Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):i31. doi: 10.1107/S1600536812014894

Dipotassium tris­odium triphosphate, K2Na3P3O10

Meryem Moutataouia a, Mohammed Lamire a,*, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC3344285  PMID: 22590051

Abstract

The structure of the title compound, K2Na3P3O10, is characterized by open chains of three PO4 tetra­hedra linked by single oxygen bridges. The P3O10 groups have crystallographic twofold symmetry, with the central P atom being located on the twofold rotation axis. One of the sodium ions lies on a centre of inversion, whereas all the remaining atoms are in general positions. The structure is isotypic with that of the high-temperature form of Na5P3O10 phase I.

Related literature  

For compounds with related structures, see: Cruickshank (1964); Davies & Corbridge (1958); Dyroff (1965), Wiench et al. (1982); Dymon & King (1951); Corbridge (1960).

Experimental  

Crystal data  

  • K2Na3P3O10

  • M r = 400.08

  • Monoclinic, Inline graphic

  • a = 9.8866 (4) Å

  • b = 5.6332 (2) Å

  • c = 18.6577 (8) Å

  • β = 96.199 (3)°

  • V = 1033.03 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 296 K

  • 0.19 × 0.14 × 0.10 mm

Data collection  

  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999) T min = 0.511, T max = 0.638

  • 12463 measured reflections

  • 2830 independent reflections

  • 2136 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.080

  • S = 1.08

  • 2830 reflections

  • 85 parameters

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014894/bt5872sup1.cif

e-68-00i31-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014894/bt5872Isup2.hkl

e-68-00i31-Isup2.hkl (136.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

The present triphosphate was obtained by chance, during the preparation of a mixed pyrophosphate. A bibliographic study of alkali triphosphates like M5P3010 shows that there are few known structures. Thus, in the case of sodium triphosphate, the crystal structures of two anhydrous forms noted Phase I and II were determined by Cruickshank (1964) and Davies & Corbridge (1958) and that of the hexahydrate was performed by Dyroff (1965) and re-examined by Wiench et al. (1982).

The structure of dipotassium trisodium triphosphate consists of open chains of three PO4 tetrahedra linked by single oxygen bridges. The values of P–P (2.883 Å) distances and P—O—P (125.25°) angles are within the limits generally observed in condensed phosphate crystal chemistry. The internal symmetry of the P3010 groups has a twofold symmetry, with the central phosphorus P2 atom being located on a binary axis. Moreover, the Na2 sodium ion lies on the symmetry center whereas all the remaining atoms are in general positions of the C2/c space group. The Na2 sodium atom located at Wyckoff position 4c (1/4, 3/4, 1/2) could be surrounded by a roughly octahedral arrangement of six oxygen atoms and the other sodium and potassium (Na1, K1) atoms are coordinated to six and eight oxygen atoms respectively. The Na2O6 octahedra, Na1O6 and K1O8 polyhedra are connected through the apices to triphosphate groups and form a three-dimensional host lattice (Fig.1). The resulting 3-D framework presents intersecting tunnels running along the [010] and [110] directions, where the six-coordinated Na1+ cations are located (Fig.2). The structure of this compound is isotype to that of the high-temperature form of Na5P3010 phase I (Dymon and King, 1951 and Corbridge, 1960).

Experimental

The present triphosphate is obtained by chance, during the preparation of a mixture of pyrophosphate. Indeed, the powder phase NaKNiP2O7 synthesized by wet process is introduced into a platinum crucible, and then gradually heated to a temperature above its melting point (1173 K) for 2 h, followed by slow cooling of the order of 6 K per hour up to 673 K. Then the furnace is shuts down and the cooling is continued until room temperature. Small colourless single crystals of K2Na3P3O10 were isolated from the mixtures of phases.

Refinement

The highest peak and the deepest hole in the final Fourier map are at 0.63 Å and 0.58 Å, respectively, from K1.

Figures

Fig. 1.

Fig. 1.

Plot of K2Na3P3O10 crystal structure showing polyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) -x + 1/2, -y + 1/2, -z + 1; (ii) -x, -y, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x, y + 1, z; (v) -x, y, -z + 1/2; (vi) x - 1/2, y + 1/2, z; (vii) -x + 1/2, y + 1/2, -z + 1/2; (viii) x + 1/2, y - 1/2, z; (ix) x, y - 1, z; (x) -x + 1/2, -y - 1/2, -z + 1.

Fig. 2.

Fig. 2.

Projection view of the K2Na3P3O10 framework structure showing tunnel running along b direction where the Na1 atoms are located.

Crystal data

K2Na3P3O10 F(000) = 784
Mr = 400.08 Dx = 2.572 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2yc Cell parameters from 2830 reflections
a = 9.8866 (4) Å θ = 4.2–38.3°
b = 5.6332 (2) Å µ = 1.55 mm1
c = 18.6577 (8) Å T = 296 K
β = 96.199 (3)° Block, colourless
V = 1033.03 (7) Å3 0.19 × 0.14 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD detector diffractometer 2830 independent reflections
Radiation source: fine-focus sealed tube 2136 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω and φ scans θmax = 38.3°, θmin = 4.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1999) h = −17→17
Tmin = 0.511, Tmax = 0.638 k = −8→9
12463 measured reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.7541P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.63 e Å3
2830 reflections Δρmin = −0.97 e Å3
85 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0011 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.09445 (3) 0.27218 (6) 0.57736 (2) 0.02014 (8)
P1 0.06781 (3) 0.22944 (6) 0.398705 (18) 0.00976 (7)
P2 0.0000 0.09573 (9) 0.2500 0.01288 (10)
Na1 0.21820 (7) −0.30829 (11) 0.32759 (3) 0.01917 (13)
Na2 0.2500 −0.2500 0.5000 0.01344 (15)
O1 −0.07276 (11) 0.22433 (19) 0.42318 (6) 0.0184 (2)
O2 0.15106 (10) 0.44080 (18) 0.42676 (5) 0.01569 (19)
O3 0.14234 (10) −0.00428 (18) 0.40638 (6) 0.01571 (19)
O4 0.04508 (11) 0.28577 (18) 0.31142 (5) 0.01663 (19)
O5 −0.12023 (12) −0.0419 (2) 0.26927 (6) 0.0231 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.01413 (13) 0.01460 (13) 0.03200 (18) 0.00043 (10) 0.00389 (11) 0.00128 (11)
P1 0.00897 (13) 0.00981 (14) 0.01046 (14) 0.00010 (10) 0.00091 (10) −0.00060 (10)
P2 0.0142 (2) 0.0135 (2) 0.0108 (2) 0.000 0.00129 (15) 0.000
Na1 0.0199 (3) 0.0173 (3) 0.0212 (3) 0.0060 (2) 0.0062 (2) 0.0047 (2)
Na2 0.0132 (3) 0.0131 (4) 0.0139 (3) −0.0003 (3) 0.0008 (3) −0.0006 (3)
O1 0.0136 (4) 0.0187 (5) 0.0244 (5) −0.0006 (4) 0.0090 (4) −0.0020 (4)
O2 0.0151 (4) 0.0140 (4) 0.0174 (4) −0.0028 (3) −0.0007 (3) −0.0041 (3)
O3 0.0162 (4) 0.0126 (4) 0.0180 (4) 0.0044 (3) 0.0003 (3) 0.0015 (3)
O4 0.0239 (5) 0.0159 (4) 0.0095 (4) −0.0021 (4) −0.0010 (3) 0.0012 (3)
O5 0.0238 (5) 0.0246 (5) 0.0216 (5) −0.0107 (4) 0.0056 (4) 0.0005 (4)

Geometric parameters (Å, º)

K1—O2i 2.7960 (11) P2—O4 1.5961 (11)
K1—O1ii 2.8051 (11) P2—O4iv 1.5961 (11)
K1—O3ii 2.8291 (11) Na1—O5v 2.4172 (14)
K1—O1iii 2.8443 (11) Na1—O3 2.4278 (12)
K1—O3i 2.8987 (11) Na1—O5iv 2.4655 (13)
K1—O2iii 2.9106 (11) Na1—O2vi 2.4753 (12)
K1—O2 3.0740 (11) Na1—O1v 2.5864 (13)
K1—O5ii 3.1272 (12) Na1—O4vi 2.8527 (13)
P1—O3 1.5080 (10) Na2—O2vi 2.3599 (10)
P1—O2 1.5086 (10) Na2—O2i 2.3599 (10)
P1—O1 1.5092 (11) Na2—O1ii 2.3850 (10)
P1—O4 1.6506 (10) Na2—O1v 2.3850 (10)
P2—O5 1.4951 (11) Na2—O3 2.3871 (10)
P2—O5iv 1.4951 (11) Na2—O3vii 2.3871 (10)
O2i—K1—O1ii 68.95 (3) O3—P1—O4 105.94 (6)
O2i—K1—O3ii 122.11 (3) O2—P1—O4 101.64 (6)
O1ii—K1—O3ii 53.46 (3) O1—P1—O4 105.69 (6)
O2i—K1—O1iii 119.70 (3) O5—P2—O5iv 117.54 (10)
O1ii—K1—O1iii 171.32 (4) O5—P2—O4 110.04 (6)
O3ii—K1—O1iii 117.99 (3) O5iv—P2—O4 110.66 (6)
O2i—K1—O3i 52.85 (3) O5—P2—O4iv 110.66 (6)
O1ii—K1—O3i 121.17 (3) O5iv—P2—O4iv 110.04 (6)
O3ii—K1—O3i 166.73 (4) O4—P2—O4iv 95.75 (8)
O1iii—K1—O3i 67.49 (3) O5v—Na1—O3 156.77 (5)
O2i—K1—O2iii 171.11 (4) O5v—Na1—O5iv 103.17 (3)
O1ii—K1—O2iii 119.38 (3) O3—Na1—O5iv 83.79 (4)
O3ii—K1—O2iii 66.53 (3) O5v—Na1—O2vi 105.62 (4)
O1iii—K1—O2iii 51.95 (3) O3—Na1—O2vi 79.92 (4)
O3i—K1—O2iii 119.27 (3) O5iv—Na1—O2vi 141.23 (5)
O2i—K1—O2 81.62 (3) O5v—Na1—O1v 80.29 (4)
O1ii—K1—O2 109.04 (3) O3—Na1—O1v 78.96 (4)
O3ii—K1—O2 119.82 (3) O5iv—Na1—O1v 133.13 (5)
O1iii—K1—O2 73.13 (3) O2vi—Na1—O1v 77.52 (4)
O3i—K1—O2 72.92 (3) O5v—Na1—O4vi 86.22 (4)
O2iii—K1—O2 92.17 (3) O3—Na1—O4vi 114.11 (4)
O2i—K1—O5ii 82.10 (3) O5iv—Na1—O4vi 103.10 (4)
O1ii—K1—O5ii 65.69 (3) O2vi—Na1—O4vi 54.20 (3)
O3ii—K1—O5ii 70.56 (3) O1v—Na1—O4vi 123.75 (4)
O1iii—K1—O5ii 114.55 (3) O2vi—Na2—O2i 180.0
O3i—K1—O5ii 96.19 (3) O2vi—Na2—O1ii 96.16 (4)
O2iii—K1—O5ii 103.88 (3) O2i—Na2—O1ii 83.85 (4)
O2—K1—O5ii 163.68 (3) O2vi—Na2—O1v 83.85 (4)
O2i—K1—O1 108.73 (3) O2i—Na2—O1v 96.15 (4)
O1ii—K1—O1 83.10 (3) O1ii—Na2—O1v 180.000 (1)
O3ii—K1—O1 72.27 (3) O2vi—Na2—O3 83.11 (3)
O1iii—K1—O1 92.86 (3) O2i—Na2—O3 96.89 (3)
O3i—K1—O1 120.50 (3) O1ii—Na2—O3 96.09 (4)
O2iii—K1—O1 70.83 (3) O1v—Na2—O3 83.91 (4)
O2—K1—O1 47.59 (3) O2vi—Na2—O3vii 96.89 (3)
O5ii—K1—O1 141.07 (3) O2i—Na2—O3vii 83.11 (3)
O3—P1—O2 114.42 (6) O1ii—Na2—O3vii 83.91 (4)
O3—P1—O1 114.27 (6) O1v—Na2—O3vii 96.09 (4)
O2—P1—O1 113.31 (6) O3—Na2—O3vii 180.00 (4)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) −x, y, −z+1/2; (v) x+1/2, y−1/2, z; (vi) x, y−1, z; (vii) −x+1/2, −y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5872).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Corbridge, D. E. C. (1960). Acta Cryst. 13, 263–269.
  4. Cruickshank, D. W. J. (1964). Acta Cryst. 17, 674–675.
  5. Davies, D. R. & Corbridge, D. E. C. (1958). Acta Cryst. 11, 315–319.
  6. Dymon, J. J. & King, A. J. (1951). Acta Cryst. 4, 378–379.
  7. Dyroff, D. R. (1965). PhD thesis, California Institute of Technology, Pasadena, California, USA.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wiench, D. M., Jansen, M. & Hoppe, R. (1982). Z. Anorg. Allg. Chem. 488, 80–86.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014894/bt5872sup1.cif

e-68-00i31-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014894/bt5872Isup2.hkl

e-68-00i31-Isup2.hkl (136.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES