Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1262. doi: 10.1107/S1600536812012925

2-[4-(2-Hy­droxy­propan-2-yl)-1H-1,2,3-triazol-1-yl]phenol

Li-Li Zhang a,*, Kai Yu a, Ling-Ling Liu a, Dian-Shun Guo a
PMCID: PMC3344188  PMID: 22606191

Abstract

In the title compound, C11H13N3O2, the 1,2,3-triazole ring and the phenol ring form a dihedral angle of 55.46 (5)°. In the crystal, inversion-related mol­ecules associate through pairs of hy­droxy–phenol O—H⋯O hydrogen bonds, giving centrosymmetric cyclic dimers [graph set R 2 2(18)]. These dimers are linked into infinite chains along [001], giving an overall two-dimensional network structure parallel to the bc plane through hy­droxy O—H⋯N and triazole C—H⋯N hydrogen bonds.

Related literature  

For general background to 1,2,3-triazole derivatives, see: Shia et al. (2002); Orgueira et al. (2005); Crowley & Bandeen (2010). For related structures, see: Zou et al. (2006); Danielraj et al. (2010); Stöger et al. (2011). For bond-length data, see: Banerjee et al. (2002); Janas & Sobota (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1262-scheme1.jpg

Experimental  

Crystal data  

  • C11H13N3O2

  • M r = 219.24

  • Monoclinic, Inline graphic

  • a = 11.599 (2) Å

  • b = 9.0747 (18) Å

  • c = 10.743 (2) Å

  • β = 107.081 (3)°

  • V = 1080.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.18 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.963, T max = 0.983

  • 5462 measured reflections

  • 1994 independent reflections

  • 1696 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.109

  • S = 1.05

  • 1994 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812012925/zs2192sup1.cif

e-68-o1262-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012925/zs2192Isup2.hkl

e-68-o1262-Isup2.hkl (98.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012925/zs2192Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.89 2.7090 (15) 173
O1—H1⋯N3ii 0.82 2.05 2.8665 (16) 171
C7—H7⋯N2ii 0.93 2.40 3.2738 (19) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

supplementary crystallographic information

Comment

1,2,3-Triazole derivatives have received much attention owing to their wide applications in drug discovery, materials and supramolecular chemistry (Shia et al., 2002; Orgueira et al., 2005; Crowley & Bandeen 2010). Numerous crystal structures of triazole derivatives have been described (Danielraj et al., 2010; Stöger et al., 2011). We report here the structure of a new triazole compound, 2-[4-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl]phenol, C11H13N3O2.

The title compound, shown in Fig. 1, contains a 1,2,3-triazole ring and a phenol ring which are non-coplanar with a dihedral angle of 55.46 (5)°, larger than that reported previously for a similar structure [14.34 (17)°] (Zou et al., 2006). This difference may be ascribed to the steric repulsion between the heterocyclic N atom, N2, and the phenolic hydroxyl oxygen atom, O2. The bond lengths of C7—N1, C8—N3 and N1—N2 are shorter than the normal C—N single bond length (1.483 Å) (Banerjee et al., 2002) and N—N single bond length (1.467 Å) (Janas & Sobota, 2005), showing an obvious electron delocalization in the triazole ring.

The packing of the title compound is stabilized by intermolecular O—H···O, O—H···N and C—H···N hydrogen bonds (Table 1). Two inversion- related molecules form a centrosymmetric dimer through intermolecular hydroxyl O2—H···O1i hydrogen bonds, locally creating an R22(18) motif (Bernstein et al., 1995) (Fig. 2). These dimers are linked into chains which give an overall two-dimensional network structure through intermolecular hydroxyl O1—H···N3ii and triazole C7—H7···N2ii hydrogen-bonding interactions, which include a cyclic R22(8) motif (Fig. 3). For symmetry codes (i) and (ii), see Table 1.

Experimental

2-Methylbut-3-yn-2-ol (0.093 g, 1.1 mmol) was added to a suspension of 2-azidophenol (0.135 g, 1.0 mmol), CuI (0.019 g, 0.10 mmol), Et3N (0.5 ml) and ascorbic acid (0.018 g, 0.10 mmol) in CH3CN (2.0 ml) and continuously stirred at 298 K for 0.5 h. The resulting mixture was extracted with CH2Cl2 and the organic layer was washed with brine, then dried over anhydrous MgSO4. After removal of the solvent under reduced pressure, the crude product was purified by recrystallization from CH2Cl2/pentane to afford the title compound as a pale yellow solid (95% yield). Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow diffusion of pentane into a solution of the title compound in CH2Cl2 at 298 K.

Refinement

All H atoms were placed in geometrically idealized positions and refined using a riding model with C—H = 0.93 Å and Uiso(H)= 1.2Ueq(C) (aromatic); C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) (methyl); O—H= 0.82 Å and Uiso(H)= 1.5Ueq(O) (hydroxyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the the 30% probability level.

Fig. 2.

Fig. 2.

A centrosymmetric dimer of the title compound formed by intermolecular O—H···O hydrogen bonds, showing the R22(18) motif. For the sake of clarity, H atoms not involved in the motif have been omitted. For symmetry code (i), see Table 1.

Fig. 3.

Fig. 3.

A hydrogen-bonded chain of the title compound, showing the R22(18) and R22(8) motifs. For the sake of clarity, H atoms not involved in the motifs have been omitted. For symmetry code (iii), -x + 1, y - 1/2, -z - 1/2. For symmetry code (ii), see Table 1.

Crystal data

C11H13N3O2 F(000) = 464
Mr = 219.24 Dx = 1.347 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2071 reflections
a = 11.599 (2) Å θ = 2.9–23.0°
b = 9.0747 (18) Å µ = 0.10 mm1
c = 10.743 (2) Å T = 298 K
β = 107.081 (3)° Block, pale yellow
V = 1080.9 (3) Å3 0.40 × 0.30 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 1994 independent reflections
Radiation source: fine-focus sealed tube 1696 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
φ and ω scans θmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −14→12
Tmin = 0.963, Tmax = 0.983 k = −10→10
5462 measured reflections l = −11→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.1715P] where P = (Fo2 + 2Fc2)/3
1994 reflections (Δ/σ)max < 0.001
149 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.57130 (10) 0.27595 (13) 0.05416 (11) 0.0285 (3)
N2 0.50492 (12) 0.30872 (16) −0.06770 (11) 0.0374 (3)
N3 0.39371 (11) 0.32767 (15) −0.06404 (11) 0.0352 (3)
O1 0.26044 (9) 0.18448 (11) 0.16529 (9) 0.0321 (3)
H1 0.2976 0.1914 0.2428 0.048*
O2 0.65112 (10) 0.05481 (13) −0.07335 (11) 0.0447 (3)
H2 0.6832 −0.0144 −0.0993 0.067*
C1 0.93917 (15) 0.1799 (2) 0.14569 (17) 0.0443 (4)
H1A 1.0210 0.1584 0.1663 0.053*
C2 0.90012 (16) 0.2893 (2) 0.21198 (17) 0.0478 (5)
H2A 0.9552 0.3409 0.2780 0.057*
C3 0.77857 (14) 0.32227 (18) 0.18018 (15) 0.0391 (4)
H3 0.7517 0.3971 0.2239 0.047*
C4 0.69727 (13) 0.24373 (16) 0.08337 (13) 0.0293 (3)
C5 0.73520 (13) 0.13098 (17) 0.01699 (14) 0.0314 (4)
C6 0.85794 (14) 0.10189 (19) 0.04891 (15) 0.0389 (4)
H6 0.8857 0.0287 0.0043 0.047*
C7 0.50258 (13) 0.27627 (17) 0.13542 (13) 0.0312 (4)
H7 0.5273 0.2581 0.2245 0.037*
C8 0.38921 (13) 0.30876 (15) 0.05978 (13) 0.0276 (3)
C9 0.27444 (13) 0.32016 (16) 0.09872 (14) 0.0312 (4)
C10 0.28121 (17) 0.44984 (19) 0.18952 (18) 0.0495 (5)
H10A 0.2095 0.4530 0.2167 0.074*
H10B 0.2881 0.5396 0.1449 0.074*
H10C 0.3503 0.4391 0.2645 0.074*
C11 0.16508 (15) 0.3294 (2) −0.01930 (17) 0.0495 (5)
H11A 0.1618 0.2438 −0.0727 0.074*
H11B 0.1704 0.4162 −0.0684 0.074*
H11C 0.0935 0.3341 0.0082 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0282 (6) 0.0342 (7) 0.0230 (6) 0.0021 (5) 0.0074 (5) 0.0005 (5)
N2 0.0356 (7) 0.0538 (9) 0.0229 (6) 0.0069 (6) 0.0088 (5) 0.0035 (6)
N3 0.0327 (7) 0.0475 (8) 0.0254 (6) 0.0055 (6) 0.0083 (5) 0.0012 (6)
O1 0.0347 (6) 0.0357 (6) 0.0252 (5) −0.0038 (4) 0.0077 (4) −0.0015 (4)
O2 0.0401 (7) 0.0444 (7) 0.0469 (7) 0.0023 (5) 0.0084 (5) −0.0152 (5)
C1 0.0284 (8) 0.0522 (11) 0.0519 (10) 0.0023 (7) 0.0114 (8) 0.0061 (8)
C2 0.0364 (10) 0.0517 (11) 0.0479 (10) −0.0050 (8) 0.0010 (8) −0.0062 (8)
C3 0.0380 (9) 0.0414 (9) 0.0358 (9) 0.0011 (7) 0.0079 (7) −0.0057 (7)
C4 0.0293 (8) 0.0325 (8) 0.0276 (7) 0.0014 (6) 0.0106 (6) 0.0045 (6)
C5 0.0317 (8) 0.0341 (8) 0.0291 (8) −0.0019 (6) 0.0100 (6) 0.0018 (6)
C6 0.0376 (9) 0.0413 (9) 0.0422 (9) 0.0056 (7) 0.0187 (7) 0.0014 (7)
C7 0.0326 (8) 0.0404 (9) 0.0218 (7) 0.0003 (6) 0.0098 (6) 0.0011 (6)
C8 0.0324 (8) 0.0276 (8) 0.0224 (7) −0.0006 (6) 0.0077 (6) −0.0024 (6)
C9 0.0309 (8) 0.0322 (8) 0.0319 (8) 0.0018 (6) 0.0113 (6) 0.0025 (6)
C10 0.0594 (12) 0.0372 (10) 0.0632 (12) 0.0013 (8) 0.0355 (10) −0.0056 (8)
C11 0.0327 (9) 0.0685 (13) 0.0466 (10) 0.0057 (8) 0.0107 (8) 0.0180 (9)

Geometric parameters (Å, º)

N1—N2 1.3428 (16) C3—H3 0.9300
N1—C7 1.3441 (18) C4—C5 1.390 (2)
N1—C4 1.4316 (19) C5—C6 1.388 (2)
N2—N3 1.3134 (18) C6—H6 0.9300
N3—C8 1.3575 (18) C7—C8 1.360 (2)
O1—C9 1.4568 (18) C7—H7 0.9300
O1—H1 0.8200 C8—C9 1.512 (2)
O2—C5 1.3472 (18) C9—C11 1.510 (2)
O2—H2 0.8200 C9—C10 1.516 (2)
C1—C2 1.374 (3) C10—H10A 0.9600
C1—C6 1.376 (2) C10—H10B 0.9600
C1—H1A 0.9300 C10—H10C 0.9600
C2—C3 1.383 (2) C11—H11A 0.9600
C2—H2A 0.9300 C11—H11B 0.9600
C3—C4 1.379 (2) C11—H11C 0.9600
N2—N1—C7 110.68 (12) N1—C7—C8 105.44 (12)
N2—N1—C4 121.00 (11) N1—C7—H7 127.3
C7—N1—C4 128.31 (12) C8—C7—H7 127.3
N3—N2—N1 106.67 (11) N3—C8—C7 107.72 (13)
N2—N3—C8 109.48 (12) N3—C8—C9 123.57 (13)
C9—O1—H1 109.5 C7—C8—C9 128.70 (13)
C5—O2—H2 109.5 O1—C9—C11 105.78 (12)
C2—C1—C6 120.43 (15) O1—C9—C8 108.19 (11)
C2—C1—H1A 119.8 C11—C9—C8 111.25 (12)
C6—C1—H1A 119.8 O1—C9—C10 109.42 (12)
C1—C2—C3 119.74 (16) C11—C9—C10 111.68 (14)
C1—C2—H2A 120.1 C8—C9—C10 110.36 (13)
C3—C2—H2A 120.1 C9—C10—H10A 109.5
C4—C3—C2 119.74 (15) C9—C10—H10B 109.5
C4—C3—H3 120.1 H10A—C10—H10B 109.5
C2—C3—H3 120.1 C9—C10—H10C 109.5
C3—C4—C5 121.17 (14) H10A—C10—H10C 109.5
C3—C4—N1 119.17 (13) H10B—C10—H10C 109.5
C5—C4—N1 119.62 (13) C9—C11—H11A 109.5
O2—C5—C6 123.59 (14) C9—C11—H11B 109.5
O2—C5—C4 118.42 (13) H11A—C11—H11B 109.5
C6—C5—C4 117.99 (14) C9—C11—H11C 109.5
C1—C6—C5 120.90 (15) H11A—C11—H11C 109.5
C1—C6—H6 119.5 H11B—C11—H11C 109.5
C5—C6—H6 119.5
C7—N1—N2—N3 −0.92 (17) C2—C1—C6—C5 −0.6 (3)
C4—N1—N2—N3 177.94 (12) O2—C5—C6—C1 −177.47 (15)
N1—N2—N3—C8 0.68 (16) C4—C5—C6—C1 1.6 (2)
C6—C1—C2—C3 −0.7 (3) N2—N1—C7—C8 0.77 (16)
C1—C2—C3—C4 0.9 (3) C4—N1—C7—C8 −177.98 (14)
C2—C3—C4—C5 0.2 (2) N2—N3—C8—C7 −0.22 (17)
C2—C3—C4—N1 178.08 (14) N2—N3—C8—C9 −178.97 (13)
N2—N1—C4—C3 125.90 (15) N1—C7—C8—N3 −0.34 (16)
C7—N1—C4—C3 −55.5 (2) N1—C7—C8—C9 178.33 (14)
N2—N1—C4—C5 −56.22 (19) N3—C8—C9—O1 125.29 (14)
C7—N1—C4—C5 122.42 (16) C7—C8—C9—O1 −53.19 (19)
C3—C4—C5—O2 177.68 (14) N3—C8—C9—C11 9.5 (2)
N1—C4—C5—O2 −0.2 (2) C7—C8—C9—C11 −168.97 (16)
C3—C4—C5—C6 −1.5 (2) N3—C8—C9—C10 −115.03 (16)
N1—C4—C5—C6 −179.33 (13) C7—C8—C9—C10 66.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.89 2.7090 (15) 173
O1—H1···N3ii 0.82 2.05 2.8665 (16) 171
C7—H7···N2ii 0.93 2.40 3.2738 (19) 157

Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2192).

References

  1. Banerjee, S., Mukherjee, A. K., Goswami, D., De, A. U. & Helliwell, M. (2002). Cryst. Res. Technol. 37, 309–317.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Crowley, J. D. & Bandeen, P. H. (2010). Dalton Trans. pp. 612–623. [DOI] [PubMed]
  5. Danielraj, P., Varghese, B. & Sankararaman, S. (2010). Acta Cryst. C66, m366–m370. [DOI] [PubMed]
  6. Janas, Z. & Sobota, P. (2005). Coord. Chem. Rev. 249, 2144–2155.
  7. Orgueira, H. A., Fokas, D., Isome, Y., Chan, P. C.-M. & Baldino, C. M. (2005). Tetrahedron Lett. 46, 2911–2914.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shia, K. S., Li, W. T., Chang, C. M., Hsu, M. C., Chern, J. H., Leong, M. K., Tseng, S. N., Lee, C. C., Lee, Y. C., Chen, S. J., Peng, K. C., Tseng, H. Y., Chang, Y. L., Tai, C. L. & Shih, S. R. (2002). J. Med. Chem. 45, 1644–1655. [DOI] [PubMed]
  10. Stöger, B., Lumpi, D. & Fröhlich, J. (2011). Acta Cryst. C67, o464–o468. [DOI] [PubMed]
  11. Zou, W.-Q., Li, Y., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2006). Acta Cryst. E62, o3591–o3593.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812012925/zs2192sup1.cif

e-68-o1262-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012925/zs2192Isup2.hkl

e-68-o1262-Isup2.hkl (98.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012925/zs2192Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES