Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1263. doi: 10.1107/S1600536812013207

6-Methyl­ideneandrost-4-ene-3,17-dione

L C R Andrade a, M J M de Almeida a,*, F M Fernandes Roleira b, C L Varela b, E J Tavares da Silva b
PMCID: PMC3344189  PMID: 22606192

Abstract

In the title compound, C20H26O2, which is the 6-methyl­ene derivative of androstenedione and a synthetic percursor of exemestane, the steroid A ring approximates to a sofa (or envelope) conformation, with the methyl­ene group adjacent to the link to the B ring lying out of the plane of the other atoms. The B and C rings have slightly flattened chair conformations and the D ring is an envelope, with the CH group forming the flap. In the crystal, mol­ecules are linked by two distinct C—H⋯O hydrogen bonds, involving acidic H atoms close to C=C and C=O double bonds.

Related literature  

For the synthesis of the title compound, see: Annen et al. (1982). For exemestane aromatase inhibitor potency, see: Furr (2006). For elucidation of structural requirements needed to achieve anti­tumor activity, see: Cepa et al. (2005). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax & Norton (1975); Altona et al. (1968). For reference bond-length data, see: Allen et al. (1987).graphic file with name e-68-o1263-scheme1.jpg

Experimental  

Crystal data  

  • C20H26O2

  • M r = 298.41

  • Monoclinic, Inline graphic

  • a = 9.2343 (4) Å

  • b = 8.7162 (4) Å

  • c = 11.0798 (5) Å

  • β = 108.197 (2)°

  • V = 847.19 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.24 × 0.17 × 0.05 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.835, T max = 0.996

  • 18560 measured reflections

  • 1979 independent reflections

  • 1433 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.100

  • S = 1.02

  • 1979 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013207/hb6686sup1.cif

e-68-o1263-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013207/hb6686Isup2.hkl

e-68-o1263-Isup2.hkl (97.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O17i 0.97 2.43 3.345 (3) 158
C66—H66A⋯O3ii 0.93 2.47 3.365 (3) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by funds from FEDER via the COMPETE (Programa Operacional Factores de Competitividade) programme and by the FCT (Fundação para a Ciência e a Tecnologia, project PEst-C/FIS/UI0036/2011).

supplementary crystallographic information

Comment

The title compound is the 6-methylene derivative of androstenedione, the natural substrate of aromatase, and is a key synthetic precursor of exemestane, the most potent steroid aromatase inhibitor clinically used in the breast cancer treatment (Furr, 2006). Following our work on the determination of several androstane structures of potential aromatase inhibitors and intermediates of their syntheses, the X-ray analysis of compound (I) aims to contribute to the elucidation of structural requirements needed to achieve antitumor activity (Cepa et al., 2005). From the single-crystal diffraction measurements one can conclude that bond lengths are within normal values (Allen et al., 1987) with an average Csp3–Csp3 bond length of 1.534 (13) Å. Due to the C4═C5 double bond ring A addopts a 1α–sofa conformation, slightly distorted towards a 1α,2β–halfchair one [asymmetry parameters (Duax and Norton, 1975): ΔCs(1)=7.8 (3), ΔC2(1,2)=17.5 (3) and ΔC2(2,3)=51.4 (4)°]. Rings B and C have slightly flattened chair conformations evidenced by average torsion angle values of 50 (3) and 55 (3)°, respectively. The five member D ring assumes a 14α–envelope conformation [puckering parameters (Cremer and Pople, 1975): q2=0.414 (3) Å and φ2=211.3 (4)°; pseudo-rotation (Altona et al., 1968) and asymmetry parameters: Δ=25.4 (4), φm=42.7 (2)°, ΔCs(14)=4.8 (3) and ΔC2(13,14)=14.9 (3)°]. The pseudo-torsion angle C19–C10···C13–C18 of 2.2 (2)° indicates that the molecule is only slightly twisted. The 6-methylene group is in a beta equatorial position with an angle of 63.8 (2)°. Due to the acidic character of hydrogen atoms close to C═C or C═O double bonds, cohesion of the crystal can be attributed to a net of two C–H···O pseudohydrogen bonds, namely C2–H2A···O17 and C66–H66A···O3, connecting molecules aligned almost along [101], respectively head to tail and head to head.

Experimental

6-Methylenandrost-4-ene-3,17-dione was prepared according to a described procedure (Annen et al., 1982) as follows. A suspension of anhydrous sodium acetate (1.0 g, 12.19 mmol) in dry chloroform (30.0 cm3) containing formaldehyde dimethyl acetal (30.0 cm3, 340.0 mmol) and phosphoryl choride (1.9 cm3, 20.0 mmol) was heated at reflux for 1 h. Androstenedione (773.5 mg, 2.70 mmol) was then added and the mixture was supplemented dropwise with phosphoryl choride (1.9 cm3, 20.0 mmol) over a period of 3 h 30 min. The reaction mixture was subsequently refluxed under nitrogen for 10 h, after which was allowed to cool to room temperature. A saturated aqueous solution of sodium carbonate was then added under vigorous stirring until the aqueous layer became alkaline. This mixture was extracted with chloroform (200 cm3) and then the organic phase was washed with water (4x100 cm3), dried over anhydrous MgSO4, filtered and concentrated to dryness. The resulting residue was purified by a silica gel 60 column chromatography (hexane/diethyl ether) affording the pure 6-methylenandrost-4-ene-3,17-dione (134.8 mg, 17%). Suitable crystals for X-ray studies were grown from slow evaporation from acetone/n-hexane: Mp. 435–437 K [lit 440 K (Annen et al., 1982)]; IR νmax (NaCl plates, CHCl3) cm-1: 3084 (=C–H), 1738 (C17=O), 1671 (C3=O), 1599 (C═C); 1H NMR (600 MHz, CDCl3): δ 0.78 (3H, s, 18–H3), 1.00 (3H, s, 19–H3), 4.87 (1H, t, ═CH2), 4.97 (1H, t, ═CH2), 5.79 (1H, s, 4–H); 13C NMR (150 MHz, CDCl3): δ 11.5 (C18), 14.9 (C19), 18.2, 19.5, 29.0, 31.6, 32.9, 33.0, 33.6, 36.6, 36.9, 45.3, 48.9, 50.3, 112.4 (═CH2), 119.6 (C4), 143.2 (C6), 166.3 (C5), 197.4 (C3), 217.8 (C17).

Refinement

All hydrogen atoms were refined as riding on their parent atoms. Number of Friedel pairs measured: 1606 (45%). Due to the lack of any strong anomalous scatterer atom at the Mo Kα wavelength, refinement of Flack parameter was inconclusive. However the absolute configuration of the molecule is known from the synthetic route.

Figures

Fig. 1.

Fig. 1.

A view of the title compound. Displacement ellipsoids are drawn at the 50% level.

Crystal data

C20H26O2 F(000) = 324
Mr = 298.41 Dx = 1.170 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 9.2343 (4) Å Cell parameters from 4974 reflections
b = 8.7162 (4) Å θ = 3.0–22.5°
c = 11.0798 (5) Å µ = 0.07 mm1
β = 108.197 (2)° T = 293 K
V = 847.19 (7) Å3 Prism, colourless
Z = 2 0.24 × 0.17 × 0.05 mm

Data collection

Bruker APEX CCD diffractometer 1979 independent reflections
Radiation source: fine-focus sealed tube 1433 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
φ and ω scans θmax = 28.2°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −11→11
Tmin = 0.835, Tmax = 0.996 k = −11→11
18560 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0289P] where P = (Fo2 + 2Fc2)/3
1979 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.14 e Å3
1 restraint Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.4355 (3) 0.2091 (3) −0.50154 (16) 0.0901 (7)
O17 0.8776 (2) 0.1624 (3) 0.50156 (17) 0.0859 (7)
C1 0.6765 (3) 0.0835 (3) −0.1938 (2) 0.0482 (6)
H1A 0.7557 0.0070 −0.1627 0.058*
H1B 0.5887 0.0510 −0.1700 0.058*
C2 0.6322 (3) 0.0896 (3) −0.3384 (2) 0.0587 (7)
H2A 0.7234 0.1037 −0.3628 0.070*
H2B 0.5867 −0.0076 −0.3730 0.070*
C3 0.5234 (3) 0.2148 (3) −0.3938 (2) 0.0579 (7)
C4 0.5301 (3) 0.3509 (3) −0.31480 (19) 0.0519 (6)
H4 0.4632 0.4312 −0.3481 0.062*
C5 0.6281 (3) 0.3660 (3) −0.19633 (19) 0.0406 (5)
C6 0.6402 (3) 0.5144 (3) −0.12840 (19) 0.0429 (5)
C7 0.6506 (3) 0.5032 (3) 0.00948 (19) 0.0466 (6)
H7A 0.5514 0.4757 0.0158 0.056*
H7B 0.6779 0.6028 0.0491 0.056*
C8 0.7671 (3) 0.3855 (3) 0.08090 (18) 0.0393 (5)
H8 0.8690 0.4198 0.0832 0.047*
C9 0.7337 (3) 0.2294 (3) 0.01266 (18) 0.0366 (5)
H9 0.6293 0.2027 0.0087 0.044*
C10 0.7340 (2) 0.2374 (2) −0.12870 (18) 0.0393 (5)
C11 0.8350 (3) 0.1008 (3) 0.0884 (2) 0.0539 (6)
H11A 0.9384 0.1168 0.0871 0.065*
H11B 0.7999 0.0036 0.0468 0.065*
C12 0.8365 (3) 0.0905 (3) 0.2274 (2) 0.0568 (7)
H12A 0.7370 0.0584 0.2302 0.068*
H12B 0.9107 0.0146 0.2722 0.068*
C13 0.8765 (3) 0.2447 (3) 0.29190 (19) 0.0473 (6)
C14 0.7637 (3) 0.3646 (3) 0.21692 (19) 0.0423 (5)
H14 0.6623 0.3240 0.2093 0.051*
C15 0.7863 (3) 0.5024 (4) 0.3071 (2) 0.0586 (7)
H15A 0.6977 0.5690 0.2840 0.070*
H15B 0.8756 0.5616 0.3079 0.070*
C16 0.8078 (4) 0.4237 (4) 0.4357 (2) 0.0741 (9)
H16A 0.8849 0.4765 0.5028 0.089*
H16B 0.7130 0.4240 0.4561 0.089*
C17 0.8573 (3) 0.2610 (4) 0.4218 (2) 0.0597 (7)
C18 1.0444 (3) 0.2877 (4) 0.3115 (2) 0.0665 (8)
H18A 1.1098 0.2100 0.3615 0.100*
H18B 1.0667 0.3845 0.3546 0.100*
H18C 1.0611 0.2953 0.2304 0.100*
C19 0.8931 (3) 0.2731 (3) −0.1379 (2) 0.0536 (6)
H19A 0.8879 0.2794 −0.2257 0.080*
H19B 0.9625 0.1930 −0.0971 0.080*
H19C 0.9282 0.3691 −0.0968 0.080*
C66 0.6447 (3) 0.6472 (3) −0.1846 (2) 0.0609 (7)
H66A 0.6403 0.6498 −0.2696 0.073*
H66B 0.6523 0.7382 −0.1391 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.1235 (18) 0.0890 (16) 0.0410 (9) −0.0040 (15) 0.0016 (11) −0.0116 (10)
O17 0.0974 (16) 0.1097 (18) 0.0578 (10) 0.0235 (14) 0.0349 (10) 0.0346 (12)
C1 0.0620 (15) 0.0377 (14) 0.0482 (12) −0.0032 (12) 0.0218 (11) −0.0054 (11)
C2 0.0806 (18) 0.0504 (16) 0.0498 (13) −0.0085 (15) 0.0272 (12) −0.0157 (12)
C3 0.0765 (18) 0.0587 (17) 0.0386 (11) −0.0084 (15) 0.0182 (12) −0.0052 (12)
C4 0.0636 (15) 0.0513 (15) 0.0383 (11) 0.0048 (14) 0.0121 (10) 0.0033 (12)
C5 0.0513 (14) 0.0367 (13) 0.0371 (10) −0.0006 (11) 0.0188 (10) 0.0038 (10)
C6 0.0525 (14) 0.0361 (13) 0.0389 (11) 0.0049 (12) 0.0125 (10) 0.0032 (10)
C7 0.0623 (15) 0.0358 (13) 0.0402 (11) 0.0095 (13) 0.0138 (10) −0.0020 (10)
C8 0.0412 (12) 0.0393 (14) 0.0362 (9) 0.0002 (10) 0.0103 (9) 0.0002 (9)
C9 0.0408 (12) 0.0322 (13) 0.0376 (10) 0.0003 (10) 0.0133 (9) 0.0017 (9)
C10 0.0488 (14) 0.0333 (13) 0.0385 (10) −0.0033 (11) 0.0174 (9) −0.0018 (9)
C11 0.0662 (16) 0.0441 (16) 0.0491 (12) 0.0100 (13) 0.0146 (11) 0.0050 (11)
C12 0.0657 (17) 0.0513 (17) 0.0520 (13) 0.0094 (14) 0.0161 (11) 0.0140 (12)
C13 0.0435 (13) 0.0575 (17) 0.0395 (11) 0.0015 (12) 0.0111 (10) 0.0080 (11)
C14 0.0407 (12) 0.0480 (14) 0.0367 (10) 0.0015 (12) 0.0098 (9) −0.0005 (11)
C15 0.0689 (17) 0.0625 (17) 0.0412 (12) 0.0014 (15) 0.0124 (11) −0.0081 (12)
C16 0.085 (2) 0.095 (2) 0.0402 (13) 0.0036 (19) 0.0172 (13) −0.0058 (15)
C17 0.0503 (15) 0.086 (2) 0.0418 (12) 0.0018 (15) 0.0129 (10) 0.0095 (14)
C18 0.0447 (15) 0.093 (2) 0.0583 (15) 0.0041 (15) 0.0103 (11) 0.0095 (15)
C19 0.0528 (14) 0.0550 (16) 0.0605 (14) −0.0022 (13) 0.0284 (11) −0.0029 (12)
C66 0.086 (2) 0.0426 (15) 0.0537 (14) 0.0026 (15) 0.0218 (13) 0.0052 (12)

Geometric parameters (Å, º)

O3—C3 1.217 (3) C11—C12 1.539 (3)
O17—C17 1.205 (3) C11—H11A 0.9700
C1—C2 1.526 (3) C11—H11B 0.9700
C1—C10 1.537 (3) C12—C13 1.512 (4)
C1—H1A 0.9700 C12—H12A 0.9700
C1—H1B 0.9700 C12—H12B 0.9700
C2—C3 1.481 (4) C13—C17 1.511 (3)
C2—H2A 0.9700 C13—C14 1.525 (3)
C2—H2B 0.9700 C13—C18 1.543 (4)
C3—C4 1.464 (4) C14—C15 1.534 (4)
C4—C5 1.348 (3) C14—H14 0.9800
C4—H4 0.9300 C15—C16 1.538 (4)
C5—C6 1.483 (3) C15—H15A 0.9700
C5—C10 1.521 (3) C15—H15B 0.9700
C6—C66 1.322 (4) C16—C17 1.512 (5)
C6—C7 1.504 (3) C16—H16A 0.9700
C7—C8 1.518 (3) C16—H16B 0.9700
C7—H7A 0.9700 C18—H18A 0.9600
C7—H7B 0.9700 C18—H18B 0.9600
C8—C14 1.528 (3) C18—H18C 0.9600
C8—C9 1.540 (3) C19—H19A 0.9600
C8—H8 0.9800 C19—H19B 0.9600
C9—C11 1.531 (3) C19—H19C 0.9600
C9—C10 1.568 (3) C66—H66A 0.9300
C9—H9 0.9800 C66—H66B 0.9300
C10—C19 1.536 (3)
C2—C1—C10 113.72 (19) C9—C11—H11B 108.8
C2—C1—H1A 108.8 C12—C11—H11B 108.8
C10—C1—H1A 108.8 H11A—C11—H11B 107.7
C2—C1—H1B 108.8 C13—C12—C11 110.2 (2)
C10—C1—H1B 108.8 C13—C12—H12A 109.6
H1A—C1—H1B 107.7 C11—C12—H12A 109.6
C3—C2—C1 112.7 (2) C13—C12—H12B 109.6
C3—C2—H2A 109.0 C11—C12—H12B 109.6
C1—C2—H2A 109.0 H12A—C12—H12B 108.1
C3—C2—H2B 109.0 C17—C13—C12 116.7 (2)
C1—C2—H2B 109.0 C17—C13—C14 101.05 (19)
H2A—C2—H2B 107.8 C12—C13—C14 109.11 (18)
O3—C3—C4 120.7 (3) C17—C13—C18 104.76 (19)
O3—C3—C2 122.3 (2) C12—C13—C18 111.6 (2)
C4—C3—C2 116.9 (2) C14—C13—C18 113.3 (2)
C5—C4—C3 123.5 (2) C13—C14—C8 113.47 (18)
C5—C4—H4 118.3 C13—C14—C15 104.54 (17)
C3—C4—H4 118.3 C8—C14—C15 120.6 (2)
C4—C5—C6 120.0 (2) C13—C14—H14 105.7
C4—C5—C10 122.7 (2) C8—C14—H14 105.7
C6—C5—C10 117.22 (17) C15—C14—H14 105.7
C66—C6—C5 122.25 (18) C14—C15—C16 101.9 (2)
C66—C6—C7 122.3 (2) C14—C15—H15A 111.4
C5—C6—C7 115.46 (19) C16—C15—H15A 111.4
C6—C7—C8 112.53 (18) C14—C15—H15B 111.4
C6—C7—H7A 109.1 C16—C15—H15B 111.4
C8—C7—H7A 109.1 H15A—C15—H15B 109.3
C6—C7—H7B 109.1 C17—C16—C15 106.3 (2)
C8—C7—H7B 109.1 C17—C16—H16A 110.5
H7A—C7—H7B 107.8 C15—C16—H16A 110.5
C7—C8—C14 111.40 (17) C17—C16—H16B 110.5
C7—C8—C9 109.92 (16) C15—C16—H16B 110.5
C14—C8—C9 108.45 (18) H16A—C16—H16B 108.7
C7—C8—H8 109.0 O17—C17—C13 126.4 (3)
C14—C8—H8 109.0 O17—C17—C16 125.3 (2)
C9—C8—H8 109.0 C13—C17—C16 108.3 (2)
C11—C9—C8 112.54 (16) C13—C18—H18A 109.5
C11—C9—C10 112.90 (17) C13—C18—H18B 109.5
C8—C9—C10 112.83 (16) H18A—C18—H18B 109.5
C11—C9—H9 105.9 C13—C18—H18C 109.5
C8—C9—H9 105.9 H18A—C18—H18C 109.5
C10—C9—H9 105.9 H18B—C18—H18C 109.5
C5—C10—C19 107.41 (18) C10—C19—H19A 109.5
C5—C10—C1 109.70 (17) C10—C19—H19B 109.5
C19—C10—C1 110.02 (19) H19A—C19—H19B 109.5
C5—C10—C9 108.90 (16) C10—C19—H19C 109.5
C19—C10—C9 112.03 (17) H19A—C19—H19C 109.5
C1—C10—C9 108.75 (16) H19B—C19—H19C 109.5
C9—C11—C12 113.8 (2) C6—C66—H66A 120.0
C9—C11—H11A 108.8 C6—C66—H66B 120.0
C12—C11—H11A 108.8 H66A—C66—H66B 120.0
C10—C1—C2—C3 −52.5 (3) C8—C9—C10—C19 66.5 (2)
C1—C2—C3—O3 −153.9 (3) C11—C9—C10—C1 59.3 (2)
C1—C2—C3—C4 28.6 (3) C8—C9—C10—C1 −171.65 (17)
O3—C3—C4—C5 −177.9 (3) C8—C9—C11—C12 50.9 (3)
C2—C3—C4—C5 −0.4 (4) C10—C9—C11—C12 −180.0 (2)
C3—C4—C5—C6 172.8 (2) C9—C11—C12—C13 −53.2 (3)
C3—C4—C5—C10 −4.8 (4) C11—C12—C13—C17 170.15 (19)
C4—C5—C6—C66 −43.6 (3) C11—C12—C13—C14 56.5 (3)
C10—C5—C6—C66 134.1 (2) C11—C12—C13—C18 −69.4 (2)
C4—C5—C6—C7 137.7 (2) C17—C13—C14—C8 174.9 (2)
C10—C5—C6—C7 −44.6 (3) C12—C13—C14—C8 −61.5 (2)
C66—C6—C7—C8 −130.9 (3) C18—C13—C14—C8 63.4 (3)
C5—C6—C7—C8 47.7 (3) C17—C13—C14—C15 41.7 (2)
C6—C7—C8—C14 −174.15 (19) C12—C13—C14—C15 165.22 (19)
C6—C7—C8—C9 −53.9 (3) C18—C13—C14—C15 −69.8 (2)
C7—C8—C9—C11 −172.96 (18) C7—C8—C14—C13 178.7 (2)
C14—C8—C9—C11 −51.0 (2) C9—C8—C14—C13 57.6 (2)
C7—C8—C9—C10 57.8 (2) C7—C8—C14—C15 −56.3 (3)
C14—C8—C9—C10 179.86 (17) C9—C8—C14—C15 −177.35 (19)
C4—C5—C10—C19 101.4 (2) C13—C14—C15—C16 −39.5 (2)
C6—C5—C10—C19 −76.3 (2) C8—C14—C15—C16 −168.6 (2)
C4—C5—C10—C1 −18.2 (3) C14—C15—C16—C17 21.5 (3)
C6—C5—C10—C1 164.16 (18) C12—C13—C17—O17 34.0 (4)
C4—C5—C10—C9 −137.1 (2) C14—C13—C17—O17 152.1 (3)
C6—C5—C10—C9 45.3 (2) C18—C13—C17—O17 −90.0 (3)
C2—C1—C10—C5 46.0 (3) C12—C13—C17—C16 −146.0 (2)
C2—C1—C10—C19 −72.0 (2) C14—C13—C17—C16 −27.8 (3)
C2—C1—C10—C9 164.96 (19) C18—C13—C17—C16 90.0 (3)
C11—C9—C10—C5 178.85 (19) C15—C16—C17—O17 −176.0 (3)
C8—C9—C10—C5 −52.1 (2) C15—C16—C17—C13 3.9 (3)
C11—C9—C10—C19 −62.5 (2) C19—C10—C13—C18 2.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O17i 0.97 2.43 3.345 (3) 158
C66—H66A···O3ii 0.93 2.47 3.365 (3) 163

Symmetry codes: (i) x, y, z−1; (ii) −x+1, y+1/2, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6686).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32. [DOI] [PubMed]
  3. Annen, K., Hofmeister, H., Laurent, H. & Wiechert, R. (1982). Synthesis, 2, 34–40. [PubMed]
  4. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cepa, M., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. & Teixeira, N. A. (2005). J. Med. Chem. 48, 6379–6385. [DOI] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structure New York: Plenum Press.
  8. Furr, B. J. A. (2006). In Aromatase Inhibitors (Milestones in Drug Therapy)Basel: Birkhäuser Verlag.
  9. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148-155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013207/hb6686sup1.cif

e-68-o1263-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013207/hb6686Isup2.hkl

e-68-o1263-Isup2.hkl (97.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES