Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1254. doi: 10.1107/S1600536812012640

2-Chloro­benzohydrazide

Shakeel Ahmad a, Abdul Jabbar a, Muhammad Tahir Hussain b, M Nawaz Tahir c,*
PMCID: PMC3344182  PMID: 22606185

Abstract

The asymmetric unit of the the title compound, C7H7ClN2O, contains two mol­ecules in which the chloro­phenyl and the formic hydrazide units are almost planar (r.m.s. deviations of 0.0081 and 0.0100 Å, respectively, in one mol­ecule and 0.0069 and 0.0150 Å in the other) and are oriented with respect to each other at dihedral angles of 56.8 (2) and 56.9 (2)°. In the crystal, the mol­ecules are consolidated in the form of polymeric chains extending along [010]. R 3 3(10) ring motifs exist due to N—H⋯O and N—H⋯N hydrogen bonds.

Related literature  

For a related structure, see: Zareef et al. (2006). For graph-set notation, see: Bernstein et al. (1995). For the synthetic method, see: Moise et al. (2009).graphic file with name e-68-o1254-scheme1.jpg

Experimental  

Crystal data  

  • C7H7ClN2O

  • M r = 170.60

  • Monoclinic, Inline graphic

  • a = 25.7589 (16) Å

  • b = 4.9618 (3) Å

  • c = 12.9205 (8) Å

  • β = 103.648 (3)°

  • V = 1604.75 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.34 × 0.14 × 0.12 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.979, T max = 0.988

  • 11488 measured reflections

  • 3091 independent reflections

  • 2089 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.083

  • wR(F 2) = 0.217

  • S = 1.08

  • 3091 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012640/ez2284sup1.cif

e-68-o1254-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012640/ez2284Isup2.hkl

e-68-o1254-Isup2.hkl (148.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012640/ez2284Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.05 2.825 (5) 149
N2—H2A⋯N2ii 0.89 (6) 2.27 (6) 3.151 (7) 172 (5)
N3—H3A⋯O2iii 0.86 2.10 2.812 (5) 140
N4—H4B⋯N4iv 0.80 (6) 2.40 (6) 3.155 (6) 158 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

The title compound (I), (Fig. 1) has been synthesized as a precursor for the preparation of various substituted triazole derivatives.

We have reported the crystal structures of N-2-bromobenzoylhydrazide (Zareef et al., 2006), which is related to (I).

In (I), two molecules are present in the asymmetric unit, which differ slightly from each other geometrically. In one molecule, the chlorophenyl group A (C1–C6/Cl1) and the formic hydrazide moiety B (O1/C7/N1/N2) are planar with r. m. s. deviations of 0.0081Å and 0.0100 Å, respectively. The dihedral angle between A/B is 56.8 (2)°. In second molecule, the chlorophenyl group C (C8–C13/Cl2) and the formic hydrazide moiety D (O2/C14/N3/N4) are also planar with r. m. s. deviation of 0.0069Å and 0.0150 Å, respectively and the dihedral angle between C/D is 56.89 (20)°. Each molecule is connected to symmetry related neighbors through classical intermolecular H–bonding of the N—H···O or N—H···N type (Table 1, Fig. 2) with R33(10) ring motifs (Bernstein et al., 1995) to generate one-dimensional polymeric chains along the [0 1 0] direction.

Experimental

2-Chlorobenzoic acid (3.44 g, 22 mmol) was converted to methyl 2-chlorobenzoate by refluxing in methanol (20 ml) in the presence of a catalytic amount of sulfuric acid. This ester was converted into the title compound, 2-chlorobenzoylhydrazide, by refluxing with hydrazine hydrate (80 %, 10 ml) in dry methanol using the literature procedure (Moise et al., 2009). M.p. 379-380K.

Refinement

The coordinates of the H-atoms of the NH2 groups were refined. The remaining H atoms were positioned geometrically with (N–H = 0.86 and C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing diagram (PLATON; Spek, 2009) which shows that the molecules form polymeric chains extending along the [0 1 0] direction forming R33(10) ring motifs.

Crystal data

C7H7ClN2O F(000) = 704
Mr = 170.60 Dx = 1.412 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2089 reflections
a = 25.7589 (16) Å θ = 0.8–26.0°
b = 4.9618 (3) Å µ = 0.42 mm1
c = 12.9205 (8) Å T = 296 K
β = 103.648 (3)° Needle, colorless
V = 1604.75 (17) Å3 0.34 × 0.14 × 0.12 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 3091 independent reflections
Radiation source: fine-focus sealed tube 2089 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
Detector resolution: 7.6 pixels mm-1 θmax = 26.0°, θmin = 0.8°
ω scans h = −31→31
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −6→5
Tmin = 0.979, Tmax = 0.988 l = −15→15
11488 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0577P)2 + 4.8436P] where P = (Fo2 + 2Fc2)/3
3091 reflections (Δ/σ)max < 0.001
211 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.32498 (8) −0.2330 (4) 0.33851 (15) 0.1011 (8)
O1 0.45056 (16) −0.1875 (7) 0.4080 (3) 0.0622 (15)
N1 0.45512 (15) 0.2531 (8) 0.3704 (3) 0.0425 (12)
N2 0.49903 (18) 0.2265 (9) 0.3247 (4) 0.0481 (16)
C1 0.39139 (18) 0.1163 (10) 0.4673 (4) 0.0432 (17)
C2 0.3415 (2) 0.0002 (13) 0.4426 (4) 0.067 (2)
C3 0.3025 (3) 0.0750 (18) 0.4998 (7) 0.093 (3)
C4 0.3167 (3) 0.256 (2) 0.5818 (7) 0.102 (4)
C5 0.3654 (3) 0.3692 (15) 0.6064 (5) 0.080 (3)
C6 0.4023 (2) 0.3033 (11) 0.5501 (4) 0.0570 (17)
C7 0.43389 (18) 0.0452 (9) 0.4120 (3) 0.0397 (16)
Cl2 0.16784 (6) 0.7856 (3) −0.01597 (14) 0.0751 (6)
O2 0.04466 (14) 0.6942 (7) −0.0529 (3) 0.0583 (11)
N3 0.04524 (14) 0.2531 (7) −0.0886 (3) 0.0399 (12)
N4 −0.00065 (18) 0.2615 (9) −0.1749 (3) 0.0461 (14)
C8 0.10837 (18) 0.4182 (10) 0.0635 (3) 0.0422 (16)
C9 0.15626 (19) 0.5612 (12) 0.0799 (4) 0.0546 (19)
C10 0.1956 (2) 0.5229 (16) 0.1706 (6) 0.081 (3)
C11 0.1879 (3) 0.348 (2) 0.2458 (6) 0.094 (3)
C12 0.1414 (3) 0.2024 (17) 0.2324 (5) 0.089 (3)
C13 0.1015 (2) 0.2401 (12) 0.1409 (4) 0.0598 (19)
C14 0.06346 (18) 0.4680 (9) −0.0317 (3) 0.0388 (16)
H1 0.44118 0.41011 0.37190 0.0512*
H2A 0.496 (2) 0.082 (12) 0.283 (4) 0.0577*
H2B 0.523 (2) 0.180 (13) 0.366 (4) 0.0577*
H3 0.26820 0.00263 0.48178 0.1112*
H4 0.29213 0.30088 0.62131 0.1223*
H5 0.37401 0.49282 0.66193 0.0959*
H6 0.43564 0.38561 0.56747 0.0681*
H3A 0.06170 0.10231 −0.07305 0.0475*
H4A −0.026 (2) 0.298 (11) −0.141 (4) 0.0556*
H4B 0.006 (2) 0.363 (12) −0.218 (4) 0.0556*
H10 0.22764 0.61712 0.18040 0.0978*
H11 0.21460 0.32500 0.30771 0.1128*
H12 0.13680 0.08032 0.28412 0.1061*
H13 0.06966 0.14431 0.13169 0.0717*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0933 (12) 0.1012 (16) 0.0900 (12) −0.0555 (11) −0.0160 (9) 0.0057 (11)
O1 0.083 (3) 0.0225 (19) 0.088 (3) −0.0036 (18) 0.034 (2) −0.0005 (19)
N1 0.055 (2) 0.021 (2) 0.055 (2) −0.0018 (17) 0.0199 (19) −0.0024 (18)
N2 0.057 (3) 0.032 (2) 0.060 (3) −0.002 (2) 0.023 (2) −0.002 (2)
C1 0.046 (3) 0.034 (3) 0.050 (3) −0.002 (2) 0.012 (2) 0.013 (2)
C2 0.054 (3) 0.076 (5) 0.067 (3) −0.018 (3) 0.006 (3) 0.022 (3)
C3 0.053 (3) 0.115 (7) 0.112 (6) −0.008 (4) 0.023 (4) 0.046 (5)
C4 0.080 (5) 0.129 (8) 0.112 (6) 0.017 (5) 0.052 (5) 0.015 (6)
C5 0.095 (5) 0.082 (5) 0.073 (4) 0.020 (4) 0.042 (4) 0.005 (4)
C6 0.066 (3) 0.048 (3) 0.062 (3) 0.004 (3) 0.025 (3) 0.002 (3)
C7 0.055 (3) 0.022 (3) 0.041 (2) −0.005 (2) 0.009 (2) −0.003 (2)
Cl2 0.0653 (9) 0.0623 (10) 0.1057 (12) −0.0121 (8) 0.0360 (8) −0.0044 (9)
O2 0.067 (2) 0.0225 (19) 0.075 (2) 0.0001 (16) −0.0040 (18) 0.0014 (17)
N3 0.049 (2) 0.019 (2) 0.048 (2) 0.0053 (16) 0.0041 (16) −0.0001 (17)
N4 0.056 (2) 0.034 (3) 0.044 (2) −0.001 (2) 0.0032 (19) −0.0001 (19)
C8 0.046 (3) 0.037 (3) 0.042 (2) 0.008 (2) 0.007 (2) −0.006 (2)
C9 0.046 (3) 0.055 (4) 0.060 (3) 0.009 (2) 0.007 (2) −0.019 (3)
C10 0.055 (3) 0.094 (6) 0.084 (5) 0.005 (4) −0.006 (3) −0.032 (4)
C11 0.079 (5) 0.126 (7) 0.061 (4) 0.036 (5) −0.017 (4) −0.020 (5)
C12 0.112 (6) 0.096 (6) 0.056 (4) 0.051 (5) 0.017 (4) 0.020 (4)
C13 0.070 (3) 0.051 (4) 0.056 (3) 0.007 (3) 0.010 (3) 0.010 (3)
C14 0.049 (3) 0.024 (3) 0.044 (2) −0.002 (2) 0.012 (2) 0.002 (2)

Geometric parameters (Å, º)

Cl1—C2 1.749 (6) C3—C4 1.371 (13)
Cl2—C9 1.743 (6) C4—C5 1.342 (11)
O1—C7 1.237 (6) C5—C6 1.366 (9)
O2—C14 1.228 (6) C3—H3 0.9300
N1—N2 1.400 (6) C4—H4 0.9300
N1—C7 1.338 (6) C5—H5 0.9300
N1—H1 0.8600 C6—H6 0.9300
N2—H2A 0.89 (6) C8—C14 1.497 (6)
N2—H2B 0.75 (5) C8—C9 1.395 (7)
N3—C14 1.317 (6) C8—C13 1.377 (7)
N3—N4 1.421 (6) C9—C10 1.370 (9)
N3—H3A 0.8600 C10—C11 1.352 (11)
N4—H4A 0.89 (5) C11—C12 1.374 (12)
N4—H4B 0.80 (6) C12—C13 1.384 (9)
C1—C2 1.375 (7) C10—H10 0.9300
C1—C7 1.484 (7) C11—H11 0.9300
C1—C6 1.394 (7) C12—H12 0.9300
C2—C3 1.430 (10) C13—H13 0.9300
N2—N1—C7 123.0 (4) C5—C4—H4 119.00
C7—N1—H1 118.00 C3—C4—H4 119.00
N2—N1—H1 119.00 C6—C5—H5 120.00
N1—N2—H2B 110 (4) C4—C5—H5 120.00
H2A—N2—H2B 97 (6) C1—C6—H6 119.00
N1—N2—H2A 112 (3) C5—C6—H6 119.00
N4—N3—C14 122.3 (4) C9—C8—C13 118.5 (4)
C14—N3—H3A 119.00 C13—C8—C14 119.7 (4)
N4—N3—H3A 119.00 C9—C8—C14 121.7 (4)
N3—N4—H4B 107 (4) Cl2—C9—C10 118.7 (4)
H4A—N4—H4B 121 (5) C8—C9—C10 120.6 (5)
N3—N4—H4A 101 (3) Cl2—C9—C8 120.7 (4)
C6—C1—C7 119.3 (4) C9—C10—C11 120.0 (6)
C2—C1—C7 122.9 (5) C10—C11—C12 121.2 (7)
C2—C1—C6 117.7 (5) C11—C12—C13 119.1 (7)
Cl1—C2—C3 119.8 (5) C8—C13—C12 120.7 (5)
Cl1—C2—C1 120.0 (4) O2—C14—C8 121.5 (4)
C1—C2—C3 120.2 (6) N3—C14—C8 115.4 (4)
C2—C3—C4 118.5 (7) O2—C14—N3 123.1 (4)
C3—C4—C5 121.4 (8) C9—C10—H10 120.00
C4—C5—C6 120.2 (7) C11—C10—H10 120.00
C1—C6—C5 121.9 (5) C10—C11—H11 120.00
O1—C7—C1 123.0 (4) C12—C11—H11 119.00
N1—C7—C1 115.3 (4) C11—C12—H12 120.00
O1—C7—N1 121.6 (4) C13—C12—H12 120.00
C4—C3—H3 121.00 C8—C13—H13 120.00
C2—C3—H3 121.00 C12—C13—H13 120.00
N2—N1—C7—O1 −3.4 (7) C3—C4—C5—C6 −0.6 (13)
N2—N1—C7—C1 173.6 (4) C4—C5—C6—C1 −0.9 (10)
N4—N3—C14—O2 −5.1 (7) C13—C8—C9—Cl2 179.0 (4)
N4—N3—C14—C8 173.5 (4) C13—C8—C9—C10 0.6 (8)
C7—C1—C2—Cl1 −2.5 (7) C14—C8—C9—Cl2 −5.3 (7)
C7—C1—C2—C3 179.2 (6) C14—C8—C9—C10 176.3 (5)
C2—C1—C6—C5 0.7 (8) C9—C8—C13—C12 −0.5 (8)
C7—C1—C6—C5 −177.6 (5) C14—C8—C13—C12 −176.3 (5)
C2—C1—C7—O1 −57.1 (7) C9—C8—C14—O2 −54.9 (7)
C2—C1—C7—N1 125.9 (5) C9—C8—C14—N3 126.5 (5)
C6—C1—C7—O1 121.1 (5) C13—C8—C14—O2 120.7 (5)
C6—C1—C7—N1 −55.9 (6) C13—C8—C14—N3 −57.9 (6)
C6—C1—C2—C3 1.0 (9) Cl2—C9—C10—C11 −179.3 (6)
C6—C1—C2—Cl1 179.2 (4) C8—C9—C10—C11 −0.9 (10)
C1—C2—C3—C4 −2.5 (11) C9—C10—C11—C12 1.2 (12)
Cl1—C2—C3—C4 179.3 (7) C10—C11—C12—C13 −1.2 (12)
C2—C3—C4—C5 2.3 (13) C11—C12—C13—C8 0.8 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.05 2.825 (5) 149
N2—H2A···N2ii 0.89 (6) 2.27 (6) 3.151 (7) 172 (5)
N3—H3A···O2iii 0.86 2.10 2.812 (5) 140
N4—H4B···N4iv 0.80 (6) 2.40 (6) 3.155 (6) 158 (5)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) −x, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2284).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Moise, M., Sunel, V., Profire, L., Popa, M., Desbrieres, J. & Peptu, C. (2009). Molecules, 14, 2621–2631. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Zareef, M., Iqbal, R., Qadeer, G., Wong, W.-Y., Akhtar, H. & Arfan, M. (2006). Z. Kristallogr. New Cryst. Struct. 221, 305–306.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012640/ez2284sup1.cif

e-68-o1254-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012640/ez2284Isup2.hkl

e-68-o1254-Isup2.hkl (148.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012640/ez2284Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES