazine was synthesized (Braun, 1923), thousands of its derivatives have been prepared to determine their pharmacological and other commercial uses. Among nine isomers, the 1,2-benzothiazine 1,1-dioxide nuclei possess dynamic structural features and exhibit a wide range of biological activities, e.g., anti-inflammatory (Lombardino & Wiseman, 1972), analgesic (Gupta et al., 2002), anticancer (Gupta et al., 1993) and antibacterial (Zia-ur-Rehman et al., 2006). In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Siddiqui et al., 2007; Ahmad et al., 2010) herein, we report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.198 (8) and 0.554 (7) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The molecular structure is stabilized by intramolecular hydrogen bonds O3–H3O···O4 and the crystal packing is consolidated by N1—H1N···O4 and C13—H13···O2 intermolecular hydrogen bonds (Fig. 2 and Table 1).

Experimental

A mixture of 2-[2-(o-bromophenyl)-2oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (1.8 g, 4.7 mmol) and sodium methoxide (1.9 g, 34.8 mmol) in freshly dried methanol (20 ml) was subjected to reflux for 30 minutes. The reaction was quenched with ice-cold water and acidified to pH = 3 with dilute HCl. The precipitate was filtered, washed with water and ethanol (25 ml, each) to get yellow powder of the title compound (1.3 g, 72%). The crystals suitable for X-ray crystallographic analysis were grown from a mixture of solvents chloroform and methanol (1:2) by slow evaporation at room temperature (m.p. 432–434 K).

Refinement

The H atoms bonded to C and O atoms were positioned geometrically and refined using a riding model, with O—H and C—H = 0.84 and 0.95 Å, respectively. The amino H-atom was allowed to refine freely. The Uiso(H) were set at 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A part of the unit cell showing intermolecular and intramoilecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

Crystal data

C15H10BrNO4S F(000) = 760
Mr = 380.21 Dx = 1.729 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3429 reflections
a = 12.0433 (4) Å θ = 1.0–27.5°
b = 8.5491 (3) Å µ = 2.98 mm1
c = 14.7841 (5) Å T = 173 K
β = 106.3950 (19)° Prism, pale yellow
V = 1460.27 (9) Å3 0.14 × 0.12 × 0.08 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 3339 independent reflections
Radiation source: fine-focus sealed tube 2528 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
ω and φ scans θmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan (SORTAV; Blessing, 1997) h = −15→15
Tmin = 0.681, Tmax = 0.797 k = −11→10
6205 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0181P)2 + 4.4694P] where P = (Fo2 + 2Fc2)/3
3339 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.27922 (4) 0.40093 (6) 0.66394 (3) 0.03958 (14)
S1 0.81353 (8) 0.40492 (13) 0.89491 (6) 0.0277 (2)
O1 0.8507 (2) 0.2475 (4) 0.9213 (2) 0.0365 (7)
O2 0.8381 (2) 0.5262 (4) 0.9640 (2) 0.0398 (7)
O3 0.6691 (2) 0.2135 (4) 0.62289 (19) 0.0340 (7)
H3O 0.6030 0.1754 0.6166 0.041*
O4 0.4885 (2) 0.1511 (3) 0.67117 (19) 0.0317 (6)
N1 0.6746 (3) 0.4016 (4) 0.8466 (2) 0.0269 (7)
H1N 0.642 (4) 0.484 (5) 0.848 (3) 0.032*
C1 0.8650 (3) 0.4564 (5) 0.7985 (3) 0.0273 (8)
C2 0.9651 (3) 0.5437 (5) 0.8102 (3) 0.0367 (10)
H2 1.0047 0.5867 0.8698 0.044*
C3 1.0058 (4) 0.5666 (6) 0.7323 (3) 0.0415 (11)
H3 1.0734 0.6279 0.7387 0.050*
C4 0.9504 (4) 0.5020 (5) 0.6459 (3) 0.0385 (10)
H4 0.9810 0.5178 0.5940 0.046*
C5 0.8507 (3) 0.4147 (5) 0.6341 (3) 0.0330 (9)
H5 0.8129 0.3709 0.5742 0.040*
C6 0.8057 (3) 0.3911 (5) 0.7107 (3) 0.0264 (8)
C7 0.6983 (3) 0.3029 (5) 0.6993 (3) 0.0241 (8)
C8 0.6335 (3) 0.3124 (5) 0.7626 (3) 0.0249 (8)
C9 0.5241 (3) 0.2322 (5) 0.7435 (3) 0.0262 (8)
C10 0.4524 (3) 0.2456 (5) 0.8110 (3) 0.0262 (8)
C11 0.3407 (3) 0.3076 (5) 0.7837 (3) 0.0267 (8)
C12 0.2732 (4) 0.3111 (5) 0.8461 (3) 0.0374 (10)
H12 0.1979 0.3557 0.8274 0.045*
C13 0.3164 (4) 0.2495 (5) 0.9352 (3) 0.0359 (10)
H13 0.2704 0.2511 0.9779 0.043*
C14 0.4255 (4) 0.1857 (5) 0.9630 (3) 0.0368 (10)
H14 0.4540 0.1419 1.0242 0.044*
C15 0.4942 (4) 0.1852 (5) 0.9020 (3) 0.0328 (9)
H15 0.5703 0.1433 0.9222 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0341 (2) 0.0479 (3) 0.0371 (2) 0.0063 (2) 0.01057 (18) 0.0086 (2)
S1 0.0245 (5) 0.0325 (5) 0.0260 (4) 0.0008 (4) 0.0069 (4) −0.0029 (4)
O1 0.0378 (16) 0.0376 (17) 0.0352 (15) 0.0096 (14) 0.0120 (13) 0.0072 (14)
O2 0.0340 (16) 0.0465 (19) 0.0389 (16) −0.0021 (14) 0.0102 (13) −0.0163 (15)
O3 0.0296 (15) 0.0432 (18) 0.0324 (14) −0.0100 (13) 0.0142 (12) −0.0119 (14)
O4 0.0300 (14) 0.0371 (17) 0.0300 (14) −0.0073 (13) 0.0116 (12) −0.0035 (13)
N1 0.0249 (16) 0.0263 (17) 0.0310 (16) 0.0043 (15) 0.0102 (13) −0.0028 (15)
C1 0.0242 (18) 0.027 (2) 0.033 (2) 0.0018 (16) 0.0134 (16) 0.0010 (17)
C2 0.029 (2) 0.038 (2) 0.043 (2) −0.0072 (19) 0.0109 (18) −0.008 (2)
C3 0.032 (2) 0.042 (3) 0.057 (3) −0.008 (2) 0.022 (2) 0.000 (2)
C4 0.035 (2) 0.044 (3) 0.042 (2) −0.005 (2) 0.020 (2) 0.005 (2)
C5 0.032 (2) 0.036 (2) 0.035 (2) 0.0042 (19) 0.0151 (17) 0.0026 (19)
C6 0.0224 (17) 0.025 (2) 0.033 (2) 0.0017 (16) 0.0107 (15) 0.0007 (17)
C7 0.0236 (18) 0.025 (2) 0.0237 (17) 0.0011 (16) 0.0063 (14) −0.0008 (16)
C8 0.0224 (18) 0.027 (2) 0.0261 (18) 0.0001 (16) 0.0083 (15) 0.0007 (16)
C9 0.0261 (19) 0.026 (2) 0.0285 (18) 0.0013 (16) 0.0102 (15) 0.0036 (17)
C10 0.0230 (18) 0.026 (2) 0.0315 (19) −0.0055 (16) 0.0100 (15) −0.0056 (17)
C11 0.0279 (19) 0.025 (2) 0.0281 (19) −0.0016 (16) 0.0098 (16) −0.0036 (16)
C12 0.032 (2) 0.036 (2) 0.050 (3) 0.000 (2) 0.021 (2) −0.005 (2)
C13 0.040 (2) 0.036 (2) 0.038 (2) −0.004 (2) 0.0227 (19) −0.005 (2)
C14 0.046 (2) 0.040 (3) 0.026 (2) −0.002 (2) 0.0127 (18) 0.0008 (19)
C15 0.030 (2) 0.039 (2) 0.030 (2) 0.0002 (19) 0.0095 (17) −0.0010 (19)

Geometric parameters (Å, º)

Br1—C11 1.892 (4) C4—H4 0.9500
S1—O2 1.427 (3) C5—C6 1.401 (5)
S1—O1 1.437 (3) C5—H5 0.9500
S1—N1 1.623 (3) C6—C7 1.466 (5)
S1—C1 1.763 (4) C7—C8 1.378 (5)
O3—C7 1.327 (4) C8—C9 1.441 (5)
O3—H3O 0.8400 C9—C10 1.498 (5)
O4—C9 1.245 (5) C10—C11 1.395 (5)
N1—C8 1.423 (5) C10—C15 1.395 (5)
N1—H1N 0.81 (5) C11—C12 1.392 (5)
C1—C2 1.387 (5) C12—C13 1.378 (6)
C1—C6 1.409 (5) C12—H12 0.9500
C2—C3 1.386 (6) C13—C14 1.374 (6)
C2—H2 0.9500 C13—H13 0.9500
C3—C4 1.379 (6) C14—C15 1.385 (5)
C3—H3 0.9500 C14—H14 0.9500
C4—C5 1.382 (6) C15—H15 0.9500
O2—S1—O1 120.01 (19) O3—C7—C8 123.1 (3)
O2—S1—N1 107.91 (18) O3—C7—C6 114.0 (3)
O1—S1—N1 107.86 (19) C8—C7—C6 122.8 (3)
O2—S1—C1 110.4 (2) C7—C8—N1 120.0 (3)
O1—S1—C1 107.41 (18) C7—C8—C9 120.0 (3)
N1—S1—C1 101.73 (18) N1—C8—C9 119.9 (3)
C7—O3—H3O 109.5 O4—C9—C8 120.5 (3)
C8—N1—S1 117.0 (3) O4—C9—C10 119.4 (3)
C8—N1—H1N 116 (3) C8—C9—C10 120.0 (3)
S1—N1—H1N 114 (3) C11—C10—C15 118.4 (3)
C2—C1—C6 121.6 (4) C11—C10—C9 121.8 (3)
C2—C1—S1 121.7 (3) C15—C10—C9 119.7 (3)
C6—C1—S1 116.4 (3) C12—C11—C10 120.8 (4)
C3—C2—C1 118.1 (4) C12—C11—Br1 117.6 (3)
C3—C2—H2 120.9 C10—C11—Br1 121.5 (3)
C1—C2—H2 120.9 C13—C12—C11 119.5 (4)
C4—C3—C2 121.4 (4) C13—C12—H12 120.3
C4—C3—H3 119.3 C11—C12—H12 120.3
C2—C3—H3 119.3 C14—C13—C12 120.6 (4)
C3—C4—C5 120.7 (4) C14—C13—H13 119.7
C3—C4—H4 119.7 C12—C13—H13 119.7
C5—C4—H4 119.7 C13—C14—C15 120.2 (4)
C4—C5—C6 119.7 (4) C13—C14—H14 119.9
C4—C5—H5 120.2 C15—C14—H14 119.9
C6—C5—H5 120.2 C14—C15—C10 120.5 (4)
C5—C6—C1 118.5 (4) C14—C15—H15 119.8
C5—C6—C7 120.8 (4) C10—C15—H15 119.8
C1—C6—C7 120.7 (3)
O2—S1—N1—C8 167.0 (3) C6—C7—C8—N1 −4.8 (6)
O1—S1—N1—C8 −61.9 (3) O3—C7—C8—C9 −4.8 (6)
C1—S1—N1—C8 50.9 (3) C6—C7—C8—C9 175.2 (4)
O2—S1—C1—C2 34.0 (4) S1—N1—C8—C7 −34.1 (5)
O1—S1—C1—C2 −98.5 (4) S1—N1—C8—C9 145.9 (3)
N1—S1—C1—C2 148.3 (4) C7—C8—C9—O4 1.6 (6)
O2—S1—C1—C6 −152.1 (3) N1—C8—C9—O4 −178.4 (4)
O1—S1—C1—C6 75.4 (3) C7—C8—C9—C10 −178.5 (4)
N1—S1—C1—C6 −37.7 (3) N1—C8—C9—C10 1.4 (6)
C6—C1—C2—C3 0.3 (6) O4—C9—C10—C11 −60.3 (5)
S1—C1—C2—C3 173.9 (3) C8—C9—C10—C11 119.8 (4)
C1—C2—C3—C4 −1.3 (7) O4—C9—C10—C15 115.1 (4)
C2—C3—C4—C5 1.2 (7) C8—C9—C10—C15 −64.7 (5)
C3—C4—C5—C6 −0.2 (7) C15—C10—C11—C12 0.9 (6)
C4—C5—C6—C1 −0.7 (6) C9—C10—C11—C12 176.4 (4)
C4—C5—C6—C7 178.2 (4) C15—C10—C11—Br1 177.0 (3)
C2—C1—C6—C5 0.7 (6) C9—C10—C11—Br1 −7.5 (5)
S1—C1—C6—C5 −173.3 (3) C10—C11—C12—C13 −1.4 (6)
C2—C1—C6—C7 −178.2 (4) Br1—C11—C12—C13 −177.7 (3)
S1—C1—C6—C7 7.8 (5) C11—C12—C13—C14 0.4 (7)
C5—C6—C7—O3 18.6 (5) C12—C13—C14—C15 1.1 (7)
C1—C6—C7—O3 −162.5 (4) C13—C14—C15—C10 −1.6 (7)
C5—C6—C7—C8 −161.3 (4) C11—C10—C15—C14 0.6 (6)
C1—C6—C7—C8 17.5 (6) C9—C10—C15—C14 −175.0 (4)
O3—C7—C8—N1 175.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O4i 0.81 (5) 2.08 (5) 2.861 (4) 160 (4)
C13—H13···O2ii 0.95 2.59 3.305 (5) 132
O3—H3O···O4 0.84 1.80 2.530 (4) 145

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2054).

References

  1. Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704. [DOI] [PubMed]
  2. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
  3. Braun, J. V. (1923). Berichte, 56, 2332.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105–111. [DOI] [PubMed]
  6. Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anticancer Drugs, 4, 589–592. [DOI] [PubMed]
  7. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848–849. [DOI] [PubMed]
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.
  12. Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [DOI] [PubMed]
  13. Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013281/aa2054sup1.cif

e-68-o1247-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013281/aa2054Isup2.hkl

e-68-o1247-Isup2.hkl (160.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013281/aa2054Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES