Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 4;68(Pt 5):m545. doi: 10.1107/S1600536812013669

trans-Carbonyl­chloridobis[diphen­yl(4-vinyl­phen­yl)phosphane-κP]rhodium(I)

Hezron Ogutu a, Leo Kirsten a, Reinout Meijboom a,*
PMCID: PMC3344302  PMID: 22590068

Abstract

In the title compound, trans-[RhCl(C20H17P)2(CO)], the RhI atom is situated on a center of symmetry, resulting in a statistical 1:1 disorder of the chloride [Rh—Cl = 2.383 (2) Å] and carbonyl [Rh—C = 1.752 (7) Å] ligands. The distorted trans square-planar environment is completed by two P atoms [Rh—P = 2.3251 (4) Å] from two diphen­yl(4-vinyl­phen­yl)phosphane ligands. The vinyl group is disordered over two sets of sites in a 0.668 (10):0.332 (10) ratio. The crystal packing exhibits weak C—H⋯Cl and C—H⋯O hydrogen bonds and π–π inter­actions between the phenyl rings of neighbouring mol­ecules, with a centroid–centroid distance of 3.682 (2) Å.

Related literature  

For a review of rhodium Vaska {trans-[RhCl(CO)(PR 3)2]} compounds, see: Roodt et al. (2003). For related compounds, see: Angoletta (1959); Vaska & Di Luzio (1961); Chen et al. (1991); Kuwabara & Bau (1994); Otto et al. (2000); Otto (2001); Meijboom et al. (2005). graphic file with name e-68-0m545-scheme1.jpg

Experimental  

Crystal data  

  • [RhCl(C20H17P)2(CO)]

  • M r = 742.98

  • Triclinic, Inline graphic

  • a = 9.9030 (4) Å

  • b = 9.9310 (4) Å

  • c = 10.4150 (4) Å

  • α = 85.727 (2)°

  • β = 68.475 (2)°

  • γ = 62.295 (2)°

  • V = 837.85 (6) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 6.01 mm−1

  • T = 100 K

  • 0.10 × 0.08 × 0.06 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.107, T max = 0.402

  • 11163 measured reflections

  • 2941 independent reflections

  • 2850 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.057

  • S = 1.04

  • 2941 reflections

  • 232 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013669/cv5270sup1.cif

e-68-0m545-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013669/cv5270Isup2.hkl

e-68-0m545-Isup2.hkl (138.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9B—H9B1⋯O01i 0.93 2.54 3.205 (11) 129
C14—H14⋯Cl1ii 0.93 2.79 3.660 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, TESP and SASOL is gratefully acknowledged. Mr S. Enus is acknowledged for the synthesis of this compound.

supplementary crystallographic information

Comment

The original Vaska complex, trans-[IrCl(CO)(PPh3)2], was first reported in 1959 (Angoletta, 1959), but later correctly formulated by Vaska in 1961 (Vaska & Di Luzio, 1961) . This class of symmetrical square-planar complexes often crystallizes with the metal atom on a crystallographic inversion centre of symmetry, thus imposing a disordered packing arrangement (Otto, 2001;Otto et al., 2000; Chen et al.,1991; Kuwabara & Bau, 1994).These Vaska type complexes are useful model complexes and provide several probing methods, e.g. NMR and IR, to investigate the steric and electronic effects of novel group 15 ligands (Roodt et al., 2003).

Here we report the title compound, the i>trans-[RhClL2(CO)](L = diphenyl(4-vinylphenyl)phosphane) complex crystallizes in the triclinic space group, P-1.The crystal structure of the title compound (Fig.1) shows the expected square planar geometry with the phosphane ligands trans to each other. The RhI atom is situated on a center of symmetry, resulting in a statistical 1:1 disorder of the chlorido [Rh—Cl 2.383 (2) Å] and carbonyl [Rh—C 1.752 (7) Å] ligands. The distorted trans square-planar environment is completed by two P atoms [Rh—P 2.3251 (4) Å] from two L ligands. The vinyl group is disordered over two sets of sites in a 0.668 (10):0.332 (10) ratio. The J coupling of (Rh-P) is 128 Hz which is in agreement with the coupling constants for other rhodium Vaska type complexes of this nature (Meijboom et al., 2005). The C01–Rh1–P2 angle of 92.99 (17) ° and the P2–Rh1–Cl1 of 94.46 (3) ° exemplifies the deviation from the ideal 90 ° square planar geometry.

The crystal packing exhibits weak intermolecular C—H···Cl and C—H···O hydrogen bonds (Table 1). There is a π–π interaction between the neighbouring phenyl ring centroids of C16-C21 and C16-C21 (2-x,1-y,1-z), respectively with the centroid-centroid distance of 3.682 (2) Å.

Experimental

Diphenylphosphinostyrene (0.15 g, 0.51 mmol) was dissolved in acetone (6 cm3). A solution of dichlorotetracarbonyldirhodium(I) (0.04 g, 0.13 mmol) in acetone was added to the phosphine solution. The mixture was stirred for 5 minutes, slow evaporation of the solvent afforded the title compound as a yellow crystalline solid. Spectroscopic analysis:31P{H} NMR (CDCl3, 161.99 MHz, p.p.m.): 46.42 [d, 1J(Rh—P) = 179.81 Hz]; IR ν(CO): 1957.96 cm-1; (CD2Cl2) ν(CO): 1977.04 cm-1.

Refinement

The H atoms were placed in geometrically idealized positions (C—H bonds of 0.95–0.98 /%A) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (i) (1 - x, 1 - y, 1 - z)].

Crystal data

[RhCl(C20H17P)2(CO)] Z = 1
Mr = 742.98 F(000) = 380
Triclinic, P1 Dx = 1.473 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54178 Å
a = 9.9030 (4) Å Cell parameters from 8410 reflections
b = 9.9310 (4) Å θ = 4.6–66.3°
c = 10.4150 (4) Å µ = 6.01 mm1
α = 85.727 (2)° T = 100 K
β = 68.475 (2)° Rectangular, yellow
γ = 62.295 (2)° 0.10 × 0.08 × 0.06 mm
V = 837.85 (6) Å3

Data collection

Bruker APEXII CCD diffractometer 2941 independent reflections
Radiation source: fine-focus sealed tube 2850 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scans θmax = 66.3°, θmin = 4.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→7
Tmin = 0.107, Tmax = 0.402 k = −11→11
11163 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.5512P] where P = (Fo2 + 2Fc2)/3
2941 reflections (Δ/σ)max = 0.001
232 parameters Δρmax = 0.46 e Å3
6 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Rh1 0.5 0.5 0.5 0.02293 (9)
Cl1 0.34866 (19) 0.7717 (2) 0.55041 (12) 0.0329 (3) 0.5
C01 0.6149 (7) 0.2999 (8) 0.4747 (5) 0.0330 (14)* 0.5
O01 0.6932 (5) 0.1680 (6) 0.4511 (4) 0.0393 (13)* 0.5
P2 0.71286 (5) 0.50159 (5) 0.30681 (4) 0.02055 (12)
C2 0.7589 (2) 0.3785 (2) 0.15917 (19) 0.0239 (4)
C3 0.9177 (3) 0.2746 (2) 0.0745 (2) 0.0305 (4)
H3 1.0063 0.2629 0.0949 0.037*
C4 0.9461 (3) 0.1880 (3) −0.0400 (2) 0.0412 (5)
H4 1.0536 0.1179 −0.0942 0.049*
C5 0.8188 (4) 0.2033 (3) −0.0755 (2) 0.0431 (6)
C6 0.6589 (3) 0.3064 (3) 0.0108 (3) 0.0421 (6)
H6 0.5708 0.3183 −0.0103 0.05*
C7 0.6284 (3) 0.3916 (2) 0.1273 (2) 0.0331 (4)
H7 0.5206 0.4578 0.1843 0.04*
C10 0.6760 (2) 0.6851 (2) 0.23862 (19) 0.0224 (4)
C11 0.6826 (2) 0.7072 (2) 0.1032 (2) 0.0253 (4)
H11 0.7081 0.6263 0.0436 0.03*
C12 0.6512 (3) 0.8499 (2) 0.0569 (2) 0.0327 (4)
H12 0.6555 0.8642 −0.0335 0.039*
C13 0.6137 (3) 0.9700 (2) 0.1445 (3) 0.0379 (5)
H13 0.591 1.0657 0.1137 0.045*
C14 0.6097 (3) 0.9485 (2) 0.2788 (2) 0.0346 (5)
H14 0.5864 1.0292 0.3374 0.042*
C15 0.6406 (2) 0.8070 (2) 0.3253 (2) 0.0277 (4)
H15 0.6377 0.793 0.4153 0.033*
C16 0.9104 (2) 0.4379 (2) 0.32389 (18) 0.0226 (4)
C17 0.9552 (3) 0.3347 (2) 0.4169 (2) 0.0297 (4)
H17 0.8835 0.299 0.4721 0.036*
C18 1.1066 (3) 0.2846 (2) 0.4277 (2) 0.0335 (4)
H18 1.1369 0.2139 0.4888 0.04*
C19 1.2126 (2) 0.3398 (2) 0.3477 (2) 0.0316 (4)
H19 1.3137 0.3065 0.3553 0.038*
C20 1.1679 (2) 0.4442 (3) 0.2569 (2) 0.0314 (4)
H20 1.2384 0.4822 0.2042 0.038*
C21 1.0179 (2) 0.4927 (2) 0.2438 (2) 0.0274 (4)
H21 0.9891 0.562 0.1814 0.033*
C8A 0.8768 (8) 0.0979 (6) −0.2041 (5) 0.0314 (11) 0.668 (10)
H8A 0.9865 0.0231 −0.2409 0.038* 0.668 (10)
C9A 0.7794 (5) 0.1079 (5) −0.2647 (4) 0.0441 (14) 0.668 (10)
H9A1 0.6693 0.1819 −0.2295 0.053* 0.668 (10)
H9A2 0.8198 0.041 −0.3433 0.053* 0.668 (10)
C9B 0.9234 (11) 0.0621 (10) −0.2909 (12) 0.043 (3) 0.332 (10)
H9B1 1.0259 0.0295 −0.2862 0.051* 0.332 (10)
H9B2 0.916 0.0272 −0.3672 0.051* 0.332 (10)
C8B 0.7895 (13) 0.1573 (11) −0.1898 (8) 0.028 (2) 0.332 (10)
H8B 0.6847 0.1928 −0.1903 0.034* 0.332 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.01987 (12) 0.02210 (12) 0.02175 (12) −0.01035 (8) −0.00276 (8) 0.00663 (7)
Cl1 0.0272 (6) 0.0269 (8) 0.0345 (6) −0.0141 (6) 0.0001 (4) 0.0063 (6)
P2 0.0190 (2) 0.0228 (2) 0.0180 (2) −0.01070 (18) −0.00469 (17) 0.00582 (17)
C2 0.0292 (9) 0.0246 (9) 0.0233 (9) −0.0173 (8) −0.0107 (8) 0.0098 (7)
C3 0.0334 (10) 0.0332 (11) 0.0265 (10) −0.0203 (9) −0.0065 (8) 0.0024 (8)
C4 0.0518 (14) 0.0439 (13) 0.0288 (11) −0.0326 (11) −0.0013 (10) −0.0035 (9)
C5 0.0767 (17) 0.0471 (13) 0.0270 (11) −0.0487 (13) −0.0171 (11) 0.0118 (10)
C6 0.0690 (16) 0.0469 (13) 0.0488 (13) −0.0451 (13) −0.0427 (13) 0.0280 (11)
C7 0.0363 (11) 0.0316 (11) 0.0426 (12) −0.0208 (9) −0.0216 (9) 0.0135 (9)
C10 0.0172 (8) 0.0230 (9) 0.0246 (9) −0.0103 (7) −0.0051 (7) 0.0061 (7)
C11 0.0225 (9) 0.0273 (9) 0.0248 (9) −0.0127 (7) −0.0069 (7) 0.0052 (7)
C12 0.0315 (10) 0.0335 (11) 0.0308 (10) −0.0154 (9) −0.0114 (8) 0.0146 (8)
C13 0.0359 (11) 0.0251 (10) 0.0481 (13) −0.0151 (9) −0.0119 (10) 0.0133 (9)
C14 0.0317 (10) 0.0264 (10) 0.0405 (12) −0.0146 (8) −0.0061 (9) −0.0009 (8)
C15 0.0247 (9) 0.0302 (10) 0.0249 (9) −0.0135 (8) −0.0050 (7) 0.0028 (8)
C16 0.0229 (9) 0.0241 (9) 0.0182 (8) −0.0094 (7) −0.0067 (7) −0.0001 (7)
C17 0.0337 (10) 0.0297 (10) 0.0298 (10) −0.0168 (8) −0.0144 (8) 0.0077 (8)
C18 0.0373 (11) 0.0304 (10) 0.0371 (11) −0.0133 (9) −0.0230 (9) 0.0086 (9)
C19 0.0273 (10) 0.0353 (11) 0.0315 (10) −0.0109 (8) −0.0142 (8) −0.0023 (8)
C20 0.0274 (10) 0.0418 (12) 0.0266 (10) −0.0184 (9) −0.0088 (8) 0.0028 (8)
C21 0.0271 (9) 0.0344 (10) 0.0213 (9) −0.0149 (8) −0.0096 (8) 0.0056 (8)
C8A 0.032 (2) 0.030 (2) 0.029 (3) −0.0122 (19) −0.010 (2) 0.0010 (17)
C9A 0.044 (2) 0.045 (2) 0.038 (2) −0.0152 (17) −0.0148 (16) −0.0073 (17)
C9B 0.046 (6) 0.048 (5) 0.033 (6) −0.018 (4) −0.016 (4) −0.004 (4)
C8B 0.023 (4) 0.029 (4) 0.031 (4) −0.010 (4) −0.011 (3) −0.002 (3)

Geometric parameters (Å, º)

Rh1—C01i 1.752 (7) C12—C13 1.377 (3)
Rh1—C01 1.752 (7) C12—H12 0.93
Rh1—P2 2.3251 (4) C13—C14 1.388 (3)
Rh1—P2i 2.3251 (4) C13—H13 0.93
Rh1—Cl1i 2.383 (2) C14—C15 1.383 (3)
Rh1—Cl1 2.383 (2) C14—H14 0.93
C01—O01 1.158 (7) C15—H15 0.93
P2—C2 1.8205 (19) C16—C17 1.389 (3)
P2—C10 1.8266 (18) C16—C21 1.395 (3)
P2—C16 1.8298 (18) C17—C18 1.389 (3)
C2—C3 1.388 (3) C17—H17 0.93
C2—C7 1.396 (3) C18—C19 1.387 (3)
C3—C4 1.387 (3) C18—H18 0.93
C3—H3 0.93 C19—C20 1.377 (3)
C4—C5 1.380 (4) C19—H19 0.93
C4—H4 0.93 C20—C21 1.389 (3)
C5—C6 1.396 (4) C20—H20 0.93
C5—C8B 1.473 (8) C21—H21 0.93
C5—C8A 1.518 (6) C8A—C9A 1.299 (8)
C6—C7 1.387 (3) C8A—H8A 0.93
C6—H6 0.93 C9A—H9A1 0.93
C7—H7 0.93 C9A—H9A2 0.93
C10—C15 1.392 (3) C9B—C8B 1.311 (15)
C10—C11 1.393 (3) C9B—H9B1 0.93
C11—C12 1.392 (3) C9B—H9B2 0.93
C11—H11 0.93 C8B—H8B 0.93
C01i—Rh1—C01 180.0000 (10) C12—C11—C10 120.20 (19)
C01i—Rh1—P2 92.99 (17) C12—C11—H11 119.9
C01—Rh1—P2 87.01 (17) C10—C11—H11 119.9
C01i—Rh1—P2i 87.01 (17) C13—C12—C11 120.2 (2)
C01—Rh1—P2i 92.99 (17) C13—C12—H12 119.9
P2—Rh1—P2i 180.00 (2) C11—C12—H12 119.9
C01i—Rh1—Cl1i 175.46 (17) C12—C13—C14 120.06 (19)
C01—Rh1—Cl1i 4.54 (17) C12—C13—H13 120
P2—Rh1—Cl1i 85.54 (3) C14—C13—H13 120
P2i—Rh1—Cl1i 94.46 (3) C15—C14—C13 119.9 (2)
C01i—Rh1—Cl1 4.54 (17) C15—C14—H14 120.1
C01—Rh1—Cl1 175.46 (17) C13—C14—H14 120.1
P2—Rh1—Cl1 94.46 (3) C14—C15—C10 120.72 (19)
P2i—Rh1—Cl1 85.54 (3) C14—C15—H15 119.6
Cl1i—Rh1—Cl1 180.00 (6) C10—C15—H15 119.6
O01—C01—Rh1 176.7 (5) C17—C16—C21 119.13 (17)
C2—P2—C10 103.30 (8) C17—C16—P2 120.51 (15)
C2—P2—C16 105.19 (8) C21—C16—P2 120.36 (14)
C10—P2—C16 102.16 (8) C16—C17—C18 120.31 (19)
C2—P2—Rh1 110.70 (6) C16—C17—H17 119.8
C10—P2—Rh1 116.84 (6) C18—C17—H17 119.8
C16—P2—Rh1 117.12 (6) C19—C18—C17 120.11 (19)
C3—C2—C7 118.24 (19) C19—C18—H18 119.9
C3—C2—P2 123.22 (15) C17—C18—H18 119.9
C7—C2—P2 118.52 (16) C20—C19—C18 119.90 (18)
C4—C3—C2 120.8 (2) C20—C19—H19 120
C4—C3—H3 119.6 C18—C19—H19 120
C2—C3—H3 119.6 C19—C20—C21 120.27 (19)
C5—C4—C3 121.7 (2) C19—C20—H20 119.9
C5—C4—H4 119.2 C21—C20—H20 119.9
C3—C4—H4 119.2 C20—C21—C16 120.26 (18)
C4—C5—C6 117.4 (2) C20—C21—H21 119.9
C4—C5—C8B 140.7 (5) C16—C21—H21 119.9
C6—C5—C8B 101.4 (5) C9A—C8A—C5 122.6 (5)
C4—C5—C8A 113.1 (3) C9A—C8A—H8A 118.7
C6—C5—C8A 129.4 (3) C5—C8A—H8A 118.7
C7—C6—C5 121.6 (2) C8A—C9A—H9A1 120
C7—C6—H6 119.2 C8A—C9A—H9A2 120
C5—C6—H6 119.2 H9A1—C9A—H9A2 120
C6—C7—C2 120.3 (2) C8B—C9B—H9B1 120
C6—C7—H7 119.9 C8B—C9B—H9B2 120
C2—C7—H7 119.9 H9B1—C9B—H9B2 120
C15—C10—C11 118.91 (17) C9B—C8B—C5 114.4 (8)
C15—C10—P2 118.66 (14) C9B—C8B—H8B 122.8
C11—C10—P2 122.43 (15) C5—C8B—H8B 122.8
C01i—Rh1—P2—C2 −126.99 (17) Rh1—P2—C10—C15 59.78 (15)
C01—Rh1—P2—C2 53.01 (17) C2—P2—C10—C11 1.31 (17)
Cl1i—Rh1—P2—C2 48.71 (7) C16—P2—C10—C11 110.36 (15)
Cl1—Rh1—P2—C2 −131.29 (7) Rh1—P2—C10—C11 −120.47 (14)
C01i—Rh1—P2—C10 −9.16 (17) C15—C10—C11—C12 −1.2 (3)
C01—Rh1—P2—C10 170.84 (17) P2—C10—C11—C12 179.06 (15)
Cl1i—Rh1—P2—C10 166.53 (7) C10—C11—C12—C13 0.1 (3)
Cl1—Rh1—P2—C10 −13.47 (7) C11—C12—C13—C14 1.0 (3)
C01i—Rh1—P2—C16 112.47 (17) C12—C13—C14—C15 −1.1 (3)
C01—Rh1—P2—C16 −67.53 (17) C13—C14—C15—C10 0.1 (3)
Cl1i—Rh1—P2—C16 −71.84 (7) C11—C10—C15—C14 1.1 (3)
Cl1—Rh1—P2—C16 108.16 (7) P2—C10—C15—C14 −179.15 (15)
C10—P2—C2—C3 99.98 (17) C2—P2—C16—C17 −96.18 (16)
C16—P2—C2—C3 −6.79 (18) C10—P2—C16—C17 156.22 (16)
Rh1—P2—C2—C3 −134.20 (15) Rh1—P2—C16—C17 27.23 (17)
C10—P2—C2—C7 −78.41 (16) C2—P2—C16—C21 83.97 (16)
C16—P2—C2—C7 174.82 (15) C10—P2—C16—C21 −23.63 (17)
Rh1—P2—C2—C7 47.41 (16) Rh1—P2—C16—C21 −152.63 (13)
C7—C2—C3—C4 1.0 (3) C21—C16—C17—C18 −1.3 (3)
P2—C2—C3—C4 −177.38 (16) P2—C16—C17—C18 178.86 (16)
C2—C3—C4—C5 1.1 (3) C16—C17—C18—C19 1.3 (3)
C3—C4—C5—C6 −1.9 (3) C17—C18—C19—C20 −0.3 (3)
C3—C4—C5—C8B 168.8 (5) C18—C19—C20—C21 −0.9 (3)
C3—C4—C5—C8A −180.0 (2) C19—C20—C21—C16 0.9 (3)
C4—C5—C6—C7 0.6 (3) C17—C16—C21—C20 0.2 (3)
C8B—C5—C6—C7 −173.4 (3) P2—C16—C21—C20 −179.99 (15)
C8A—C5—C6—C7 178.3 (3) C4—C5—C8A—C9A −171.1 (3)
C5—C6—C7—C2 1.5 (3) C6—C5—C8A—C9A 11.1 (5)
C3—C2—C7—C6 −2.3 (3) C8B—C5—C8A—C9A −5.9 (6)
P2—C2—C7—C6 176.19 (15) C4—C5—C8B—C9B 6.1 (10)
C2—P2—C10—C15 −178.44 (14) C6—C5—C8B—C9B 177.7 (6)
C16—P2—C10—C15 −69.39 (16) C8A—C5—C8B—C9B −15.6 (5)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9B—H9B1···O01ii 0.93 2.54 3.205 (11) 129
C14—H14···Cl1iii 0.93 2.79 3.660 (3) 157

Symmetry codes: (ii) −x+2, −y, −z; (iii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5270).

References

  1. Angoletta, M. (1959). Gazz. Chim. Ital. 89, 2359–2361.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, Y.-J., Wang, J.-C. & Wang, Y. (1991). Acta Cryst. C47, 2441–2442.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Kuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409–1411.
  7. Meijboom, R., Muller, A. & Roodt, A. (2005). Acta Cryst. E61, m1283–m1285.
  8. Otto, S. (2001). Acta Cryst. C57, 793–795. [DOI] [PubMed]
  9. Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295–299.
  10. Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784–2785.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013669/cv5270sup1.cif

e-68-0m545-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013669/cv5270Isup2.hkl

e-68-0m545-Isup2.hkl (138.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES