Abstract
The structure of the title compound, K2Na3P3O10, is characterized by open chains of three PO4 tetrahedra linked by single oxygen bridges. The P3O10 groups have crystallographic twofold symmetry, with the central P atom being located on the twofold rotation axis. One of the sodium ions lies on a centre of inversion, whereas all the remaining atoms are in general positions. The structure is isotypic with that of the high-temperature form of Na5P3O10 phase I.
Related literature
For compounds with related structures, see: Cruickshank (1964 ▶); Davies & Corbridge (1958 ▶); Dyroff (1965 ▶), Wiench et al. (1982 ▶); Dymon & King (1951 ▶); Corbridge (1960 ▶).
Experimental
Crystal data
K2Na3P3O10
M r = 400.08
Monoclinic,
a = 9.8866 (4) Å
b = 5.6332 (2) Å
c = 18.6577 (8) Å
β = 96.199 (3)°
V = 1033.03 (7) Å3
Z = 4
Mo Kα radiation
μ = 1.55 mm−1
T = 296 K
0.19 × 0.14 × 0.10 mm
Data collection
Bruker APEXII CCD detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1999 ▶) T min = 0.511, T max = 0.638
12463 measured reflections
2830 independent reflections
2136 reflections with I > 2σ(I)
R int = 0.032
Refinement
R[F 2 > 2σ(F 2)] = 0.032
wR(F 2) = 0.080
S = 1.08
2830 reflections
85 parameters
Δρmax = 0.63 e Å−3
Δρmin = −0.97 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia,1997 ▶) and DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014894/bt5872sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014894/bt5872Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
supplementary crystallographic information
Comment
The present triphosphate was obtained by chance, during the preparation of a mixed pyrophosphate. A bibliographic study of alkali triphosphates like M5P3010 shows that there are few known structures. Thus, in the case of sodium triphosphate, the crystal structures of two anhydrous forms noted Phase I and II were determined by Cruickshank (1964) and Davies & Corbridge (1958) and that of the hexahydrate was performed by Dyroff (1965) and re-examined by Wiench et al. (1982).
The structure of dipotassium trisodium triphosphate consists of open chains of three PO4 tetrahedra linked by single oxygen bridges. The values of P–P (2.883 Å) distances and P—O—P (125.25°) angles are within the limits generally observed in condensed phosphate crystal chemistry. The internal symmetry of the P3010 groups has a twofold symmetry, with the central phosphorus P2 atom being located on a binary axis. Moreover, the Na2 sodium ion lies on the symmetry center whereas all the remaining atoms are in general positions of the C2/c space group. The Na2 sodium atom located at Wyckoff position 4c (1/4, 3/4, 1/2) could be surrounded by a roughly octahedral arrangement of six oxygen atoms and the other sodium and potassium (Na1, K1) atoms are coordinated to six and eight oxygen atoms respectively. The Na2O6 octahedra, Na1O6 and K1O8 polyhedra are connected through the apices to triphosphate groups and form a three-dimensional host lattice (Fig.1). The resulting 3-D framework presents intersecting tunnels running along the [010] and [110] directions, where the six-coordinated Na1+ cations are located (Fig.2). The structure of this compound is isotype to that of the high-temperature form of Na5P3010 phase I (Dymon and King, 1951 and Corbridge, 1960).
Experimental
The present triphosphate is obtained by chance, during the preparation of a mixture of pyrophosphate. Indeed, the powder phase NaKNiP2O7 synthesized by wet process is introduced into a platinum crucible, and then gradually heated to a temperature above its melting point (1173 K) for 2 h, followed by slow cooling of the order of 6 K per hour up to 673 K. Then the furnace is shuts down and the cooling is continued until room temperature. Small colourless single crystals of K2Na3P3O10 were isolated from the mixtures of phases.
Refinement
The highest peak and the deepest hole in the final Fourier map are at 0.63 Å and 0.58 Å, respectively, from K1.
Figures
Fig. 1.
Plot of K2Na3P3O10 crystal structure showing polyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) -x + 1/2, -y + 1/2, -z + 1; (ii) -x, -y, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x, y + 1, z; (v) -x, y, -z + 1/2; (vi) x - 1/2, y + 1/2, z; (vii) -x + 1/2, y + 1/2, -z + 1/2; (viii) x + 1/2, y - 1/2, z; (ix) x, y - 1, z; (x) -x + 1/2, -y - 1/2, -z + 1.
Fig. 2.
Projection view of the K2Na3P3O10 framework structure showing tunnel running along b direction where the Na1 atoms are located.
Crystal data
| K2Na3P3O10 | F(000) = 784 |
| Mr = 400.08 | Dx = 2.572 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -c 2yc | Cell parameters from 2830 reflections |
| a = 9.8866 (4) Å | θ = 4.2–38.3° |
| b = 5.6332 (2) Å | µ = 1.55 mm−1 |
| c = 18.6577 (8) Å | T = 296 K |
| β = 96.199 (3)° | Block, colourless |
| V = 1033.03 (7) Å3 | 0.19 × 0.14 × 0.10 mm |
| Z = 4 |
Data collection
| Bruker APEXII CCD detector diffractometer | 2830 independent reflections |
| Radiation source: fine-focus sealed tube | 2136 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.032 |
| ω and φ scans | θmax = 38.3°, θmin = 4.2° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1999) | h = −17→17 |
| Tmin = 0.511, Tmax = 0.638 | k = −8→9 |
| 12463 measured reflections | l = −32→32 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0334P)2 + 0.7541P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.080 | (Δ/σ)max = 0.001 |
| S = 1.08 | Δρmax = 0.63 e Å−3 |
| 2830 reflections | Δρmin = −0.97 e Å−3 |
| 85 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.0011 (3) |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| K1 | 0.09445 (3) | 0.27218 (6) | 0.57736 (2) | 0.02014 (8) | |
| P1 | 0.06781 (3) | 0.22944 (6) | 0.398705 (18) | 0.00976 (7) | |
| P2 | 0.0000 | 0.09573 (9) | 0.2500 | 0.01288 (10) | |
| Na1 | 0.21820 (7) | −0.30829 (11) | 0.32759 (3) | 0.01917 (13) | |
| Na2 | 0.2500 | −0.2500 | 0.5000 | 0.01344 (15) | |
| O1 | −0.07276 (11) | 0.22433 (19) | 0.42318 (6) | 0.0184 (2) | |
| O2 | 0.15106 (10) | 0.44080 (18) | 0.42676 (5) | 0.01569 (19) | |
| O3 | 0.14234 (10) | −0.00428 (18) | 0.40638 (6) | 0.01571 (19) | |
| O4 | 0.04508 (11) | 0.28577 (18) | 0.31142 (5) | 0.01663 (19) | |
| O5 | −0.12023 (12) | −0.0419 (2) | 0.26927 (6) | 0.0231 (2) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| K1 | 0.01413 (13) | 0.01460 (13) | 0.03200 (18) | 0.00043 (10) | 0.00389 (11) | 0.00128 (11) |
| P1 | 0.00897 (13) | 0.00981 (14) | 0.01046 (14) | 0.00010 (10) | 0.00091 (10) | −0.00060 (10) |
| P2 | 0.0142 (2) | 0.0135 (2) | 0.0108 (2) | 0.000 | 0.00129 (15) | 0.000 |
| Na1 | 0.0199 (3) | 0.0173 (3) | 0.0212 (3) | 0.0060 (2) | 0.0062 (2) | 0.0047 (2) |
| Na2 | 0.0132 (3) | 0.0131 (4) | 0.0139 (3) | −0.0003 (3) | 0.0008 (3) | −0.0006 (3) |
| O1 | 0.0136 (4) | 0.0187 (5) | 0.0244 (5) | −0.0006 (4) | 0.0090 (4) | −0.0020 (4) |
| O2 | 0.0151 (4) | 0.0140 (4) | 0.0174 (4) | −0.0028 (3) | −0.0007 (3) | −0.0041 (3) |
| O3 | 0.0162 (4) | 0.0126 (4) | 0.0180 (4) | 0.0044 (3) | 0.0003 (3) | 0.0015 (3) |
| O4 | 0.0239 (5) | 0.0159 (4) | 0.0095 (4) | −0.0021 (4) | −0.0010 (3) | 0.0012 (3) |
| O5 | 0.0238 (5) | 0.0246 (5) | 0.0216 (5) | −0.0107 (4) | 0.0056 (4) | 0.0005 (4) |
Geometric parameters (Å, º)
| K1—O2i | 2.7960 (11) | P2—O4 | 1.5961 (11) |
| K1—O1ii | 2.8051 (11) | P2—O4iv | 1.5961 (11) |
| K1—O3ii | 2.8291 (11) | Na1—O5v | 2.4172 (14) |
| K1—O1iii | 2.8443 (11) | Na1—O3 | 2.4278 (12) |
| K1—O3i | 2.8987 (11) | Na1—O5iv | 2.4655 (13) |
| K1—O2iii | 2.9106 (11) | Na1—O2vi | 2.4753 (12) |
| K1—O2 | 3.0740 (11) | Na1—O1v | 2.5864 (13) |
| K1—O5ii | 3.1272 (12) | Na1—O4vi | 2.8527 (13) |
| P1—O3 | 1.5080 (10) | Na2—O2vi | 2.3599 (10) |
| P1—O2 | 1.5086 (10) | Na2—O2i | 2.3599 (10) |
| P1—O1 | 1.5092 (11) | Na2—O1ii | 2.3850 (10) |
| P1—O4 | 1.6506 (10) | Na2—O1v | 2.3850 (10) |
| P2—O5 | 1.4951 (11) | Na2—O3 | 2.3871 (10) |
| P2—O5iv | 1.4951 (11) | Na2—O3vii | 2.3871 (10) |
| O2i—K1—O1ii | 68.95 (3) | O3—P1—O4 | 105.94 (6) |
| O2i—K1—O3ii | 122.11 (3) | O2—P1—O4 | 101.64 (6) |
| O1ii—K1—O3ii | 53.46 (3) | O1—P1—O4 | 105.69 (6) |
| O2i—K1—O1iii | 119.70 (3) | O5—P2—O5iv | 117.54 (10) |
| O1ii—K1—O1iii | 171.32 (4) | O5—P2—O4 | 110.04 (6) |
| O3ii—K1—O1iii | 117.99 (3) | O5iv—P2—O4 | 110.66 (6) |
| O2i—K1—O3i | 52.85 (3) | O5—P2—O4iv | 110.66 (6) |
| O1ii—K1—O3i | 121.17 (3) | O5iv—P2—O4iv | 110.04 (6) |
| O3ii—K1—O3i | 166.73 (4) | O4—P2—O4iv | 95.75 (8) |
| O1iii—K1—O3i | 67.49 (3) | O5v—Na1—O3 | 156.77 (5) |
| O2i—K1—O2iii | 171.11 (4) | O5v—Na1—O5iv | 103.17 (3) |
| O1ii—K1—O2iii | 119.38 (3) | O3—Na1—O5iv | 83.79 (4) |
| O3ii—K1—O2iii | 66.53 (3) | O5v—Na1—O2vi | 105.62 (4) |
| O1iii—K1—O2iii | 51.95 (3) | O3—Na1—O2vi | 79.92 (4) |
| O3i—K1—O2iii | 119.27 (3) | O5iv—Na1—O2vi | 141.23 (5) |
| O2i—K1—O2 | 81.62 (3) | O5v—Na1—O1v | 80.29 (4) |
| O1ii—K1—O2 | 109.04 (3) | O3—Na1—O1v | 78.96 (4) |
| O3ii—K1—O2 | 119.82 (3) | O5iv—Na1—O1v | 133.13 (5) |
| O1iii—K1—O2 | 73.13 (3) | O2vi—Na1—O1v | 77.52 (4) |
| O3i—K1—O2 | 72.92 (3) | O5v—Na1—O4vi | 86.22 (4) |
| O2iii—K1—O2 | 92.17 (3) | O3—Na1—O4vi | 114.11 (4) |
| O2i—K1—O5ii | 82.10 (3) | O5iv—Na1—O4vi | 103.10 (4) |
| O1ii—K1—O5ii | 65.69 (3) | O2vi—Na1—O4vi | 54.20 (3) |
| O3ii—K1—O5ii | 70.56 (3) | O1v—Na1—O4vi | 123.75 (4) |
| O1iii—K1—O5ii | 114.55 (3) | O2vi—Na2—O2i | 180.0 |
| O3i—K1—O5ii | 96.19 (3) | O2vi—Na2—O1ii | 96.16 (4) |
| O2iii—K1—O5ii | 103.88 (3) | O2i—Na2—O1ii | 83.85 (4) |
| O2—K1—O5ii | 163.68 (3) | O2vi—Na2—O1v | 83.85 (4) |
| O2i—K1—O1 | 108.73 (3) | O2i—Na2—O1v | 96.15 (4) |
| O1ii—K1—O1 | 83.10 (3) | O1ii—Na2—O1v | 180.000 (1) |
| O3ii—K1—O1 | 72.27 (3) | O2vi—Na2—O3 | 83.11 (3) |
| O1iii—K1—O1 | 92.86 (3) | O2i—Na2—O3 | 96.89 (3) |
| O3i—K1—O1 | 120.50 (3) | O1ii—Na2—O3 | 96.09 (4) |
| O2iii—K1—O1 | 70.83 (3) | O1v—Na2—O3 | 83.91 (4) |
| O2—K1—O1 | 47.59 (3) | O2vi—Na2—O3vii | 96.89 (3) |
| O5ii—K1—O1 | 141.07 (3) | O2i—Na2—O3vii | 83.11 (3) |
| O3—P1—O2 | 114.42 (6) | O1ii—Na2—O3vii | 83.91 (4) |
| O3—P1—O1 | 114.27 (6) | O1v—Na2—O3vii | 96.09 (4) |
| O2—P1—O1 | 113.31 (6) | O3—Na2—O3vii | 180.00 (4) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) −x, y, −z+1/2; (v) x+1/2, y−1/2, z; (vi) x, y−1, z; (vii) −x+1/2, −y−1/2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5872).
References
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Corbridge, D. E. C. (1960). Acta Cryst. 13, 263–269.
- Cruickshank, D. W. J. (1964). Acta Cryst. 17, 674–675.
- Davies, D. R. & Corbridge, D. E. C. (1958). Acta Cryst. 11, 315–319.
- Dymon, J. J. & King, A. J. (1951). Acta Cryst. 4, 378–379.
- Dyroff, D. R. (1965). PhD thesis, California Institute of Technology, Pasadena, California, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Wiench, D. M., Jansen, M. & Hoppe, R. (1982). Z. Anorg. Allg. Chem. 488, 80–86.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014894/bt5872sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014894/bt5872Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


