Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1255–o1256. doi: 10.1107/S1600536812013190

3-Methyl-1-benzofuran-2-carbohydrazide

Hatem A Abdel-Aziz a, Hazem A Ghabbour a, Suchada Chantrapromma b,, Hoong-Kun Fun c,*,§
PMCID: PMC3344183  PMID: 22606186

Abstract

In the asymmetric unit of the title benzofuran derivative, C10H10N2O2, there are three crystallograpically independent mol­ecules, which are slightly twisted; the dihedral angle between the benzofuran ring system and the plane of the carbohydrazide unit is 8.64 (11)° in one mol­ecule, whereas the dihedral angles are 9.58 (11) and 6.89 (10)° in the other two mol­ecules. In the crystal, the three independent mol­ecules are linked to each other through N—H⋯N hydrogen bonds, forming a trimer. The trimers are further linked by weak N—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional network. π–π inter­actions with centroid–centroid distances in the range 3.4928 (11)–3.8561 (10) Å are also observed.

Related literature  

For bond-length data, see: Allen et al. (1987). For background to and the bioactivity of benzofuran derivatives, see: Abdel-Aziz & Mekawey (2009); Abdel-Aziz, Mekawey & Dawood (2009); Abdel-Wahab et al. (2009); Dawood et al. (2005); Hu et al. (2011); Ryu et al. (2010); Ungwitayatorn et al. (2001). For related structures, see: Ma et al. (2010); Wang et al. (2011).graphic file with name e-68-o1255-scheme1.jpg

Experimental  

Crystal data  

  • C10H10N2O2

  • M r = 190.20

  • Monoclinic, Inline graphic

  • a = 10.9391 (4) Å

  • b = 18.1257 (6) Å

  • c = 14.1818 (5) Å

  • β = 94.157 (2)°

  • V = 2804.55 (17) Å3

  • Z = 12

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 296 K

  • 0.59 × 0.58 × 0.07 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.651, T max = 0.946

  • 19906 measured reflections

  • 5271 independent reflections

  • 3618 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.133

  • S = 1.00

  • 5271 reflections

  • 419 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013190/is5101sup1.cif

e-68-o1255-sup1.cif (37.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013190/is5101Isup2.hkl

e-68-o1255-Isup2.hkl (258.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013190/is5101Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1N1⋯N2C 0.91 (2) 2.13 (2) 3.034 (2) 171.4 (17)
N1B—H2N1⋯N2A 0.93 (2) 2.15 (2) 3.081 (2) 173.1 (17)
N1C—H3N1⋯N2B 0.89 (2) 2.12 (2) 3.016 (2) 179 (3)
N2A—H2N2⋯O1Bi 0.86 (2) 2.58 (2) 3.275 (2) 140 (2)
N2B—H4N2⋯O1Aii 0.93 (2) 2.33 (2) 3.176 (2) 150.4 (18)
N2C—H6N2⋯O1Ciii 0.92 (2) 2.22 (2) 3.137 (2) 175.5 (17)
C6A—H6AA⋯O1Aiv 0.93 2.55 3.444 (3) 162
C5C—H5CA⋯O1Bv 0.93 2.59 3.333 (3) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and SC thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. HKF also thanks King Saud University, Riyadh, Saudi Arabia, for the award of a visiting Professorship (December 23rd 2011 to January 14th 2012).

supplementary crystallographic information

Comment

Benzofuran derivatives have been reported to possess various biological activities such as antimicrobial (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz, Mekawey & Dawood, 2009; Abdel-Wahab et al., 2009), antifungal (Ryu et al., 2010) and anti-inflammatory (Hu et al., 2011) properties as well as being a non-nucleoside HIV-1 reverse transcriptase inhibitor (Ungwitayatorn et al., 2001). We have during the course of our medicinal chemistry research reported the synthesis and bioactivity of benzofuran derivatives (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz, Mekawey & Dawood, 2009; Abdel-Wahab et al., 2009; ). The title compound (I) was synthesized and its crystal structure was reported.

There are three crystallographic independent molecules A, B and C in the asymmetric unit of (I) with differences in bond angles (Fig. 1). The molecule of the title benzofuran derivative, C10H10N2O2, is slightly twisted. The carbohydrazide fragment in molecules A and B are slightly twisted whereas it is planar in molecule C as indicated by the torsion angles of N2–N1–C9–O1 being -173.31 (17), -6.8 (3) and -179.64 (17)°, in molecules A, B and C, respectively. The dihedral angle between the mean plane through carbohydrazide fragment and the benzofuran ring is 8.64 (11)° in molecule A whereas they are 9.58 (11)) and 6.89 (10)° in molecules B and C, respectively. The bond distances agree with the literature values (Allen et al., 1987) and are comparable with the related structures (Ma et al., 2010; Wang et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···N and N—H···O hydrogen bonds together with weak C—H···O interactions (Table 1). π–π interactions with the distances of Cg1···Cg4i = 3.8561 (10) Å, Cg2···Cg7iii = 3.4928 (11) Å, Cg2···Cg8iii = 3.8179 (11) Å, Cg4···Cg7vi = 3.7318 (10) Å and Cg4···Cg8vi = 3.5891 (11) Å [symmetry code (vi) = 2-x, -1/2+y, 3/2-z] are also observed; Cg1, Cg2, Cg4, Cg7 and Cg8 are the centroids of C1A–C3A/C8A/O2A, C3A–C8A, C1B–C3B/C8B/O2B, C1C–C3C/C8C/O2C and C3C–C8C rings, respectively.

Experimental

The title compound was prepared from the reaction of ethyl 3-methyl-2-benzofurancarboxylate with hydrazine according to the reported method (Dawood et al., 2005). Single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by the slow evaporation of the solvent at room temperature after several days.

Refinement

Hydrazide H atoms were located in a difference Fourier map and refined isotropically. The remaining H atoms were placed in calculated positions with C—H = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H10N2O2 F(000) = 1200
Mr = 190.20 Dx = 1.351 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 5217 reflections
a = 10.9391 (4) Å θ = 4.0–69.9°
b = 18.1257 (6) Å µ = 0.80 mm1
c = 14.1818 (5) Å T = 296 K
β = 94.157 (2)° Plate, colorless
V = 2804.55 (17) Å3 0.59 × 0.58 × 0.07 mm
Z = 12

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5271 independent reflections
Radiation source: fine-focus sealed tube 3618 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
φ and ω scans θmax = 69.9°, θmin = 4.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→12
Tmin = 0.651, Tmax = 0.946 k = −21→22
19906 measured reflections l = −17→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0825P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.003
5271 reflections Δρmax = 0.23 e Å3
419 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00139 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.66559 (14) 0.25954 (9) 0.45740 (10) 0.0571 (4)
N2A 0.73238 (19) 0.22213 (10) 0.53133 (12) 0.0631 (4)
O1A 0.63038 (14) 0.15700 (7) 0.36927 (10) 0.0709 (4)
O2A 0.56996 (11) 0.34643 (6) 0.31969 (8) 0.0561 (3)
C1A 0.56634 (15) 0.27126 (9) 0.30302 (11) 0.0524 (4)
C2A 0.51543 (15) 0.25509 (10) 0.21547 (12) 0.0562 (4)
C3A 0.48558 (15) 0.32498 (10) 0.17160 (12) 0.0556 (4)
C4A 0.43569 (18) 0.34786 (13) 0.08226 (14) 0.0717 (6)
H4AA 0.4123 0.3136 0.0356 0.086*
C5A 0.42246 (19) 0.42181 (14) 0.06571 (16) 0.0810 (6)
H5AA 0.3910 0.4377 0.0065 0.097*
C6A 0.4547 (2) 0.47400 (13) 0.13506 (18) 0.0801 (6)
H6AA 0.4419 0.5238 0.1218 0.096*
C7A 0.50514 (18) 0.45342 (12) 0.22282 (15) 0.0685 (5)
H7AA 0.5279 0.4879 0.2694 0.082*
C8A 0.51987 (15) 0.37872 (10) 0.23764 (12) 0.0550 (4)
C9A 0.62203 (16) 0.22390 (10) 0.37883 (12) 0.0534 (4)
C10A 0.4931 (2) 0.18129 (11) 0.17137 (16) 0.0808 (6)
H10D 0.4948 0.1443 0.2198 0.121*
H10E 0.5557 0.1710 0.1291 0.121*
H10F 0.4144 0.1810 0.1367 0.121*
N1B 0.83956 (14) 0.29089 (8) 0.71808 (11) 0.0569 (4)
N2B 0.82765 (19) 0.36857 (9) 0.71889 (12) 0.0633 (4)
O1B 0.92755 (12) 0.28638 (7) 0.86711 (9) 0.0695 (4)
O2B 0.83348 (11) 0.14361 (6) 0.70444 (8) 0.0566 (3)
C1B 0.87755 (15) 0.17365 (9) 0.79039 (11) 0.0507 (4)
C2B 0.90239 (15) 0.12155 (10) 0.85708 (13) 0.0560 (4)
C3B 0.87230 (16) 0.05251 (10) 0.81085 (14) 0.0609 (5)
C4B 0.8743 (2) −0.02149 (13) 0.8389 (2) 0.0897 (7)
H4BA 0.8995 −0.0349 0.9005 0.108*
C5B 0.8378 (3) −0.07389 (13) 0.7722 (3) 0.1080 (10)
H5BA 0.8385 −0.1234 0.7897 0.130*
C6B 0.8001 (3) −0.05510 (13) 0.6802 (2) 0.0974 (8)
H6BA 0.7776 −0.0923 0.6371 0.117*
C7B 0.7950 (2) 0.01714 (11) 0.65068 (18) 0.0770 (6)
H7BA 0.7685 0.0302 0.5892 0.092*
C8B 0.83170 (16) 0.06907 (10) 0.71809 (14) 0.0587 (4)
C9B 0.88443 (15) 0.25460 (10) 0.79526 (12) 0.0527 (4)
C10B 0.94992 (19) 0.13066 (13) 0.95756 (14) 0.0740 (6)
H10A 0.9272 0.1784 0.9798 0.111*
H10B 1.0376 0.1263 0.9622 0.111*
H10C 0.9155 0.0932 0.9955 0.111*
N1C 0.69717 (14) 0.46541 (9) 0.57073 (10) 0.0594 (4)
N2C 0.64389 (18) 0.42386 (9) 0.49354 (12) 0.0623 (4)
O1C 0.64284 (13) 0.57510 (7) 0.50655 (9) 0.0699 (4)
O2C 0.79491 (11) 0.52731 (6) 0.72827 (8) 0.0567 (3)
C1C 0.75346 (15) 0.57452 (9) 0.65594 (11) 0.0506 (4)
C2C 0.77132 (16) 0.64592 (9) 0.67945 (13) 0.0531 (4)
C3C 0.82728 (16) 0.64574 (10) 0.77463 (13) 0.0554 (4)
C4C 0.86680 (19) 0.69945 (12) 0.84080 (16) 0.0729 (6)
H4CA 0.8602 0.7494 0.8261 0.088*
C5C 0.9156 (2) 0.67689 (15) 0.92799 (16) 0.0819 (7)
H5CA 0.9427 0.7122 0.9723 0.098*
C6C 0.92547 (19) 0.60330 (15) 0.95160 (15) 0.0834 (7)
H6CA 0.9585 0.5901 1.0115 0.100*
C7C 0.88740 (19) 0.54871 (13) 0.88830 (14) 0.0730 (5)
H7CA 0.8938 0.4989 0.9037 0.088*
C8C 0.83918 (15) 0.57222 (10) 0.80065 (12) 0.0562 (4)
C9C 0.69353 (15) 0.53881 (9) 0.57113 (11) 0.0512 (4)
C10C 0.7425 (2) 0.71305 (11) 0.62159 (15) 0.0730 (6)
H10G 0.7081 0.6987 0.5601 0.110*
H10H 0.8162 0.7408 0.6153 0.110*
H10I 0.6846 0.7429 0.6521 0.110*
H1N1 0.6655 (17) 0.3094 (11) 0.4641 (14) 0.063 (6)*
H2N1 0.8052 (18) 0.2666 (11) 0.6644 (15) 0.069 (6)*
H3N1 0.7349 (17) 0.4363 (12) 0.6145 (15) 0.069 (6)*
H1N2 0.687 (2) 0.1863 (14) 0.5467 (18) 0.085 (8)*
H2N2 0.792 (2) 0.2002 (13) 0.5072 (17) 0.080 (8)*
H3N2 0.901 (2) 0.3877 (13) 0.7343 (17) 0.086 (7)*
H4N2 0.777 (2) 0.3793 (12) 0.7671 (17) 0.078 (7)*
H5N2 0.667 (2) 0.4472 (13) 0.4439 (18) 0.084 (7)*
H6N2 0.560 (2) 0.4227 (12) 0.4966 (14) 0.074 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0717 (9) 0.0530 (8) 0.0446 (7) 0.0021 (7) −0.0089 (7) −0.0002 (6)
N2A 0.0743 (11) 0.0612 (9) 0.0518 (8) 0.0026 (9) −0.0096 (8) 0.0054 (7)
O1A 0.0983 (10) 0.0501 (7) 0.0630 (7) −0.0067 (6) −0.0030 (7) −0.0019 (6)
O2A 0.0668 (7) 0.0534 (7) 0.0465 (6) −0.0018 (5) −0.0076 (5) −0.0024 (5)
C1A 0.0559 (9) 0.0535 (9) 0.0471 (8) −0.0030 (7) −0.0009 (7) −0.0047 (7)
C2A 0.0533 (9) 0.0648 (11) 0.0500 (9) −0.0054 (8) −0.0002 (7) −0.0090 (8)
C3A 0.0489 (9) 0.0718 (11) 0.0456 (8) 0.0015 (8) −0.0012 (7) −0.0016 (8)
C4A 0.0622 (11) 0.1009 (16) 0.0505 (10) 0.0052 (10) −0.0048 (8) −0.0012 (10)
C5A 0.0694 (12) 0.1060 (18) 0.0668 (12) 0.0175 (12) −0.0008 (10) 0.0258 (13)
C6A 0.0745 (13) 0.0802 (14) 0.0854 (15) 0.0155 (11) 0.0048 (11) 0.0208 (12)
C7A 0.0692 (12) 0.0644 (12) 0.0717 (12) 0.0061 (9) 0.0025 (9) 0.0068 (10)
C8A 0.0489 (9) 0.0647 (10) 0.0510 (9) 0.0025 (8) 0.0004 (7) 0.0040 (8)
C9A 0.0574 (10) 0.0529 (9) 0.0498 (9) −0.0076 (7) 0.0026 (7) −0.0030 (7)
C10A 0.0981 (16) 0.0753 (13) 0.0661 (12) −0.0077 (12) −0.0138 (11) −0.0197 (10)
N1B 0.0728 (9) 0.0451 (8) 0.0501 (8) 0.0014 (6) −0.0125 (7) 0.0022 (6)
N2B 0.0806 (12) 0.0473 (8) 0.0595 (9) −0.0021 (8) −0.0122 (9) 0.0034 (7)
O1B 0.0821 (9) 0.0679 (8) 0.0548 (7) −0.0060 (6) −0.0213 (6) −0.0025 (6)
O2B 0.0682 (8) 0.0521 (7) 0.0482 (6) 0.0001 (5) −0.0049 (5) 0.0029 (5)
C1B 0.0499 (8) 0.0546 (9) 0.0464 (8) 0.0024 (7) −0.0041 (7) 0.0038 (7)
C2B 0.0494 (9) 0.0615 (10) 0.0564 (9) 0.0061 (8) −0.0003 (7) 0.0130 (8)
C3B 0.0552 (10) 0.0550 (10) 0.0726 (11) 0.0080 (8) 0.0057 (8) 0.0115 (9)
C4B 0.0939 (17) 0.0652 (14) 0.1089 (19) 0.0150 (12) −0.0006 (14) 0.0312 (13)
C5B 0.117 (2) 0.0477 (12) 0.159 (3) 0.0043 (13) 0.009 (2) 0.0132 (16)
C6B 0.1091 (19) 0.0569 (13) 0.126 (2) −0.0038 (12) 0.0069 (17) −0.0131 (14)
C7B 0.0823 (14) 0.0633 (12) 0.0856 (15) −0.0028 (10) 0.0065 (12) −0.0092 (11)
C8B 0.0580 (10) 0.0490 (9) 0.0695 (11) 0.0038 (7) 0.0071 (8) 0.0024 (8)
C9B 0.0515 (9) 0.0557 (9) 0.0496 (8) 0.0002 (7) −0.0041 (7) 0.0034 (8)
C10B 0.0720 (12) 0.0882 (14) 0.0593 (11) 0.0057 (10) −0.0118 (9) 0.0227 (10)
N1C 0.0726 (10) 0.0529 (8) 0.0498 (8) 0.0019 (7) −0.0151 (7) −0.0022 (7)
N2C 0.0713 (11) 0.0607 (9) 0.0524 (8) −0.0012 (8) −0.0128 (8) −0.0061 (7)
O1C 0.0846 (9) 0.0649 (8) 0.0573 (7) 0.0083 (7) −0.0151 (6) 0.0084 (6)
O2C 0.0694 (7) 0.0503 (6) 0.0485 (6) 0.0037 (5) −0.0082 (5) −0.0003 (5)
C1C 0.0515 (9) 0.0513 (9) 0.0483 (8) 0.0039 (7) −0.0004 (7) 0.0017 (7)
C2C 0.0500 (9) 0.0505 (9) 0.0592 (9) −0.0001 (7) 0.0074 (7) −0.0004 (7)
C3C 0.0483 (9) 0.0595 (10) 0.0585 (9) −0.0050 (7) 0.0045 (7) −0.0090 (8)
C4C 0.0694 (12) 0.0664 (12) 0.0832 (14) −0.0098 (10) 0.0067 (11) −0.0193 (10)
C5C 0.0709 (13) 0.1076 (19) 0.0653 (12) −0.0078 (12) −0.0072 (10) −0.0302 (12)
C6C 0.0697 (13) 0.121 (2) 0.0577 (11) 0.0053 (13) −0.0098 (10) −0.0120 (12)
C7C 0.0753 (12) 0.0858 (14) 0.0557 (10) 0.0078 (10) −0.0100 (9) −0.0016 (10)
C8C 0.0551 (9) 0.0620 (10) 0.0505 (9) 0.0020 (8) −0.0031 (7) −0.0083 (8)
C9C 0.0508 (9) 0.0542 (9) 0.0484 (9) 0.0046 (7) 0.0012 (7) 0.0029 (7)
C10C 0.0824 (14) 0.0541 (10) 0.0826 (14) 0.0009 (9) 0.0056 (11) 0.0101 (10)

Geometric parameters (Å, º)

N1A—C9A 1.345 (2) C3B—C4B 1.399 (3)
N1A—N2A 1.408 (2) C4B—C5B 1.378 (4)
N1A—H1N1 0.908 (19) C4B—H4BA 0.9300
N2A—H1N2 0.86 (3) C5B—C6B 1.383 (4)
N2A—H2N2 0.86 (2) C5B—H5BA 0.9300
O1A—C9A 1.224 (2) C6B—C7B 1.374 (3)
O2A—C8A 1.380 (2) C6B—H6BA 0.9300
O2A—C1A 1.3829 (19) C7B—C8B 1.380 (3)
C1A—C2A 1.355 (2) C7B—H7BA 0.9300
C1A—C9A 1.473 (2) C10B—H10A 0.9600
C2A—C3A 1.438 (3) C10B—H10B 0.9600
C2A—C10A 1.489 (3) C10B—H10C 0.9600
C3A—C8A 1.384 (2) N1C—C9C 1.331 (2)
C3A—C4A 1.405 (2) N1C—N2C 1.419 (2)
C4A—C5A 1.367 (3) N1C—H3N1 0.89 (2)
C4A—H4AA 0.9300 N2C—H5N2 0.87 (2)
C5A—C6A 1.392 (3) N2C—H6N2 0.92 (2)
C5A—H5AA 0.9300 O1C—C9C 1.227 (2)
C6A—C7A 1.376 (3) O2C—C8C 1.371 (2)
C6A—H6AA 0.9300 O2C—C1C 1.3867 (19)
C7A—C8A 1.378 (3) C1C—C2C 1.347 (2)
C7A—H7AA 0.9300 C1C—C9C 1.477 (2)
C10A—H10D 0.9600 C2C—C3C 1.441 (3)
C10A—H10E 0.9600 C2C—C10C 1.488 (2)
C10A—H10F 0.9600 C3C—C8C 1.386 (3)
N1B—C9B 1.339 (2) C3C—C4C 1.399 (3)
N1B—N2B 1.414 (2) C4C—C5C 1.373 (3)
N1B—H2N1 0.93 (2) C4C—H4CA 0.9300
N2B—H3N2 0.88 (2) C5C—C6C 1.378 (3)
N2B—H4N2 0.93 (2) C5C—H5CA 0.9300
O1B—C9B 1.234 (2) C6C—C7C 1.380 (3)
O2B—C8B 1.365 (2) C6C—H6CA 0.9300
O2B—C1B 1.389 (2) C7C—C8C 1.382 (2)
C1B—C2B 1.350 (2) C7C—H7CA 0.9300
C1B—C9B 1.471 (2) C10C—H10G 0.9600
C2B—C3B 1.440 (3) C10C—H10H 0.9600
C2B—C10B 1.490 (3) C10C—H10I 0.9600
C3B—C8B 1.391 (3)
C9A—N1A—N2A 121.28 (16) C4B—C5B—H5BA 119.0
C9A—N1A—H1N1 124.1 (13) C6B—C5B—H5BA 119.0
N2A—N1A—H1N1 113.9 (13) C7B—C6B—C5B 121.6 (2)
N1A—N2A—H1N2 105.9 (16) C7B—C6B—H6BA 119.2
N1A—N2A—H2N2 107.2 (16) C5B—C6B—H6BA 119.2
H1N2—N2A—H2N2 103 (2) C6B—C7B—C8B 115.8 (2)
C8A—O2A—C1A 105.61 (13) C6B—C7B—H7BA 122.1
C2A—C1A—O2A 111.99 (15) C8B—C7B—H7BA 122.1
C2A—C1A—C9A 131.56 (16) O2B—C8B—C7B 125.68 (18)
O2A—C1A—C9A 116.38 (13) O2B—C8B—C3B 109.94 (16)
C1A—C2A—C3A 105.73 (15) C7B—C8B—C3B 124.39 (18)
C1A—C2A—C10A 128.52 (18) O1B—C9B—N1B 122.75 (17)
C3A—C2A—C10A 125.75 (16) O1B—C9B—C1B 121.31 (15)
C8A—C3A—C4A 118.09 (18) N1B—C9B—C1B 115.92 (14)
C8A—C3A—C2A 106.57 (14) C2B—C10B—H10A 109.5
C4A—C3A—C2A 135.32 (18) C2B—C10B—H10B 109.5
C5A—C4A—C3A 118.3 (2) H10A—C10B—H10B 109.5
C5A—C4A—H4AA 120.9 C2B—C10B—H10C 109.5
C3A—C4A—H4AA 120.9 H10A—C10B—H10C 109.5
C4A—C5A—C6A 121.81 (19) H10B—C10B—H10C 109.5
C4A—C5A—H5AA 119.1 C9C—N1C—N2C 121.54 (14)
C6A—C5A—H5AA 119.1 C9C—N1C—H3N1 126.9 (13)
C7A—C6A—C5A 121.3 (2) N2C—N1C—H3N1 111.5 (13)
C7A—C6A—H6AA 119.4 N1C—N2C—H5N2 103.8 (16)
C5A—C6A—H6AA 119.4 N1C—N2C—H6N2 109.3 (13)
C6A—C7A—C8A 116.1 (2) H5N2—N2C—H6N2 113 (2)
C6A—C7A—H7AA 122.0 C8C—O2C—C1C 105.44 (13)
C8A—C7A—H7AA 122.0 C2C—C1C—O2C 112.09 (15)
C7A—C8A—O2A 125.48 (17) C2C—C1C—C9C 132.11 (16)
C7A—C8A—C3A 124.43 (17) O2C—C1C—C9C 115.72 (14)
O2A—C8A—C3A 110.09 (15) C1C—C2C—C3C 105.88 (15)
O1A—C9A—N1A 122.86 (16) C1C—C2C—C10C 128.88 (17)
O1A—C9A—C1A 121.78 (15) C3C—C2C—C10C 125.23 (16)
N1A—C9A—C1A 115.33 (15) C8C—C3C—C4C 118.17 (18)
C2A—C10A—H10D 109.5 C8C—C3C—C2C 106.07 (15)
C2A—C10A—H10E 109.5 C4C—C3C—C2C 135.75 (18)
H10D—C10A—H10E 109.5 C5C—C4C—C3C 118.6 (2)
C2A—C10A—H10F 109.5 C5C—C4C—H4CA 120.7
H10D—C10A—H10F 109.5 C3C—C4C—H4CA 120.7
H10E—C10A—H10F 109.5 C4C—C5C—C6C 121.7 (2)
C9B—N1B—N2B 120.72 (15) C4C—C5C—H5CA 119.1
C9B—N1B—H2N1 122.5 (12) C6C—C5C—H5CA 119.1
N2B—N1B—H2N1 116.3 (12) C5C—C6C—C7C 121.4 (2)
N1B—N2B—H3N2 108.1 (15) C5C—C6C—H6CA 119.3
N1B—N2B—H4N2 105.9 (14) C7C—C6C—H6CA 119.3
H3N2—N2B—H4N2 108 (2) C6C—C7C—C8C 116.2 (2)
C8B—O2B—C1B 105.74 (13) C6C—C7C—H7CA 121.9
C2B—C1B—O2B 112.32 (16) C8C—C7C—H7CA 121.9
C2B—C1B—C9B 131.15 (16) O2C—C8C—C7C 125.56 (18)
O2B—C1B—C9B 116.47 (13) O2C—C8C—C3C 110.51 (15)
C1B—C2B—C3B 105.15 (16) C7C—C8C—C3C 123.92 (18)
C1B—C2B—C10B 129.11 (18) O1C—C9C—N1C 123.01 (16)
C3B—C2B—C10B 125.75 (17) O1C—C9C—C1C 121.52 (16)
C8B—C3B—C4B 118.2 (2) N1C—C9C—C1C 115.47 (14)
C8B—C3B—C2B 106.85 (16) C2C—C10C—H10G 109.5
C4B—C3B—C2B 134.9 (2) C2C—C10C—H10H 109.5
C5B—C4B—C3B 117.9 (2) H10G—C10C—H10H 109.5
C5B—C4B—H4BA 121.0 C2C—C10C—H10I 109.5
C3B—C4B—H4BA 121.0 H10G—C10C—H10I 109.5
C4B—C5B—C6B 122.0 (2) H10H—C10C—H10I 109.5
C8A—O2A—C1A—C2A −0.71 (19) C1B—O2B—C8B—C7B −179.46 (19)
C8A—O2A—C1A—C9A 176.44 (14) C1B—O2B—C8B—C3B 0.71 (19)
O2A—C1A—C2A—C3A 0.9 (2) C6B—C7B—C8B—O2B −179.66 (19)
C9A—C1A—C2A—C3A −175.65 (18) C6B—C7B—C8B—C3B 0.2 (3)
O2A—C1A—C2A—C10A −178.90 (18) C4B—C3B—C8B—O2B 178.62 (17)
C9A—C1A—C2A—C10A 4.5 (3) C2B—C3B—C8B—O2B −0.7 (2)
C1A—C2A—C3A—C8A −0.80 (19) C4B—C3B—C8B—C7B −1.2 (3)
C10A—C2A—C3A—C8A 179.05 (18) C2B—C3B—C8B—C7B 179.49 (18)
C1A—C2A—C3A—C4A 177.5 (2) N2B—N1B—C9B—O1B −6.8 (3)
C10A—C2A—C3A—C4A −2.7 (4) N2B—N1B—C9B—C1B 172.22 (16)
C8A—C3A—C4A—C5A −0.7 (3) C2B—C1B—C9B—O1B 6.4 (3)
C2A—C3A—C4A—C5A −178.8 (2) O2B—C1B—C9B—O1B −176.64 (16)
C3A—C4A—C5A—C6A −1.2 (3) C2B—C1B—C9B—N1B −172.58 (18)
C4A—C5A—C6A—C7A 2.1 (3) O2B—C1B—C9B—N1B 4.4 (2)
C5A—C6A—C7A—C8A −0.8 (3) C8C—O2C—C1C—C2C 0.82 (19)
C6A—C7A—C8A—O2A 179.05 (18) C8C—O2C—C1C—C9C −176.23 (15)
C6A—C7A—C8A—C3A −1.2 (3) O2C—C1C—C2C—C3C −0.7 (2)
C1A—O2A—C8A—C7A 179.92 (17) C9C—C1C—C2C—C3C 175.70 (18)
C1A—O2A—C8A—C3A 0.17 (18) O2C—C1C—C2C—C10C 178.58 (17)
C4A—C3A—C8A—C7A 2.0 (3) C9C—C1C—C2C—C10C −5.0 (3)
C2A—C3A—C8A—C7A −179.37 (17) C1C—C2C—C3C—C8C 0.3 (2)
C4A—C3A—C8A—O2A −178.24 (16) C10C—C2C—C3C—C8C −179.00 (17)
C2A—C3A—C8A—O2A 0.39 (19) C1C—C2C—C3C—C4C −178.5 (2)
N2A—N1A—C9A—O1A 4.9 (3) C10C—C2C—C3C—C4C 2.1 (4)
N2A—N1A—C9A—C1A −173.31 (17) C8C—C3C—C4C—C5C 0.2 (3)
C2A—C1A—C9A—O1A 0.9 (3) C2C—C3C—C4C—C5C 178.9 (2)
O2A—C1A—C9A—O1A −175.59 (16) C3C—C4C—C5C—C6C −0.5 (3)
C2A—C1A—C9A—N1A 179.11 (18) C4C—C5C—C6C—C7C 0.4 (3)
O2A—C1A—C9A—N1A 2.6 (2) C5C—C6C—C7C—C8C 0.0 (3)
C8B—O2B—C1B—C2B −0.49 (19) C1C—O2C—C8C—C7C 178.43 (18)
C8B—O2B—C1B—C9B −178.00 (14) C1C—O2C—C8C—C3C −0.59 (19)
O2B—C1B—C2B—C3B 0.1 (2) C6C—C7C—C8C—O2C −179.19 (18)
C9B—C1B—C2B—C3B 177.12 (17) C6C—C7C—C8C—C3C −0.3 (3)
O2B—C1B—C2B—C10B −179.60 (18) C4C—C3C—C8C—O2C 179.28 (16)
C9B—C1B—C2B—C10B −2.6 (3) C2C—C3C—C8C—O2C 0.2 (2)
C1B—C2B—C3B—C8B 0.4 (2) C4C—C3C—C8C—C7C 0.2 (3)
C10B—C2B—C3B—C8B −179.95 (18) C2C—C3C—C8C—C7C −178.86 (18)
C1B—C2B—C3B—C4B −178.8 (2) N2C—N1C—C9C—O1C 1.3 (3)
C10B—C2B—C3B—C4B 0.9 (3) N2C—N1C—C9C—C1C −179.64 (17)
C8B—C3B—C4B—C5B 1.1 (3) C2C—C1C—C9C—O1C −3.4 (3)
C2B—C3B—C4B—C5B −179.9 (2) O2C—C1C—C9C—O1C 172.87 (16)
C3B—C4B—C5B—C6B 0.1 (4) C2C—C1C—C9C—N1C 177.44 (18)
C4B—C5B—C6B—C7B −1.2 (4) O2C—C1C—C9C—N1C −6.2 (2)
C5B—C6B—C7B—C8B 1.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1N1···N2C 0.91 (2) 2.13 (2) 3.034 (2) 171.4 (17)
N1B—H2N1···N2A 0.93 (2) 2.15 (2) 3.081 (2) 173.1 (17)
N1C—H3N1···N2B 0.89 (2) 2.12 (2) 3.016 (2) 179 (3)
N2A—H2N2···O1Bi 0.86 (2) 2.58 (2) 3.275 (2) 140 (2)
N2B—H4N2···O1Aii 0.93 (2) 2.33 (2) 3.176 (2) 150.4 (18)
N2C—H6N2···O1Ciii 0.92 (2) 2.22 (2) 3.137 (2) 175.5 (17)
C6A—H6AA···O1Aiv 0.93 2.55 3.444 (3) 162
C5C—H5CA···O1Bv 0.93 2.59 3.333 (3) 137

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y+1/2, −z+1/2; (v) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5101).

References

  1. Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem 44, 4985–4997. [DOI] [PubMed]
  2. Abdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem 44, 3637–3644. [DOI] [PubMed]
  3. Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem 44, 2632–2635. [DOI] [PubMed]
  4. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  5. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem 16, 621–627.
  7. Hu, Z.-F., Chen, L.-L., Qi, J., Wang, Y.-H., Zhang, H. & Yu, B.-Y. (2011). Fitoterapia, 82, 190–192. [DOI] [PubMed]
  8. Ma, B., Zhao, Z. & Li, H. (2010). Acta Cryst. E66, o2657. [DOI] [PMC free article] [PubMed]
  9. Ryu, C.-K., Song, A.-L., Lee, J.-Y., Hong, J.-A., Yoon, J.-H. & Kim, A. (2010). Bioorg. Med. Chem. Lett 20, 6777-6780. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Ungwitayatorn, J., Wiwat, C., Matayatsuk, C., Sripha, K. & Kamalanonth, P. (2001). Songklanakarin J. Sci. Technol 23, 235–245.
  13. Wang, L., Liu, X., Yang, C., Zhao, S. & Li, K. (2011). Acta Cryst. E67, o493. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013190/is5101sup1.cif

e-68-o1255-sup1.cif (37.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013190/is5101Isup2.hkl

e-68-o1255-Isup2.hkl (258.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013190/is5101Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES