Abstract
In the title complex, [Cu(C13H10ClN2O)Cl], the CuII ion is coordinated by one O atom and two N atoms of the tridentate Schiff base ligand and one chloride ion, forming a slightly distorted square-planar geometry. Weak Cu⋯Cl interactions [2.793 (5) Å] result in the formation of a chain along the a axis.
Related literature
For background to the use of unsymmetrical tridentate Schiff base ligands and their hydrogenated derivatives in coordination chemistry for the assembly of alkoxo-or phenoxo-bridged clusters and polymers, see: Koizumi et al. (2005 ▶); Boskovic et al. (2003 ▶); Oshiob et al. (2005 ▶). For related structures, see: Bluhm et al. (2003 ▶); Kannappan et al. (2005 ▶); Sun et al. (2005 ▶).
Experimental
Crystal data
[Cu(C13H10ClN2O)Cl]
M r = 344.67
Orthorhombic,
a = 7.7975 (11) Å
b = 13.638 (2) Å
c = 24.854 (4) Å
V = 2643.1 (7) Å3
Z = 8
Mo Kα radiation
μ = 2.05 mm−1
T = 293 K
0.15 × 0.12 × 0.09 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ▶) T min = 0.749, T max = 0.837
12098 measured reflections
2325 independent reflections
1580 reflections with I > 2σ(I)
R int = 0.053
Refinement
R[F 2 > 2σ(F 2)] = 0.038
wR(F 2) = 0.098
S = 1.02
2325 reflections
172 parameters
H-atom parameters constrained
Δρmax = 0.29 e Å−3
Δρmin = −0.33 e Å−3
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: SAINT-Plus (Bruker, 2001 ▶); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ▶); molecular graphics: SHELXTL (Sheldrick, 2008b ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013359/hg5195sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013359/hg5195Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported by the Basic and Frontier Research Programs of Henan Province (No. 092300410194)
supplementary crystallographic information
Comment
Schiff base complexes have all along attracted much attention due to their interesting structures and wide potential applications. Recently, the relative flexible unsymmetrical tridentate Schiff base ligands and their hydrogenerated derivatives have been introduced into the coordination chemistry to assemble alkoxo-or phenoxo-bridged clusters and polymers with beautiful molecular structures and interesting magnetic properties (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). Herein, we report the structure of a new copper complex based on an unsymmetric tridentate Schiff base ligand.
The molecular structure of title compound is shown in Fig. 1. The Cu ion is four coordinate forming a slightly distorted square planar coordination sphere, in which three positions are occupied by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the other one coming from a coordinated chloride ion. The CuN2O unit is located in a well plane with the mean deviation of 0.0035 (3) Å, while the chloro ion is obvious out of the above plane with deviation value 0.1249 (5) Å. The bond distances of Cu—O, Cu—N and Cu—Cl are in the normal range compared to the reported complexes containing the analogous unsymmetrical tridentate Schiff base ligands (Bluhm et al., 2003; Kannappan, et al., 2005; Sun et al., 2005). It is worth noting that the asymmetric unit can be linked into one dimensional double chain structure by the weak Cu···Cl intermolecular interactions.
Experimental
The Schiff base was obtained by condensation 2-(aminomethyl)pyridine and 5-chloro-2-hydroxy-benzaldehyde with the ratio 1:1 in methanol. The synthesis of the title complex was carried out by the reaction of CuCl2.6H2O and the Schiff-base ligand (1:1, molar ratio) in methanol under the stirring condition at room temperature. The filtrated solution was allowed to partial evaporation and blue single crystals suitable for X-ray diffraction were afforded with the yield about 60% sevral days later.
Refinement
All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
View of the title compound with the atom-labelling scheme Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity.
Crystal data
| [Cu(C13H10ClN2O)Cl] | F(000) = 1384 |
| Mr = 344.67 | Dx = 1.732 Mg m−3 |
| Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2ab | Cell parameters from 1346 reflections |
| a = 7.7975 (11) Å | θ = 2.8–26.3° |
| b = 13.638 (2) Å | µ = 2.05 mm−1 |
| c = 24.854 (4) Å | T = 293 K |
| V = 2643.1 (7) Å3 | Block, blue |
| Z = 8 | 0.15 × 0.12 × 0.09 mm |
Data collection
| Bruker APEXII diffractometer | 2325 independent reflections |
| Radiation source: fine-focus sealed tube | 1580 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.053 |
| φ and ω scans | θmax = 25.0°, θmin = 1.6° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −9→9 |
| Tmin = 0.749, Tmax = 0.837 | k = −14→16 |
| 12098 measured reflections | l = −27→29 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.098 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0418P)2 + 1.4463P] where P = (Fo2 + 2Fc2)/3 |
| 2325 reflections | (Δ/σ)max = 0.006 |
| 172 parameters | Δρmax = 0.29 e Å−3 |
| 0 restraints | Δρmin = −0.33 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.10863 (6) | 0.97468 (3) | 0.248134 (18) | 0.03844 (17) | |
| Cl1 | 0.43484 (19) | 0.64978 (10) | 0.45552 (5) | 0.0755 (4) | |
| Cl2 | −0.09768 (12) | 1.09117 (7) | 0.25915 (4) | 0.0441 (3) | |
| O1 | 0.1221 (4) | 0.9585 (2) | 0.32421 (11) | 0.0504 (8) | |
| N1 | 0.2305 (4) | 0.8517 (2) | 0.23433 (11) | 0.0349 (7) | |
| N2 | 0.1071 (4) | 0.9820 (2) | 0.16720 (13) | 0.0407 (8) | |
| C1 | 0.2746 (5) | 0.8043 (3) | 0.32695 (15) | 0.0358 (9) | |
| C2 | 0.1939 (5) | 0.8871 (3) | 0.35062 (16) | 0.0399 (10) | |
| C3 | 0.1894 (6) | 0.8900 (3) | 0.40777 (17) | 0.0524 (12) | |
| H3 | 0.1355 | 0.9426 | 0.4246 | 0.063* | |
| C4 | 0.2610 (6) | 0.8186 (3) | 0.43873 (17) | 0.0564 (12) | |
| H4 | 0.2573 | 0.8231 | 0.4760 | 0.068* | |
| C5 | 0.3394 (5) | 0.7391 (3) | 0.41436 (17) | 0.0472 (11) | |
| C6 | 0.3446 (5) | 0.7312 (3) | 0.36013 (16) | 0.0414 (10) | |
| H6 | 0.3953 | 0.6764 | 0.3446 | 0.050* | |
| C7 | 0.2900 (5) | 0.7931 (3) | 0.27008 (15) | 0.0343 (9) | |
| H7 | 0.3488 | 0.7381 | 0.2578 | 0.041* | |
| C8 | 0.1920 (5) | 0.9084 (3) | 0.14267 (15) | 0.0392 (10) | |
| C9 | 0.2162 (6) | 0.9091 (3) | 0.08752 (17) | 0.0544 (12) | |
| H9 | 0.2736 | 0.8576 | 0.0709 | 0.065* | |
| C10 | 0.1555 (6) | 0.9855 (4) | 0.05748 (19) | 0.0655 (14) | |
| H10 | 0.1727 | 0.9868 | 0.0205 | 0.079* | |
| C11 | 0.0687 (6) | 1.0606 (4) | 0.08264 (19) | 0.0646 (13) | |
| H11 | 0.0268 | 1.1134 | 0.0630 | 0.077* | |
| C12 | 0.0453 (6) | 1.0559 (3) | 0.13728 (17) | 0.0535 (12) | |
| H12 | −0.0157 | 1.1057 | 0.1542 | 0.064* | |
| C13 | 0.2559 (5) | 0.8271 (3) | 0.17772 (14) | 0.0407 (10) | |
| H13A | 0.1948 | 0.7671 | 0.1693 | 0.049* | |
| H13B | 0.3770 | 0.8163 | 0.1709 | 0.049* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0423 (3) | 0.0278 (3) | 0.0452 (3) | 0.0030 (2) | 0.0022 (3) | −0.0004 (2) |
| Cl1 | 0.1064 (11) | 0.0612 (8) | 0.0589 (7) | 0.0109 (8) | −0.0199 (7) | 0.0129 (6) |
| Cl2 | 0.0358 (5) | 0.0300 (5) | 0.0665 (7) | 0.0016 (4) | 0.0006 (5) | −0.0014 (5) |
| O1 | 0.065 (2) | 0.0367 (17) | 0.0496 (17) | 0.0140 (15) | 0.0072 (15) | 0.0007 (14) |
| N1 | 0.0397 (19) | 0.0258 (17) | 0.0392 (18) | −0.0030 (15) | 0.0042 (15) | −0.0022 (14) |
| N2 | 0.040 (2) | 0.0336 (19) | 0.0484 (19) | −0.0033 (17) | −0.0025 (16) | 0.0041 (16) |
| C1 | 0.034 (2) | 0.028 (2) | 0.045 (2) | −0.0045 (17) | 0.0006 (18) | −0.0028 (18) |
| C2 | 0.041 (2) | 0.032 (2) | 0.047 (2) | −0.0053 (19) | 0.004 (2) | −0.0024 (19) |
| C3 | 0.065 (3) | 0.044 (3) | 0.048 (3) | 0.007 (2) | 0.006 (2) | −0.007 (2) |
| C4 | 0.070 (3) | 0.058 (3) | 0.042 (2) | −0.005 (3) | 0.002 (2) | −0.003 (2) |
| C5 | 0.052 (3) | 0.041 (3) | 0.048 (3) | −0.003 (2) | −0.004 (2) | 0.003 (2) |
| C6 | 0.044 (3) | 0.030 (2) | 0.050 (3) | −0.0025 (18) | −0.0013 (19) | −0.003 (2) |
| C7 | 0.031 (2) | 0.024 (2) | 0.048 (2) | −0.0001 (17) | 0.0022 (18) | −0.0048 (18) |
| C8 | 0.038 (2) | 0.035 (2) | 0.044 (2) | −0.0071 (19) | −0.0029 (19) | 0.000 (2) |
| C9 | 0.063 (3) | 0.051 (3) | 0.049 (3) | 0.000 (2) | 0.000 (2) | −0.002 (2) |
| C10 | 0.078 (4) | 0.074 (4) | 0.045 (3) | −0.004 (3) | −0.005 (2) | 0.009 (3) |
| C11 | 0.074 (4) | 0.060 (3) | 0.059 (3) | 0.002 (3) | −0.008 (3) | 0.016 (3) |
| C12 | 0.057 (3) | 0.045 (3) | 0.058 (3) | 0.001 (2) | −0.001 (2) | 0.004 (2) |
| C13 | 0.044 (3) | 0.036 (2) | 0.042 (2) | 0.0012 (19) | 0.001 (2) | −0.0045 (18) |
Geometric parameters (Å, º)
| Cu1—O1 | 1.907 (3) | C4—C5 | 1.384 (6) |
| Cu1—N1 | 1.958 (3) | C4—H4 | 0.9300 |
| Cu1—N2 | 2.014 (3) | C5—C6 | 1.353 (5) |
| Cu1—Cl2 | 2.2775 (11) | C6—H6 | 0.9300 |
| Cl1—C5 | 1.756 (4) | C7—H7 | 0.9300 |
| O1—C2 | 1.300 (4) | C8—C9 | 1.383 (5) |
| N1—C7 | 1.282 (4) | C8—C13 | 1.495 (5) |
| N1—C13 | 1.460 (4) | C9—C10 | 1.367 (6) |
| N2—C12 | 1.342 (5) | C9—H9 | 0.9300 |
| N2—C8 | 1.348 (5) | C10—C11 | 1.377 (6) |
| C1—C6 | 1.404 (5) | C10—H10 | 0.9300 |
| C1—C2 | 1.421 (5) | C11—C12 | 1.372 (6) |
| C1—C7 | 1.427 (5) | C11—H11 | 0.9300 |
| C2—C3 | 1.422 (5) | C12—H12 | 0.9300 |
| C3—C4 | 1.362 (6) | C13—H13A | 0.9700 |
| C3—H3 | 0.9300 | C13—H13B | 0.9700 |
| O1—Cu1—N1 | 92.74 (12) | C5—C6—C1 | 121.1 (4) |
| O1—Cu1—N2 | 175.25 (13) | C5—C6—H6 | 119.4 |
| N1—Cu1—N2 | 82.55 (13) | C1—C6—H6 | 119.4 |
| O1—Cu1—Cl2 | 90.03 (9) | N1—C7—C1 | 126.1 (4) |
| N1—Cu1—Cl2 | 164.03 (10) | N1—C7—H7 | 117.0 |
| N2—Cu1—Cl2 | 94.67 (10) | C1—C7—H7 | 117.0 |
| C2—O1—Cu1 | 127.7 (3) | N2—C8—C9 | 120.6 (4) |
| C7—N1—C13 | 118.4 (3) | N2—C8—C13 | 116.9 (3) |
| C7—N1—Cu1 | 126.0 (3) | C9—C8—C13 | 122.5 (4) |
| C13—N1—Cu1 | 115.6 (2) | C10—C9—C8 | 120.0 (4) |
| C12—N2—C8 | 119.0 (4) | C10—C9—H9 | 120.0 |
| C12—N2—Cu1 | 126.4 (3) | C8—C9—H9 | 120.0 |
| C8—N2—Cu1 | 114.3 (3) | C9—C10—C11 | 119.3 (5) |
| C6—C1—C2 | 119.6 (4) | C9—C10—H10 | 120.4 |
| C6—C1—C7 | 118.2 (4) | C11—C10—H10 | 120.4 |
| C2—C1—C7 | 122.2 (3) | C12—C11—C10 | 118.7 (5) |
| O1—C2—C1 | 125.2 (4) | C12—C11—H11 | 120.7 |
| O1—C2—C3 | 118.2 (4) | C10—C11—H11 | 120.7 |
| C1—C2—C3 | 116.5 (4) | N2—C12—C11 | 122.4 (4) |
| C4—C3—C2 | 122.3 (4) | N2—C12—H12 | 118.8 |
| C4—C3—H3 | 118.8 | C11—C12—H12 | 118.8 |
| C2—C3—H3 | 118.8 | N1—C13—C8 | 110.2 (3) |
| C3—C4—C5 | 119.6 (4) | N1—C13—H13A | 109.6 |
| C3—C4—H4 | 120.2 | C8—C13—H13A | 109.6 |
| C5—C4—H4 | 120.2 | N1—C13—H13B | 109.6 |
| C6—C5—C4 | 120.8 (4) | C8—C13—H13B | 109.6 |
| C6—C5—Cl1 | 120.8 (3) | H13A—C13—H13B | 108.1 |
| C4—C5—Cl1 | 118.4 (3) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5195).
References
- Bluhm, M. E., Ciesielski, M., Gorls, H., Walter, O. & Doring, M. (2003). Inorg. Chem. 42, 8878–8885. [DOI] [PubMed]
- Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058. [DOI] [PubMed]
- Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison,Wisconsin, USA.
- Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
- Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.
- Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210. [DOI] [PubMed]
- Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569. [DOI] [PubMed]
- Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E61, m1055–m1057.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013359/hg5195sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013359/hg5195Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

