Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):o1267. doi: 10.1107/S160053681201327X

1-(2-Bromo­phen­yl)-3-(4-chloro­butano­yl)thio­urea

Mohd Sukeri Mohd Yusof a, Nur Farhana Embong a, Suhana Arshad b, Ibrahim Abdul Razak b,*,
PMCID: PMC3344192  PMID: 22606195

Abstract

The asymmetric unit of the title compound, C11H12BrClN2OS, consists of two crystallographically independent mol­ecules. In each mol­ecule, the butano­ylthio­urea unit is nearly planar, with maximum deviations of 0.1292 (19) and 0.3352 (18) Å from the mean plane defined by nine non-H atoms, and is twisted relative to the terminal benzene ring with dihedral angles of 69.26 (7) and 82.41 (7)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif in each butano­ylthio­urea unit. In the crystal, N—H⋯O hydrogen bonds link the two independent mol­ecules together, forming an R 2 2(12) ring motif. The mol­ecules are further connected into a tape along the c axis via N—H⋯S and C—H⋯S hydrogen bonds.

Related literature  

For related structures, see: Binzet et al. (2009); Khawar Rauf et al. (2006); Shoukat et al. (2007); Yesilkaynak et al. (2010); Yusof et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1267-scheme1.jpg

Experimental  

Crystal data  

  • C11H12BrClN2OS

  • M r = 335.65

  • Monoclinic, Inline graphic

  • a = 14.1384 (2) Å

  • b = 11.1948 (1) Å

  • c = 17.7264 (2) Å

  • β = 107.955 (1)°

  • V = 2669.03 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.42 mm−1

  • T = 100 K

  • 0.39 × 0.17 × 0.11 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.350, T max = 0.696

  • 34224 measured reflections

  • 8749 independent reflections

  • 6599 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.067

  • S = 1.02

  • 8749 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201327X/is5098sup1.cif

e-68-o1267-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201327X/is5098Isup2.hkl

e-68-o1267-Isup2.hkl (428KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201327X/is5098Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1A 0.84 2.01 2.6847 (19) 136
N1B—H1NB⋯O1B 0.84 1.97 2.6464 (19) 136
N1A—H1NA⋯O1B 0.84 2.33 2.9976 (18) 137
N1B—H1NB⋯O1A 0.84 2.39 3.0566 (19) 137
N2A—H2NA⋯S1Bi 0.85 2.56 3.3931 (15) 168
N2B—H2NB⋯S1Aii 0.84 2.56 3.3928 (14) 171
C9B—H9BA⋯S1Aii 0.99 2.87 3.7237 (18) 145
C9B—H9BB⋯S1Biii 0.99 2.84 3.7248 (18) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government, Universiti Malaysia Terengganu and Universiti Sains Malaysia for research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 and FRGS 59178 to conduct this work.

supplementary crystallographic information

Comment

Thiourea derivatives are flexible ligand and able to coordinate to the metal centre as mono-dentat or multi-dentat depended on the substituent group attached to the both of nitrogen atoms (Binzet et al., 2009; Yesilkaynak et al., 2010).

The asymmetric unit of the title compound (Fig. 1), consists of two crystallographically independent molecules A and B. In both molecules, the intramolecular N1A—H1NA···O1A and N1B—H1NB···O1B hydrogen bonds (Table 1) generate S(6) ring motifs (Bernstein et al., 1995). The chlorobutanoylthiourea groups (Cl1A/S1A/O1A/N1A/N2A/C7A–C11A & Cl1B/S1B/O1B/N1B/N2B/C7B–C11B) are twisted about C10A–C11A bond with C9A–C10A–C11A–Cl1A torsion angle of -66.74 (19)° and about C10B–C11B bond with C9B–C10B–C11B–Cl1B torsion angle of 60.18 (19)°, respectively. However, the butanoylthiourea groups (S1A/O1A/N1A/N2A/C7A–C11A & S1B/O1B/N1B/N2B/C7B–C11B) are nearly planar with maximum deviations of 0.1292 (19) Å at atom C10A and 0.3352 (18) Å at atom C10B. The mean plane through the butanoylthiourea group of molecule A (S1A/O1A/N1A/N2A/C7A–C11A) makes a dihedral angle of 69.26 (7)° with the terminal benzene ring (C1A–C6A). In molecule B, the corresponding value is 82.41 (7)°. The bond lengths and angles are within normal ranges and are comparable to the related structures (Shoukat et al., 2007; Khawar Rauf et al., 2006; Yusof et al., 2007).

In the crystal packing (Fig. 2), intermolecular N—H···O hydrogen bonds (Table 1), form R22(12) (Bernstein et al.,1995) ring motifs. The molecules are further connected into a molecular tape along the c axis via intermolecular N—H···S and C—H···S hydrogen bonds (Table 1).

Experimental

An equimolar amount of 2-bromoaniline (1.22 g, 7.09 mmol) in 20 ml acetone was added drop-wise into a stirring acetone solution (75 ml) containing 4-chlorobutanoylchloride (1.00 g, 7.09 mmol) and ammonium thiocyanate (0.54 g, 7.09 mmol). The mixture was refluxed for 1 h. Then, the solution was filtered-off and left to evaporate at room temperature.

Refinement

N-bound H atoms were located in a difference Fourier map and were fixed at their found locations using riding model with Uiso(H) = 1.2 Ueq(N) (N—H = 0.8391–0.8465 Å). The remaining H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C). Five outliners 11 1 15, 6 15 1, 10 1 13, 4 0 6 and 8 0 10 were omitted in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C11H12BrClN2OS F(000) = 1344
Mr = 335.65 Dx = 1.671 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9962 reflections
a = 14.1384 (2) Å θ = 2.4–31.2°
b = 11.1948 (1) Å µ = 3.42 mm1
c = 17.7264 (2) Å T = 100 K
β = 107.955 (1)° Block, colourless
V = 2669.03 (5) Å3 0.39 × 0.17 × 0.11 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 8749 independent reflections
Radiation source: fine-focus sealed tube 6599 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 31.3°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −20→20
Tmin = 0.350, Tmax = 0.696 k = −16→15
34224 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.9931P] where P = (Fo2 + 2Fc2)/3
8749 reflections (Δ/σ)max = 0.002
307 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1A 1.094519 (14) −0.172320 (16) 0.342402 (11) 0.02211 (5)
Cl1A 0.47347 (4) 0.16991 (5) 0.02259 (3) 0.02967 (11)
S1A 1.03184 (3) −0.00037 (4) 0.16098 (2) 0.01644 (9)
O1A 0.79290 (8) 0.11587 (11) 0.26956 (7) 0.0185 (3)
N1A 0.98548 (10) 0.07140 (12) 0.28866 (8) 0.0140 (3)
H1NA 0.9419 0.0984 0.3077 0.017*
N2A 0.85365 (10) 0.03620 (12) 0.17480 (8) 0.0139 (3)
H2NA 0.8370 0.0175 0.1262 0.017*
C1A 1.12840 (13) 0.19682 (16) 0.35152 (11) 0.0179 (4)
H1AA 1.0881 0.2654 0.3337 0.022*
C2A 1.22766 (14) 0.20975 (17) 0.39607 (11) 0.0216 (4)
H2AA 1.2549 0.2874 0.4092 0.026*
C3A 1.28731 (13) 0.11006 (18) 0.42148 (11) 0.0230 (4)
H3AA 1.3554 0.1196 0.4510 0.028*
C4A 1.24741 (13) −0.00344 (17) 0.40372 (11) 0.0198 (4)
H4AA 1.2881 −0.0719 0.4209 0.024*
C5A 1.14793 (13) −0.01648 (15) 0.36076 (10) 0.0156 (3)
C6A 1.08826 (12) 0.08285 (16) 0.33317 (10) 0.0144 (3)
C7A 0.95520 (12) 0.03821 (15) 0.21252 (10) 0.0135 (3)
C8A 0.77776 (12) 0.07468 (15) 0.20308 (10) 0.0148 (3)
C9A 0.67578 (12) 0.05965 (17) 0.14407 (10) 0.0187 (4)
H9AA 0.6614 −0.0266 0.1349 0.022*
H9AB 0.6750 0.0960 0.0930 0.022*
C10A 0.59501 (12) 0.11665 (17) 0.17189 (10) 0.0181 (4)
H10A 0.5990 0.0843 0.2248 0.022*
H10B 0.6071 0.2038 0.1776 0.022*
C11A 0.49134 (13) 0.09517 (18) 0.11575 (11) 0.0215 (4)
H11A 0.4417 0.1246 0.1403 0.026*
H11B 0.4807 0.0083 0.1064 0.026*
Br1B 0.616014 (14) 0.168367 (17) 0.413043 (11) 0.02241 (5)
Cl1B 1.23151 (3) 0.18536 (4) 0.70479 (3) 0.02501 (10)
S1B 0.76428 (3) 0.49774 (4) 0.47511 (2) 0.01627 (9)
O1B 0.93871 (9) 0.18019 (11) 0.42755 (7) 0.0190 (3)
N1B 0.78048 (10) 0.32012 (13) 0.38055 (8) 0.0152 (3)
H1NB 0.8114 0.2595 0.3726 0.018*
N2B 0.91577 (10) 0.34933 (12) 0.49181 (8) 0.0132 (3)
H2NB 0.9403 0.3934 0.5313 0.016*
C1B 0.67353 (13) 0.43193 (17) 0.26902 (11) 0.0199 (4)
H1BA 0.7301 0.4736 0.2647 0.024*
C2B 0.58029 (13) 0.45596 (17) 0.21637 (11) 0.0231 (4)
H2BA 0.5731 0.5139 0.1758 0.028*
C3B 0.49745 (13) 0.39537 (18) 0.22292 (11) 0.0227 (4)
H3BA 0.4337 0.4121 0.1867 0.027*
C4B 0.50693 (13) 0.31080 (17) 0.28186 (11) 0.0206 (4)
H4BA 0.4502 0.2700 0.2867 0.025*
C5B 0.60057 (13) 0.28675 (16) 0.33370 (10) 0.0169 (3)
C6B 0.68418 (12) 0.34721 (15) 0.32795 (10) 0.0154 (3)
C7B 0.82121 (12) 0.38288 (15) 0.44613 (10) 0.0125 (3)
C8B 0.97074 (12) 0.25286 (16) 0.48090 (10) 0.0147 (3)
C9B 1.07364 (12) 0.24650 (16) 0.53928 (10) 0.0161 (3)
H9BA 1.0731 0.2844 0.5896 0.019*
H9BB 1.1197 0.2927 0.5182 0.019*
C10B 1.11242 (12) 0.11951 (16) 0.55635 (11) 0.0180 (4)
H10C 1.0698 0.0750 0.5817 0.022*
H10D 1.1082 0.0792 0.5057 0.022*
C11B 1.21905 (13) 0.11609 (19) 0.61013 (11) 0.0227 (4)
H11C 1.2622 0.1582 0.5841 0.027*
H11D 1.2416 0.0320 0.6187 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.02895 (10) 0.01320 (9) 0.02297 (10) 0.00066 (8) 0.00623 (8) 0.00138 (7)
Cl1A 0.0230 (2) 0.0355 (3) 0.0255 (2) 0.0028 (2) 0.00004 (19) 0.0106 (2)
S1A 0.01481 (19) 0.0212 (2) 0.01338 (19) 0.00319 (17) 0.00442 (16) 0.00091 (17)
O1A 0.0152 (6) 0.0234 (7) 0.0159 (6) 0.0014 (5) 0.0035 (5) −0.0053 (5)
N1A 0.0116 (6) 0.0157 (7) 0.0147 (7) 0.0013 (6) 0.0040 (5) −0.0016 (6)
N2A 0.0133 (6) 0.0159 (7) 0.0111 (6) 0.0008 (6) 0.0015 (5) −0.0018 (5)
C1A 0.0182 (8) 0.0184 (9) 0.0174 (9) −0.0011 (7) 0.0056 (7) −0.0015 (7)
C2A 0.0210 (9) 0.0218 (9) 0.0205 (9) −0.0050 (8) 0.0044 (7) −0.0039 (7)
C3A 0.0147 (8) 0.0321 (11) 0.0196 (9) 0.0008 (8) 0.0013 (7) −0.0022 (8)
C4A 0.0183 (8) 0.0232 (10) 0.0166 (8) 0.0053 (8) 0.0032 (7) 0.0010 (7)
C5A 0.0189 (8) 0.0138 (8) 0.0141 (8) 0.0003 (7) 0.0049 (7) 0.0002 (6)
C6A 0.0128 (7) 0.0182 (9) 0.0118 (8) 0.0009 (7) 0.0029 (6) 0.0005 (6)
C7A 0.0149 (8) 0.0111 (8) 0.0136 (8) 0.0013 (6) 0.0030 (6) 0.0022 (6)
C8A 0.0141 (7) 0.0138 (8) 0.0157 (8) 0.0016 (7) 0.0032 (6) 0.0002 (6)
C9A 0.0135 (8) 0.0244 (10) 0.0160 (8) 0.0015 (7) 0.0011 (7) −0.0044 (7)
C10A 0.0141 (8) 0.0233 (10) 0.0162 (8) −0.0013 (7) 0.0036 (7) −0.0019 (7)
C11A 0.0158 (8) 0.0290 (10) 0.0193 (9) −0.0016 (8) 0.0048 (7) 0.0014 (8)
Br1B 0.02251 (9) 0.02434 (10) 0.02018 (9) −0.00204 (8) 0.00630 (7) 0.00036 (8)
Cl1B 0.0219 (2) 0.0316 (3) 0.0171 (2) 0.00387 (19) −0.00056 (17) −0.00221 (19)
S1B 0.01620 (19) 0.0171 (2) 0.01410 (19) 0.00422 (17) 0.00255 (16) −0.00142 (16)
O1B 0.0156 (6) 0.0193 (7) 0.0187 (6) 0.0034 (5) 0.0004 (5) −0.0053 (5)
N1B 0.0119 (6) 0.0161 (7) 0.0153 (7) 0.0037 (6) 0.0009 (5) −0.0024 (6)
N2B 0.0122 (6) 0.0138 (7) 0.0118 (6) 0.0007 (5) 0.0011 (5) −0.0022 (5)
C1B 0.0158 (8) 0.0222 (10) 0.0200 (9) 0.0011 (7) 0.0029 (7) 0.0003 (7)
C2B 0.0221 (9) 0.0233 (10) 0.0190 (9) 0.0064 (8) −0.0008 (7) 0.0039 (8)
C3B 0.0146 (8) 0.0274 (11) 0.0214 (9) 0.0052 (8) −0.0012 (7) −0.0041 (8)
C4B 0.0139 (8) 0.0238 (10) 0.0229 (9) −0.0001 (7) 0.0040 (7) −0.0071 (8)
C5B 0.0177 (8) 0.0173 (9) 0.0155 (8) 0.0020 (7) 0.0051 (7) −0.0041 (7)
C6B 0.0125 (7) 0.0178 (9) 0.0137 (8) 0.0030 (7) 0.0008 (6) −0.0044 (6)
C7B 0.0126 (7) 0.0134 (8) 0.0115 (7) −0.0008 (6) 0.0038 (6) 0.0025 (6)
C8B 0.0131 (7) 0.0156 (9) 0.0149 (8) 0.0005 (7) 0.0034 (6) 0.0005 (6)
C9B 0.0116 (7) 0.0175 (9) 0.0171 (8) 0.0007 (7) 0.0013 (6) −0.0010 (7)
C10B 0.0156 (8) 0.0200 (9) 0.0157 (8) 0.0030 (7) 0.0009 (7) −0.0025 (7)
C11B 0.0199 (9) 0.0292 (11) 0.0176 (9) 0.0088 (8) 0.0040 (7) −0.0017 (8)

Geometric parameters (Å, º)

Br1A—C5A 1.8889 (17) Br1B—C5B 1.8955 (18)
Cl1A—C11A 1.7983 (19) Cl1B—C11B 1.8071 (19)
S1A—C7A 1.6751 (17) S1B—C7B 1.6792 (17)
O1A—C8A 1.221 (2) O1B—C8B 1.224 (2)
N1A—C7A 1.337 (2) N1B—C7B 1.328 (2)
N1A—C6A 1.430 (2) N1B—C6B 1.426 (2)
N1A—H1NA 0.8445 N1B—H1NB 0.8421
N2A—C7A 1.385 (2) N2B—C8B 1.379 (2)
N2A—C8A 1.386 (2) N2B—C7B 1.384 (2)
N2A—H2NA 0.8465 N2B—H2NB 0.8391
C1A—C2A 1.390 (2) C1B—C6B 1.384 (2)
C1A—C6A 1.394 (2) C1B—C2B 1.387 (2)
C1A—H1AA 0.9500 C1B—H1BA 0.9500
C2A—C3A 1.388 (3) C2B—C3B 1.389 (3)
C2A—H2AA 0.9500 C2B—H2BA 0.9500
C3A—C4A 1.386 (3) C3B—C4B 1.385 (3)
C3A—H3AA 0.9500 C3B—H3BA 0.9500
C4A—C5A 1.385 (2) C4B—C5B 1.386 (2)
C4A—H4AA 0.9500 C4B—H4BA 0.9500
C5A—C6A 1.390 (2) C5B—C6B 1.393 (2)
C8A—C9A 1.507 (2) C8B—C9B 1.505 (2)
C9A—C10A 1.517 (2) C9B—C10B 1.520 (2)
C9A—H9AA 0.9900 C9B—H9BA 0.9900
C9A—H9AB 0.9900 C9B—H9BB 0.9900
C10A—C11A 1.516 (2) C10B—C11B 1.516 (2)
C10A—H10A 0.9900 C10B—H10C 0.9900
C10A—H10B 0.9900 C10B—H10D 0.9900
C11A—H11A 0.9900 C11B—H11C 0.9900
C11A—H11B 0.9900 C11B—H11D 0.9900
C7A—N1A—C6A 122.48 (14) C7B—N1B—C6B 121.93 (14)
C7A—N1A—H1NA 117.2 C7B—N1B—H1NB 117.8
C6A—N1A—H1NA 119.3 C6B—N1B—H1NB 120.1
C7A—N2A—C8A 128.57 (14) C8B—N2B—C7B 127.96 (14)
C7A—N2A—H2NA 114.6 C8B—N2B—H2NB 118.1
C8A—N2A—H2NA 116.3 C7B—N2B—H2NB 113.9
C2A—C1A—C6A 119.70 (17) C6B—C1B—C2B 120.03 (17)
C2A—C1A—H1AA 120.2 C6B—C1B—H1BA 120.0
C6A—C1A—H1AA 120.2 C2B—C1B—H1BA 120.0
C3A—C2A—C1A 120.46 (18) C1B—C2B—C3B 120.01 (18)
C3A—C2A—H2AA 119.8 C1B—C2B—H2BA 120.0
C1A—C2A—H2AA 119.8 C3B—C2B—H2BA 120.0
C4A—C3A—C2A 119.96 (17) C4B—C3B—C2B 120.57 (16)
C4A—C3A—H3AA 120.0 C4B—C3B—H3BA 119.7
C2A—C3A—H3AA 120.0 C2B—C3B—H3BA 119.7
C5A—C4A—C3A 119.64 (17) C3B—C4B—C5B 118.91 (17)
C5A—C4A—H4AA 120.2 C3B—C4B—H4BA 120.5
C3A—C4A—H4AA 120.2 C5B—C4B—H4BA 120.5
C4A—C5A—C6A 120.81 (16) C4B—C5B—C6B 121.06 (17)
C4A—C5A—Br1A 118.44 (13) C4B—C5B—Br1B 119.73 (14)
C6A—C5A—Br1A 120.73 (13) C6B—C5B—Br1B 119.20 (13)
C5A—C6A—C1A 119.39 (15) C1B—C6B—C5B 119.40 (15)
C5A—C6A—N1A 121.72 (15) C1B—C6B—N1B 119.93 (15)
C1A—C6A—N1A 118.85 (15) C5B—C6B—N1B 120.64 (16)
N1A—C7A—N2A 116.99 (15) N1B—C7B—N2B 116.64 (15)
N1A—C7A—S1A 124.24 (13) N1B—C7B—S1B 123.60 (13)
N2A—C7A—S1A 118.77 (12) N2B—C7B—S1B 119.76 (12)
O1A—C8A—N2A 122.79 (15) O1B—C8B—N2B 122.61 (15)
O1A—C8A—C9A 123.88 (15) O1B—C8B—C9B 123.30 (15)
N2A—C8A—C9A 113.33 (14) N2B—C8B—C9B 114.08 (14)
C8A—C9A—C10A 112.48 (14) C8B—C9B—C10B 113.21 (14)
C8A—C9A—H9AA 109.1 C8B—C9B—H9BA 108.9
C10A—C9A—H9AA 109.1 C10B—C9B—H9BA 108.9
C8A—C9A—H9AB 109.1 C8B—C9B—H9BB 108.9
C10A—C9A—H9AB 109.1 C10B—C9B—H9BB 108.9
H9AA—C9A—H9AB 107.8 H9BA—C9B—H9BB 107.8
C11A—C10A—C9A 113.10 (15) C11B—C10B—C9B 112.12 (15)
C11A—C10A—H10A 109.0 C11B—C10B—H10C 109.2
C9A—C10A—H10A 109.0 C9B—C10B—H10C 109.2
C11A—C10A—H10B 109.0 C11B—C10B—H10D 109.2
C9A—C10A—H10B 109.0 C9B—C10B—H10D 109.2
H10A—C10A—H10B 107.8 H10C—C10B—H10D 107.9
C10A—C11A—Cl1A 111.27 (13) C10B—C11B—Cl1B 111.50 (12)
C10A—C11A—H11A 109.4 C10B—C11B—H11C 109.3
Cl1A—C11A—H11A 109.4 Cl1B—C11B—H11C 109.3
C10A—C11A—H11B 109.4 C10B—C11B—H11D 109.3
Cl1A—C11A—H11B 109.4 Cl1B—C11B—H11D 109.3
H11A—C11A—H11B 108.0 H11C—C11B—H11D 108.0
C6A—C1A—C2A—C3A 0.9 (3) C6B—C1B—C2B—C3B 0.3 (3)
C1A—C2A—C3A—C4A −1.2 (3) C1B—C2B—C3B—C4B 0.1 (3)
C2A—C3A—C4A—C5A −0.1 (3) C2B—C3B—C4B—C5B −0.6 (3)
C3A—C4A—C5A—C6A 1.9 (3) C3B—C4B—C5B—C6B 0.9 (3)
C3A—C4A—C5A—Br1A −176.78 (14) C3B—C4B—C5B—Br1B −178.30 (14)
C4A—C5A—C6A—C1A −2.3 (3) C2B—C1B—C6B—C5B 0.0 (3)
Br1A—C5A—C6A—C1A 176.36 (13) C2B—C1B—C6B—N1B 178.15 (16)
C4A—C5A—C6A—N1A 179.92 (16) C4B—C5B—C6B—C1B −0.6 (3)
Br1A—C5A—C6A—N1A −1.4 (2) Br1B—C5B—C6B—C1B 178.63 (13)
C2A—C1A—C6A—C5A 0.9 (3) C4B—C5B—C6B—N1B −178.72 (16)
C2A—C1A—C6A—N1A 178.74 (16) Br1B—C5B—C6B—N1B 0.5 (2)
C7A—N1A—C6A—C5A −75.6 (2) C7B—N1B—C6B—C1B 86.2 (2)
C7A—N1A—C6A—C1A 106.65 (19) C7B—N1B—C6B—C5B −95.7 (2)
C6A—N1A—C7A—N2A −176.84 (14) C6B—N1B—C7B—N2B −178.95 (14)
C6A—N1A—C7A—S1A 3.1 (2) C6B—N1B—C7B—S1B 1.1 (2)
C8A—N2A—C7A—N1A 6.6 (3) C8B—N2B—C7B—N1B −5.2 (2)
C8A—N2A—C7A—S1A −173.40 (14) C8B—N2B—C7B—S1B 174.71 (13)
C7A—N2A—C8A—O1A −1.3 (3) C7B—N2B—C8B—O1B −2.2 (3)
C7A—N2A—C8A—C9A 179.18 (16) C7B—N2B—C8B—C9B 176.77 (15)
O1A—C8A—C9A—C10A 7.8 (3) O1B—C8B—C9B—C10B −30.9 (2)
N2A—C8A—C9A—C10A −172.60 (15) N2B—C8B—C9B—C10B 150.22 (15)
C8A—C9A—C10A—C11A −176.15 (15) C8B—C9B—C10B—C11B 175.45 (15)
C9A—C10A—C11A—Cl1A −66.74 (19) C9B—C10B—C11B—Cl1B 60.18 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1NA···O1A 0.84 2.01 2.6847 (19) 136
N1B—H1NB···O1B 0.84 1.97 2.6464 (19) 136
N1A—H1NA···O1B 0.84 2.33 2.9976 (18) 137
N1B—H1NB···O1A 0.84 2.39 3.0566 (19) 137
N2A—H2NA···S1Bi 0.85 2.56 3.3931 (15) 168
N2B—H2NB···S1Aii 0.84 2.56 3.3928 (14) 171
C9B—H9BA···S1Aii 0.99 2.87 3.7237 (18) 145
C9B—H9BB···S1Biii 0.99 2.84 3.7248 (18) 149

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5098).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Binzet, G., Emen, F. M., Flörke, U., Yeşilkaynak, T., Külcü, N. & Arslan, H. (2009). Acta Cryst. E65, o81–o82. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Khawar Rauf, M., Badshah, A. & Bolte, M. (2006). Acta Cryst. E62, o4299–o4301.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shoukat, N., Khawar Rauf, M., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o920–o922.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Yesilkaynak, T., Binzet, G., Emen, F. M., Florke, U., Kulcu, N. & Arslan, H. (2010). Eur. J. Chem. 1, 1–5. [DOI] [PMC free article] [PubMed]
  10. Yusof, M. S. M., Yaakob, W. N. A., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o241–o243.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201327X/is5098sup1.cif

e-68-o1267-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201327X/is5098Isup2.hkl

e-68-o1267-Isup2.hkl (428KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201327X/is5098Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES