Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 6;68(Pt 5):m551–m552. doi: 10.1107/S1600536812014225

Potassium [1-(tert-but­oxy­carbon­yl)-1H-indol-3-yl]trifluoro­borate hemihydrate

Guillaume Berionni a, Peter Mayer a,*, Herbert Mayr a
PMCID: PMC3344307  PMID: 22590073

Abstract

The asymmetric unit of the title salt, K+·C13H14BF3NO2·0.5H2O, consists of two derivatized indolyltrifluoridoborate anions, two potassium cations and one water mol­ecule. Within the indolyltrifluoro­borate anions, the least-square planes consisting of the carboxyl group and the adjacent quarternary C atom of the tert-butyl groups deviate significantly from coplanarity with the indolyl planes [20.44 (11) and 21.02 (10)°]. The potassium ions are coordinated by six atoms (one K+ ion by two O and four F atoms, and the second K+ ion by one O and five F atoms), however, one of the potassium ions undergoes an additional weak potassium–π inter­action (K⋯centroid = 3.722 Å). The packing is stabilized by sequential O—H⋯O hydrogen bonds along [100] between water mol­ecules and also by O—H⋯F hydrogen bonds.

Related literature  

For background to organotrifluoro­borates and the synthesis, see: Mothes et al. (2008); Molander et al. (2009); Kassis et al. (2009); Reiter et al. (2010); Darses & Genet (2008). For related structures, see: Baran et al. (2005); Davies et al. (2005, 2007); Lu & Lin (2011).graphic file with name e-68-0m551-scheme1.jpg

Experimental  

Crystal data  

  • K+·C13H14BF3NO2·0.5H2O

  • M r = 332.17

  • Orthorhombic, Inline graphic

  • a = 5.8428 (1) Å

  • b = 16.3177 (2) Å

  • c = 32.1286 (5) Å

  • V = 3063.17 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 173 K

  • 0.27 × 0.19 × 0.10 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 24771 measured reflections

  • 7001 independent reflections

  • 6369 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.075

  • S = 1.03

  • 7001 reflections

  • 400 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), 2995 Friedel pairs

  • Flack parameter: 0.00 (3)

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014225/hp2034sup1.cif

e-68-0m551-sup1.cif (45.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014225/hp2034Isup2.hkl

e-68-0m551-Isup2.hkl (342.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯F3i 0.81 (1) 2.14 (1) 2.903 (2) 156 (3)
O5—H51⋯F1i 0.81 (1) 2.62 (2) 3.188 (2) 128 (2)
O5—H52⋯O5ii 0.81 (1) 2.41 (1) 3.1968 (16) 164 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

supplementary crystallographic information

Comment

Organotrifluoroborates and, in particular, indolyltrifluoroborates [Molander et al. (2009), Kassis et al. (2009), Reiter et al. (2010)] are synthetically useful nucleophiles for Suzuki-Miyaura cross-coupling and other CC bond-forming reactions [Darses & Genet (2008)].

The asymmetric unit contains two formula units of the title compound (Fig. 1). The B–C bond distances in the two indolyltrifluoroborate anions are found to be 1.596 (3) Å and 1.600 (3) Å. These bond distances are close to the mean distance of 1.619 Å determined from 33 crystal structures of organotrifluoroborates (CSD version 5.33, Nov 2011). In the title compound, the 1-tert-butoxycarbonyl group is not coplanar with the indolyl ring, but deviates with plane-plane angles of 20.44 (11)° and 21.02 (10)°, in which the plane of a tert-butoxycarbonyl group is defined by its C and O atoms with the exception of the methyl groups. This structural feature is observed in several of the dozen of crystal structures of 3-substituted 1-(tert-Butoxycarbonyl)-1H-indolyl derivatives [Baran et al. (2005), Davies et al. (2005), Davies et al. (2007) and Lu & Lin (2011)].

The coordination sphere of K1 consists of two oxygen atoms and four fluorine atoms in bond distances ranging between 2.58 Å and 2.99 Å. Additionally the five-membered ring of an adjacent indolyl moiety is bound by a weak potassium-π interaction (distance K1–Cg(N2, C14—C17) = 3.722 Å). The other potassium ion is coordinated by five fluorine atoms and one oxygen atom in bond distances ranging from 2.62 Å to 2.77 Å. The water molecule is coordinated solely to K1 and forms sequential hydrogen bonds of the type O–H···O along [100]. The other proton of the water molecule acts as donor in hydrogen bonds of the type O–H···F. Layers parallel to ab are formed by the combination of hydrogen bonds and coordination of the potassium ions (Fig. 2). Weak C–H···π interactions between methyl-hydrogen atoms and the six-membered rings of the indolyl moieties are established with C···Cg distances of 3.836 (3) Å and 3.715 (2) Å. The packing of the title compound is shown in Fig. 3.

Experimental

In a 100 ml Schlenck flask under argon, 1.00 g (2.92 mmol,1 eq.) of tert-butyl-3-iodo-1H-indole-1-carboxylate [Mothes et al. (2008)] was dissolved in 20 ml of freshly distilled THF and cooled to -78 °C. With a syringe, 1.37 ml of nBuLi (2.13 M in hexane, 2.92 mmol,1 eq.) was added dropwise, and the solution was stirred for 30 min at this temperature whilst turning orange pale. Neat triisopropyl borate (3.36 mmol, 0.55 ml, 1.15 eq.) was then slowly dropped to the mixture, and after removing the cooling bath the temperature reached 0 °C in 30 min. An aqueous solution of KHF2 (17.5 mmol, 1.35 g, 6 eq. dissolved in 5 ml of H2O) was added slowly to the limpid solution under vigorous stirring and after 15 minutes the solvents were removed in vacuo. The waxy solid was dissolved in 50 ml of hot acetone and filtrated. The filtrate was concentrated to 10 ml before adding 10 ml of diethylether. After one night in the fridge, colorless crystalline plates of the title compound were obtained (650 mg, 70%).

Refinement

C-bound H atoms were positioned geometrically (C—H = 0.98 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C, aromatic), Uiso(H) = 1.5Ueq(C, aliphatic)]. The methyl groups were allowed to rotate along the C–O bonds to best fit the experimental electron density. The hydrogen atoms of the water molecule were fixed to O–H distances of 0.82 (1) Å [Uiso(H) = 1.2Ueq(O)].

Figures

Fig. 1.

Fig. 1.

The molecular structures of the asymmetric unit (contains two formula units of the title compound), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2.

Fig. 2.

View on a layer formed by potassium ions and their coordinating O and F atoms. All other atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds, fat solid lines K–O and K–F bonds.

Fig. 3.

Fig. 3.

The packing of the title compound viewed along [100]. Hydrogen atoms have been omitted for clarity. Fragments located outside the unit cell have been completed.

Crystal data

K+·C13H14BF3NO2·0.5H2O F(000) = 1368
Mr = 332.17 Dx = 1.441 (1) Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 12366 reflections
a = 5.8428 (1) Å θ = 3.1–27.5°
b = 16.3177 (2) Å µ = 0.38 mm1
c = 32.1286 (5) Å T = 173 K
V = 3063.17 (8) Å3 Block, colourless
Z = 8 0.27 × 0.19 × 0.10 mm

Data collection

Nonius KappaCCD diffractometer 6369 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.027
MONTEL, graded multilayered X-ray optics monochromator θmax = 27.5°, θmin = 3.1°
CCD; rotation images scans h = −7→7
24771 measured reflections k = −21→21
7001 independent reflections l = −41→41

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0299P)2 + 1.0137P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
7001 reflections Δρmax = 0.30 e Å3
400 parameters Δρmin = −0.24 e Å3
2 restraints Absolute structure: Flack (1983), 2995 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.23271 (7) −0.07549 (2) −0.010496 (14) 0.03663 (10)
K2 −0.44437 (8) 0.16361 (2) 0.030974 (13) 0.03596 (10)
F1 −0.1583 (2) −0.09666 (9) 0.02545 (4) 0.0531 (3)
F2 −0.4208 (3) 0.00302 (7) 0.02809 (4) 0.0579 (4)
F3 −0.4763 (2) −0.11459 (8) 0.06318 (4) 0.0515 (3)
F4 1.2008 (3) 0.08962 (7) −0.00590 (4) 0.0599 (4)
F5 0.9079 (2) 0.17683 (7) −0.01961 (4) 0.0475 (3)
F6 1.2432 (2) 0.19073 (7) −0.05353 (4) 0.0441 (3)
O1 0.2775 (2) 0.13553 (7) 0.17310 (4) 0.0355 (3)
O2 0.3463 (3) 0.14600 (10) 0.10405 (4) 0.0501 (4)
O3 0.6469 (2) −0.13910 (7) −0.13800 (4) 0.0331 (3)
O4 0.4899 (3) −0.10246 (8) −0.07628 (4) 0.0427 (3)
O5 0.0801 (3) −0.23252 (10) −0.01815 (6) 0.0562 (4)
H51 0.097 (5) −0.2697 (12) −0.0347 (7) 0.067*
H52 −0.052 (2) −0.2317 (18) −0.0103 (9) 0.067*
N1 0.0878 (3) 0.05375 (9) 0.12880 (5) 0.0323 (3)
N2 0.7777 (3) −0.02748 (9) −0.10475 (4) 0.0294 (3)
C1 0.0068 (3) 0.03130 (11) 0.08919 (6) 0.0332 (4)
H1 0.0749 0.0484 0.0638 0.040*
C2 −0.1791 (3) −0.01743 (10) 0.09157 (6) 0.0289 (4)
C3 −0.2240 (3) −0.02728 (10) 0.13595 (5) 0.0285 (4)
C4 −0.0545 (3) 0.01594 (10) 0.15856 (5) 0.0290 (4)
C5 −0.0473 (4) 0.01580 (11) 0.20163 (6) 0.0362 (4)
H5 0.0708 0.0433 0.2164 0.043*
C6 −0.2203 (4) −0.02636 (12) 0.22244 (6) 0.0404 (5)
H6 −0.2196 −0.0279 0.2520 0.049*
C7 −0.3937 (4) −0.06622 (12) 0.20090 (6) 0.0412 (5)
H7 −0.5118 −0.0930 0.2160 0.049*
C8 −0.3975 (3) −0.06758 (11) 0.15802 (6) 0.0339 (4)
H8 −0.5162 −0.0955 0.1436 0.041*
C9 0.2502 (4) 0.11582 (11) 0.13339 (6) 0.0343 (4)
C10 0.4090 (4) 0.21055 (11) 0.18483 (6) 0.0359 (4)
C11 0.6548 (4) 0.20440 (15) 0.17096 (10) 0.0607 (7)
H11A 0.7180 0.1515 0.1796 0.091*
H11B 0.7438 0.2488 0.1836 0.091*
H11C 0.6625 0.2090 0.1406 0.091*
C12 0.2916 (4) 0.28447 (12) 0.16649 (8) 0.0499 (6)
H12A 0.3055 0.2831 0.1361 0.075*
H12B 0.3636 0.3344 0.1772 0.075*
H12C 0.1294 0.2839 0.1742 0.075*
C13 0.3855 (7) 0.20916 (19) 0.23156 (8) 0.0838 (11)
H13A 0.2229 0.2093 0.2391 0.126*
H13B 0.4599 0.2577 0.2434 0.126*
H13C 0.4583 0.1596 0.2426 0.126*
C14 0.8113 (3) 0.02142 (11) −0.06941 (6) 0.0318 (4)
H14 0.7153 0.0204 −0.0456 0.038*
C15 0.9966 (3) 0.07020 (10) −0.07336 (5) 0.0275 (4)
C16 1.0897 (3) 0.05186 (9) −0.11437 (5) 0.0258 (3)
C17 0.9503 (3) −0.00726 (10) −0.13362 (5) 0.0265 (3)
C18 0.9858 (3) −0.03336 (11) −0.17426 (6) 0.0341 (4)
H18 0.8871 −0.0719 −0.1873 0.041*
C19 1.1730 (4) −0.00034 (13) −0.19486 (6) 0.0416 (5)
H19 1.2024 −0.0166 −0.2227 0.050*
C20 1.3184 (4) 0.05562 (12) −0.17607 (7) 0.0412 (5)
H20 1.4465 0.0760 −0.1911 0.049*
C21 1.2797 (3) 0.08230 (11) −0.13564 (6) 0.0334 (4)
H21 1.3802 0.1204 −0.1228 0.040*
C22 0.6229 (3) −0.09235 (11) −0.10457 (6) 0.0318 (4)
C23 0.5320 (3) −0.22094 (11) −0.14000 (6) 0.0335 (4)
C24 0.2743 (4) −0.21102 (13) −0.14087 (9) 0.0508 (6)
H24A 0.2026 −0.2642 −0.1466 0.076*
H24B 0.2320 −0.1720 −0.1627 0.076*
H24C 0.2214 −0.1905 −0.1139 0.076*
C25 0.6211 (4) −0.25395 (13) −0.18113 (7) 0.0471 (5)
H25A 0.7885 −0.2570 −0.1802 0.071*
H25B 0.5741 −0.2173 −0.2038 0.071*
H25C 0.5581 −0.3088 −0.1860 0.071*
C26 0.6157 (4) −0.27308 (13) −0.10437 (7) 0.0478 (5)
H26A 0.7833 −0.2720 −0.1036 0.072*
H26B 0.5631 −0.3296 −0.1082 0.072*
H26C 0.5550 −0.2515 −0.0781 0.072*
B1 −0.3097 (3) −0.05677 (11) 0.05280 (6) 0.0262 (4)
B2 1.0867 (4) 0.13229 (12) −0.03848 (6) 0.0298 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.0355 (2) 0.03093 (19) 0.0434 (2) −0.00376 (18) 0.00348 (19) −0.00575 (17)
K2 0.0414 (2) 0.02571 (18) 0.0408 (2) −0.00664 (17) 0.00910 (19) −0.00547 (16)
F1 0.0414 (7) 0.0679 (8) 0.0500 (7) −0.0022 (6) 0.0071 (6) −0.0286 (6)
F2 0.0777 (9) 0.0317 (6) 0.0642 (8) 0.0021 (7) −0.0338 (8) −0.0013 (5)
F3 0.0583 (8) 0.0541 (7) 0.0420 (7) −0.0296 (7) 0.0088 (6) −0.0065 (5)
F4 0.0919 (11) 0.0359 (6) 0.0519 (7) −0.0013 (7) −0.0370 (8) −0.0022 (5)
F5 0.0419 (7) 0.0433 (6) 0.0574 (8) −0.0076 (6) 0.0157 (6) −0.0225 (5)
F6 0.0435 (7) 0.0332 (6) 0.0558 (7) −0.0152 (6) 0.0148 (6) −0.0137 (5)
O1 0.0416 (8) 0.0321 (6) 0.0327 (7) −0.0097 (6) −0.0022 (6) −0.0023 (5)
O2 0.0538 (10) 0.0598 (10) 0.0367 (8) −0.0258 (8) 0.0127 (7) −0.0080 (7)
O3 0.0378 (7) 0.0276 (6) 0.0340 (7) −0.0098 (5) −0.0004 (6) −0.0035 (5)
O4 0.0422 (8) 0.0414 (8) 0.0446 (8) −0.0145 (7) 0.0127 (7) −0.0065 (6)
O5 0.0654 (11) 0.0346 (8) 0.0688 (12) −0.0079 (8) 0.0163 (10) −0.0192 (7)
N1 0.0332 (9) 0.0338 (8) 0.0298 (8) −0.0077 (7) 0.0014 (7) −0.0021 (6)
N2 0.0310 (8) 0.0291 (7) 0.0280 (7) −0.0059 (6) 0.0025 (6) −0.0019 (6)
C1 0.0350 (10) 0.0363 (9) 0.0283 (9) −0.0063 (8) 0.0040 (7) −0.0039 (7)
C2 0.0301 (9) 0.0234 (8) 0.0333 (9) −0.0002 (7) 0.0028 (7) −0.0010 (7)
C3 0.0303 (9) 0.0227 (8) 0.0325 (9) 0.0042 (7) 0.0031 (7) 0.0001 (6)
C4 0.0293 (9) 0.0264 (8) 0.0314 (9) 0.0032 (8) 0.0017 (8) 0.0022 (7)
C5 0.0416 (11) 0.0345 (9) 0.0324 (9) 0.0009 (9) −0.0057 (9) 0.0041 (7)
C6 0.0509 (13) 0.0414 (10) 0.0290 (9) 0.0011 (10) 0.0012 (9) 0.0050 (8)
C7 0.0468 (12) 0.0350 (10) 0.0418 (11) −0.0037 (9) 0.0098 (10) 0.0040 (8)
C8 0.0343 (10) 0.0276 (9) 0.0399 (10) 0.0001 (8) 0.0030 (8) 0.0008 (7)
C9 0.0343 (10) 0.0336 (9) 0.0350 (9) −0.0044 (9) 0.0017 (9) −0.0044 (7)
C10 0.0375 (11) 0.0302 (9) 0.0400 (10) −0.0056 (8) −0.0069 (9) −0.0050 (8)
C11 0.0311 (11) 0.0428 (12) 0.108 (2) 0.0024 (10) −0.0107 (13) −0.0169 (13)
C12 0.0343 (12) 0.0331 (10) 0.0822 (17) 0.0015 (9) −0.0019 (11) 0.0036 (10)
C13 0.135 (3) 0.0742 (19) 0.0425 (14) −0.054 (2) −0.0084 (17) −0.0072 (13)
C14 0.0348 (10) 0.0327 (9) 0.0279 (9) −0.0042 (8) 0.0026 (7) −0.0050 (7)
C15 0.0310 (9) 0.0241 (8) 0.0274 (8) −0.0007 (7) 0.0005 (7) 0.0006 (6)
C16 0.0274 (9) 0.0205 (7) 0.0296 (9) 0.0013 (7) 0.0011 (7) 0.0028 (6)
C17 0.0276 (8) 0.0230 (8) 0.0290 (8) 0.0011 (7) −0.0007 (7) 0.0024 (6)
C18 0.0435 (11) 0.0300 (9) 0.0290 (9) −0.0046 (8) 0.0016 (8) −0.0018 (7)
C19 0.0533 (13) 0.0384 (10) 0.0331 (10) −0.0045 (10) 0.0127 (9) −0.0047 (8)
C20 0.0435 (11) 0.0372 (10) 0.0429 (11) −0.0076 (9) 0.0174 (9) −0.0015 (8)
C21 0.0319 (10) 0.0286 (8) 0.0396 (10) −0.0046 (8) 0.0031 (8) −0.0010 (7)
C22 0.0317 (10) 0.0298 (9) 0.0338 (9) −0.0054 (7) −0.0013 (8) −0.0011 (7)
C23 0.0301 (10) 0.0268 (8) 0.0435 (10) −0.0073 (8) −0.0057 (8) −0.0037 (7)
C24 0.0318 (11) 0.0388 (11) 0.0818 (17) −0.0052 (9) −0.0098 (11) −0.0083 (11)
C25 0.0520 (14) 0.0404 (11) 0.0488 (13) −0.0093 (10) −0.0064 (11) −0.0128 (9)
C26 0.0493 (14) 0.0346 (10) 0.0595 (14) −0.0018 (10) −0.0088 (11) 0.0058 (10)
B1 0.0258 (10) 0.0216 (9) 0.0313 (10) 0.0000 (7) 0.0003 (8) −0.0012 (7)
B2 0.0339 (11) 0.0230 (9) 0.0325 (10) −0.0025 (8) −0.0013 (9) −0.0011 (7)

Geometric parameters (Å, º)

K1—F1 2.5832 (13) C3—C4 1.416 (3)
K1—O4 2.6303 (14) C4—C5 1.384 (2)
K1—F2i 2.6977 (13) C5—C6 1.394 (3)
K1—F4ii 2.7048 (12) C5—H5 0.9500
K1—O5 2.7243 (16) C6—C7 1.389 (3)
K1—F3i 2.9833 (14) C6—H6 0.9500
K1—B1i 3.373 (2) C7—C8 1.378 (3)
K1—C15ii 3.4111 (17) C7—H7 0.9500
K1—C14ii 3.485 (2) C8—H8 0.9500
K1—H52 3.05 (3) C10—C11 1.507 (3)
K2—F2 2.6256 (12) C10—C12 1.508 (3)
K2—F5ii 2.6315 (12) C10—C13 1.508 (3)
K2—O2ii 2.6627 (14) C11—H11A 0.9800
K2—F4iii 2.6756 (14) C11—H11B 0.9800
K2—F6iv 2.7158 (12) C11—H11C 0.9800
K2—F5iv 2.7671 (12) C12—H12A 0.9800
K2—F6iii 3.3016 (14) C12—H12B 0.9800
K2—B2iv 3.344 (2) C12—H12C 0.9800
F1—B1 1.406 (2) C13—H13A 0.9800
F2—B1 1.415 (2) C13—H13B 0.9800
F2—K1ii 2.6977 (13) C13—H13C 0.9800
F3—B1 1.396 (2) C14—C15 1.350 (2)
F3—K1ii 2.9832 (14) C14—K1i 3.485 (2)
F4—B2 1.423 (2) C14—H14 0.9500
F4—K2v 2.6756 (14) C15—C16 1.457 (2)
F4—K1i 2.7047 (12) C15—B2 1.600 (3)
F5—B2 1.409 (2) C15—K1i 3.4111 (17)
F5—K2i 2.6316 (12) C16—C21 1.395 (2)
F5—K2vi 2.7671 (12) C16—C17 1.406 (2)
F6—B2 1.407 (2) C17—C18 1.389 (2)
F6—K2vi 2.7157 (12) C18—C19 1.387 (3)
F6—K2v 3.3017 (14) C18—H18 0.9500
O1—C9 1.325 (2) C19—C20 1.386 (3)
O1—C10 1.494 (2) C19—H19 0.9500
O2—C9 1.203 (2) C20—C21 1.388 (3)
O2—K2i 2.6627 (14) C20—H20 0.9500
O3—C22 1.325 (2) C21—H21 0.9500
O3—C23 1.496 (2) C23—C26 1.508 (3)
O4—C22 1.207 (2) C23—C24 1.515 (3)
O5—H51 0.812 (10) C23—C25 1.519 (3)
O5—H52 0.813 (10) C24—H24A 0.9800
N1—C9 1.396 (2) C24—H24B 0.9800
N1—C1 1.406 (2) C24—H24C 0.9800
N1—C4 1.409 (2) C25—H25A 0.9800
N2—C22 1.393 (2) C25—H25B 0.9800
N2—C14 1.402 (2) C25—H25C 0.9800
N2—C17 1.409 (2) C26—H26A 0.9800
C1—C2 1.348 (3) C26—H26B 0.9800
C1—H1 0.9500 C26—H26C 0.9800
C2—C3 1.459 (2) B1—K1ii 3.373 (2)
C2—B1 1.596 (3) B2—K2vi 3.344 (2)
C3—C8 1.401 (3)
F1—K1—O4 147.37 (4) K1—O5—H52 106 (2)
F1—K1—F2i 121.45 (5) H51—O5—H52 109 (3)
O4—K1—F2i 91.15 (5) C9—N1—C1 120.89 (15)
F1—K1—F4ii 92.74 (5) C9—N1—C4 130.33 (15)
O4—K1—F4ii 104.47 (5) C1—N1—C4 107.54 (15)
F2i—K1—F4ii 63.48 (4) C22—N2—C14 121.35 (15)
F1—K1—O5 67.98 (5) C22—N2—C17 130.21 (15)
O4—K1—O5 87.55 (5) C14—N2—C17 107.45 (14)
F2i—K1—O5 137.21 (5) C2—C1—N1 111.93 (16)
F4ii—K1—O5 156.82 (6) C2—C1—H1 124.0
F1—K1—F3i 96.93 (4) N1—C1—H1 124.0
O4—K1—F3i 106.04 (4) C1—C2—C3 105.39 (16)
F2i—K1—F3i 46.31 (3) C1—C2—B1 125.33 (16)
F4ii—K1—F3i 102.06 (4) C3—C2—B1 129.24 (16)
O5—K1—F3i 93.27 (5) C8—C3—C4 118.68 (16)
F1—K1—B1i 116.33 (5) C8—C3—C2 132.59 (17)
O4—K1—B1i 92.69 (5) C4—C3—C2 108.70 (15)
F2i—K1—B1i 23.80 (4) C5—C4—N1 131.36 (18)
F4ii—K1—B1i 86.07 (4) C5—C4—C3 122.22 (17)
O5—K1—B1i 113.52 (6) N1—C4—C3 106.41 (15)
F3i—K1—B1i 24.40 (4) C4—C5—C6 117.27 (19)
F1—K1—C15ii 90.01 (5) C4—C5—H5 121.4
O4—K1—C15ii 82.64 (5) C6—C5—H5 121.4
F2i—K1—C15ii 104.16 (4) C7—C6—C5 121.43 (18)
F4ii—K1—C15ii 46.38 (4) C7—C6—H6 119.3
O5—K1—C15ii 118.01 (5) C5—C6—H6 119.3
F3i—K1—C15ii 148.14 (4) C8—C7—C6 121.14 (19)
B1i—K1—C15ii 127.92 (4) C8—C7—H7 119.4
F1—K1—C14ii 71.25 (5) C6—C7—H7 119.4
O4—K1—C14ii 92.47 (5) C7—C8—C3 119.15 (19)
F2i—K1—C14ii 124.35 (4) C7—C8—H8 120.4
F4ii—K1—C14ii 61.90 (4) C3—C8—H8 120.4
O5—K1—C14ii 98.42 (5) O2—C9—O1 126.80 (18)
F3i—K1—C14ii 158.52 (4) O2—C9—N1 122.11 (17)
B1i—K1—C14ii 147.81 (4) O1—C9—N1 111.08 (16)
C15ii—K1—C14ii 22.54 (4) O1—C10—C11 111.15 (16)
F1—K1—K2i 110.59 (3) O1—C10—C12 108.85 (16)
O4—K1—K2i 98.19 (3) C11—C10—C12 111.8 (2)
F2i—K1—K2i 31.13 (3) O1—C10—C13 101.06 (17)
F4ii—K1—K2i 32.38 (3) C11—C10—C13 112.4 (2)
O5—K1—K2i 166.44 (5) C12—C10—C13 111.1 (2)
F3i—K1—K2i 73.36 (2) C10—C11—H11A 109.5
B1i—K1—K2i 54.20 (3) C10—C11—H11B 109.5
C15ii—K1—K2i 75.08 (3) H11A—C11—H11B 109.5
C14ii—K1—K2i 93.62 (3) C10—C11—H11C 109.5
F1—K1—H52 53.4 (3) H11A—C11—H11C 109.5
O4—K1—H52 100.0 (4) H11B—C11—H11C 109.5
F2i—K1—H52 143.8 (5) C10—C12—H12A 109.5
F4ii—K1—H52 142.8 (3) C10—C12—H12B 109.5
O5—K1—H52 14.9 (3) H12A—C12—H12B 109.5
F3i—K1—H52 97.5 (5) C10—C12—H12C 109.5
B1i—K1—H52 120.5 (5) H12A—C12—H12C 109.5
C15ii—K1—H52 111.3 (5) H12B—C12—H12C 109.5
C14ii—K1—H52 89.7 (5) C10—C13—H13A 109.5
K2i—K1—H52 161.3 (5) C10—C13—H13B 109.5
F2—K2—F5ii 91.09 (5) H13A—C13—H13B 109.5
F2—K2—O2ii 86.99 (5) C10—C13—H13C 109.5
F5ii—K2—O2ii 155.88 (5) H13A—C13—H13C 109.5
F2—K2—F4iii 64.83 (4) H13B—C13—H13C 109.5
F5ii—K2—F4iii 111.69 (5) C15—C14—N2 111.82 (16)
O2ii—K2—F4iii 89.19 (5) C15—C14—K1i 75.65 (11)
F2—K2—F6iv 149.50 (4) N2—C14—K1i 106.29 (11)
F5ii—K2—F6iv 77.14 (4) C15—C14—H14 124.1
O2ii—K2—F6iv 92.55 (4) N2—C14—H14 124.1
F4iii—K2—F6iv 145.66 (4) K1i—C14—H14 88.3
F2—K2—F5iv 161.94 (4) C14—C15—C16 105.29 (15)
F5ii—K2—F5iv 94.90 (3) C14—C15—B2 124.85 (16)
O2ii—K2—F5iv 94.27 (5) C16—C15—B2 129.85 (15)
F4iii—K2—F5iv 97.15 (4) C14—C15—K1i 81.81 (11)
F6iv—K2—F5iv 48.52 (3) C16—C15—K1i 103.96 (10)
F2—K2—F6iii 97.69 (3) B2—C15—K1i 83.88 (10)
F5ii—K2—F6iii 85.04 (4) C21—C16—C17 119.33 (16)
O2ii—K2—F6iii 119.05 (4) C21—C16—C15 131.86 (16)
F4iii—K2—F6iii 42.94 (3) C17—C16—C15 108.80 (15)
F6iv—K2—F6iii 108.98 (2) C18—C17—C16 122.48 (16)
F5iv—K2—F6iii 65.98 (3) C18—C17—N2 130.85 (16)
F2—K2—B2iv 173.53 (5) C16—C17—N2 106.60 (14)
F5ii—K2—B2iv 85.44 (4) C19—C18—C17 116.58 (18)
O2ii—K2—B2iv 93.94 (5) C19—C18—H18 121.7
F4iii—K2—B2iv 121.56 (5) C17—C18—H18 121.7
F6iv—K2—B2iv 24.11 (4) C20—C19—C18 122.10 (18)
F5iv—K2—B2iv 24.41 (4) C20—C19—H19 119.0
F6iii—K2—B2iv 87.47 (4) C18—C19—H19 118.9
F2—K2—B2iii 82.84 (4) C19—C20—C21 120.94 (18)
F5ii—K2—B2iii 103.06 (5) C19—C20—H20 119.5
O2ii—K2—B2iii 100.55 (5) C21—C20—H20 119.5
F4iii—K2—B2iii 20.62 (4) C20—C21—C16 118.46 (17)
F6iv—K2—B2iii 127.00 (4) C20—C21—H21 120.8
F5iv—K2—B2iii 79.22 (4) C16—C21—H21 120.8
F6iii—K2—B2iii 23.21 (4) O4—C22—O3 126.87 (17)
B2iv—K2—B2iii 103.25 (5) O4—C22—N2 121.69 (17)
F2—K2—K2vii 129.84 (3) O3—C22—N2 111.43 (15)
F5ii—K2—K2vii 100.51 (3) O3—C23—C26 109.01 (15)
O2ii—K2—K2vii 99.12 (4) O3—C23—C24 110.57 (16)
F4iii—K2—K2vii 65.53 (3) C26—C23—C24 113.36 (19)
F6iv—K2—K2vii 80.36 (3) O3—C23—C25 101.55 (15)
F5iv—K2—K2vii 32.19 (2) C26—C23—C25 110.46 (18)
F6iii—K2—K2vii 36.60 (2) C24—C23—C25 111.24 (19)
B2iv—K2—K2vii 56.35 (4) C23—C24—H24A 109.5
B2iii—K2—K2vii 47.03 (3) C23—C24—H24B 109.5
F2—K2—K2viii 124.95 (4) H24A—C24—H24B 109.5
F5ii—K2—K2viii 34.07 (2) C23—C24—H24C 109.5
O2ii—K2—K2viii 138.78 (3) H24A—C24—H24C 109.5
F4iii—K2—K2viii 125.95 (3) H24B—C24—H24C 109.5
F6iv—K2—K2viii 46.46 (3) C23—C25—H25A 109.5
F5iv—K2—K2viii 63.69 (3) C23—C25—H25B 109.5
F6iii—K2—K2viii 84.93 (2) H25A—C25—H25B 109.5
B2iv—K2—K2viii 51.37 (4) C23—C25—H25C 109.5
B2iii—K2—K2viii 108.06 (4) H25A—C25—H25C 109.5
K2vii—K2—K2viii 80.496 (13) H25B—C25—H25C 109.5
F2—K2—K1ii 32.08 (3) C23—C26—H26A 109.5
F5ii—K2—K1ii 102.39 (3) C23—C26—H26B 109.5
O2ii—K2—K1ii 88.57 (3) H26A—C26—H26B 109.5
F4iii—K2—K1ii 32.77 (3) C23—C26—H26C 109.5
F6iv—K2—K1ii 178.10 (3) H26A—C26—H26C 109.5
F5iv—K2—K1ii 129.88 (3) H26B—C26—H26C 109.5
F6iii—K2—K1ii 69.12 (2) F3—B1—F1 105.97 (14)
B2iv—K2—K1ii 154.26 (4) F3—B1—F2 106.27 (15)
B2iii—K2—K1ii 51.23 (3) F1—B1—F2 104.90 (16)
K2vii—K2—K1ii 97.952 (11) F3—B1—C2 114.77 (15)
K2viii—K2—K1ii 132.537 (15) F1—B1—C2 111.89 (15)
B1—F1—K1 140.70 (11) F2—B1—C2 112.31 (14)
B1—F2—K2 133.82 (11) F3—B1—K1ii 61.98 (9)
B1—F2—K1ii 105.92 (10) F1—B1—K1ii 94.60 (10)
K2—F2—K1ii 116.79 (5) F2—B1—K1ii 50.28 (8)
B1—F3—K1ii 93.63 (10) C2—B1—K1ii 152.40 (12)
B2—F4—K2v 117.91 (11) F6—B2—F5 106.25 (14)
B2—F4—K1i 118.65 (10) F6—B2—F4 106.25 (16)
K2v—F4—K1i 114.86 (5) F5—B2—F4 106.46 (16)
B2—F5—K2i 143.41 (11) F6—B2—C15 113.72 (15)
B2—F5—K2vi 101.39 (10) F5—B2—C15 112.58 (16)
K2i—F5—K2vi 113.74 (4) F4—B2—C15 111.08 (14)
B2—F6—K2vi 103.84 (10) F6—B2—K2vi 52.05 (8)
B2—F6—K2v 89.19 (10) F5—B2—K2vi 54.21 (8)
K2vi—F6—K2v 96.95 (3) F4—B2—K2vi 117.36 (11)
C9—O1—C10 120.25 (14) C15—B2—K2vi 131.55 (12)
C9—O2—K2i 161.75 (14) F6—B2—K2v 67.61 (10)
C22—O3—C23 120.08 (14) F5—B2—K2v 103.06 (11)
C22—O4—K1 161.78 (13) C15—B2—K2v 141.36 (12)
K1—O5—H51 136 (2) K2vi—B2—K2v 81.60 (4)
O4—K1—F1—B1 −147.17 (17) C21—C16—C17—N2 178.67 (15)
F2i—K1—F1—B1 35.8 (2) C15—C16—C17—N2 −1.82 (18)
F4ii—K1—F1—B1 −24.58 (19) C22—N2—C17—C18 16.4 (3)
O5—K1—F1—B1 168.7 (2) C14—N2—C17—C18 −175.10 (19)
F3i—K1—F1—B1 77.93 (19) C22—N2—C17—C16 −166.55 (17)
B1i—K1—F1—B1 62.39 (19) C14—N2—C17—C16 1.93 (18)
C15ii—K1—F1—B1 −70.90 (19) C16—C17—C18—C19 2.4 (3)
C14ii—K1—F1—B1 −83.63 (19) N2—C17—C18—C19 178.99 (18)
K2i—K1—F1—B1 3.15 (19) C17—C18—C19—C20 0.2 (3)
F5ii—K2—F2—B1 92.47 (17) C18—C19—C20—C21 −1.2 (3)
O2ii—K2—F2—B1 −63.47 (17) C19—C20—C21—C16 −0.4 (3)
F4iii—K2—F2—B1 −153.99 (18) C17—C16—C21—C20 2.9 (3)
F6iv—K2—F2—B1 26.4 (2) C15—C16—C21—C20 −176.48 (19)
F5iv—K2—F2—B1 −158.03 (15) K1—O4—C22—O3 −162.5 (3)
F6iii—K2—F2—B1 177.62 (17) K1—O4—C22—N2 18.9 (6)
B2iii—K2—F2—B1 −164.50 (18) C23—O3—C22—O4 −11.1 (3)
K2vii—K2—F2—B1 −162.85 (15) C23—O3—C22—N2 167.62 (15)
K2viii—K2—F2—B1 88.44 (17) C14—N2—C22—O4 10.1 (3)
K1ii—K2—F2—B1 −155.6 (2) C17—N2—C22—O4 177.22 (18)
F5ii—K2—F2—K1ii −111.94 (6) C14—N2—C22—O3 −168.73 (16)
O2ii—K2—F2—K1ii 92.12 (7) C17—N2—C22—O3 −1.6 (3)
F4iii—K2—F2—K1ii 1.60 (6) C22—O3—C23—C26 −59.2 (2)
F6iv—K2—F2—K1ii −177.97 (6) C22—O3—C23—C24 66.1 (2)
F5iv—K2—F2—K1ii −2.4 (2) C22—O3—C23—C25 −175.75 (16)
F6iii—K2—F2—K1ii −26.80 (7) K1ii—F3—B1—F1 −86.68 (13)
B2iii—K2—F2—K1ii −8.92 (6) K1ii—F3—B1—F2 24.56 (13)
K2vii—K2—F2—K1ii −7.26 (9) K1ii—F3—B1—C2 149.32 (13)
K2viii—K2—F2—K1ii −115.98 (5) K1—F1—B1—F3 −170.68 (12)
F1—K1—O4—C22 137.5 (4) K1—F1—B1—F2 77.1 (2)
F2i—K1—O4—C22 −45.0 (4) K1—F1—B1—C2 −44.9 (2)
F4ii—K1—O4—C22 17.9 (4) K1—F1—B1—K1ii 127.17 (15)
O5—K1—O4—C22 177.8 (4) K2—F2—B1—F3 128.95 (14)
F3i—K1—O4—C22 −89.5 (4) K1ii—F2—B1—F3 −28.49 (15)
B1i—K1—O4—C22 −68.7 (4) K2—F2—B1—F1 −119.07 (15)
C15ii—K1—O4—C22 59.1 (4) K1ii—F2—B1—F1 83.50 (13)
C14ii—K1—O4—C22 79.5 (4) K2—F2—B1—C2 2.7 (2)
K2i—K1—O4—C22 −14.5 (4) K1ii—F2—B1—C2 −154.75 (12)
C9—N1—C1—C2 −167.77 (17) K2—F2—B1—K1ii 157.44 (19)
C4—N1—C1—C2 0.8 (2) C1—C2—B1—F3 170.96 (17)
N1—C1—C2—C3 0.3 (2) C3—C2—B1—F3 −6.6 (3)
N1—C1—C2—B1 −177.75 (16) C1—C2—B1—F1 50.2 (2)
C1—C2—C3—C8 176.85 (19) C3—C2—B1—F1 −127.44 (19)
B1—C2—C3—C8 −5.2 (3) C1—C2—B1—F2 −67.5 (2)
C1—C2—C3—C4 −1.3 (2) C3—C2—B1—F2 114.9 (2)
B1—C2—C3—C4 176.68 (16) C1—C2—B1—K1ii −112.6 (3)
C9—N1—C4—C5 −14.9 (3) C3—C2—B1—K1ii 69.8 (3)
C1—N1—C4—C5 178.0 (2) K2vi—F6—B2—F5 0.78 (16)
C9—N1—C4—C3 165.54 (18) K2v—F6—B2—F5 97.73 (13)
C1—N1—C4—C3 −1.53 (19) K2vi—F6—B2—F4 −112.32 (13)
C8—C3—C4—C5 3.7 (3) K2v—F6—B2—F4 −15.37 (13)
C2—C3—C4—C5 −177.83 (17) K2vi—F6—B2—C15 125.18 (13)
C8—C3—C4—N1 −176.70 (15) K2v—F6—B2—C15 −137.87 (14)
C2—C3—C4—N1 1.74 (19) K2v—F6—B2—K2vi 96.95 (5)
N1—C4—C5—C6 178.10 (18) K2vi—F6—B2—K2v −96.95 (5)
C3—C4—C5—C6 −2.5 (3) K2i—F5—B2—F6 −164.53 (12)
C4—C5—C6—C7 −0.4 (3) K2vi—F5—B2—F6 −0.76 (15)
C5—C6—C7—C8 1.9 (3) K2i—F5—B2—F4 −51.6 (2)
C6—C7—C8—C3 −0.6 (3) K2vi—F5—B2—F4 112.20 (12)
C4—C3—C8—C7 −2.1 (3) K2i—F5—B2—C15 70.4 (2)
C2—C3—C8—C7 179.89 (19) K2vi—F5—B2—C15 −125.86 (12)
K2i—O2—C9—O1 142.3 (4) K2i—F5—B2—K2vi −163.8 (2)
K2i—O2—C9—N1 −38.6 (6) K2i—F5—B2—K2v −94.39 (17)
C10—O1—C9—O2 10.7 (3) K2vi—F5—B2—K2v 69.38 (8)
C10—O1—C9—N1 −168.51 (15) K2v—F4—B2—F6 21.72 (18)
C1—N1—C9—O2 −8.6 (3) K1i—F4—B2—F6 −124.53 (12)
C4—N1—C9—O2 −174.2 (2) K2v—F4—B2—F5 −91.24 (15)
C1—N1—C9—O1 170.70 (17) K1i—F4—B2—F5 122.51 (12)
C4—N1—C9—O1 5.1 (3) K2v—F4—B2—C15 145.88 (12)
C9—O1—C10—C11 −62.8 (2) K1i—F4—B2—C15 −0.4 (2)
C9—O1—C10—C12 60.7 (2) K2v—F4—B2—K2vi −33.50 (17)
C9—O1—C10—C13 177.7 (2) K1i—F4—B2—K2vi −179.74 (6)
C22—N2—C14—C15 168.35 (16) K1i—F4—B2—K2v −146.25 (17)
C17—N2—C14—C15 −1.4 (2) C14—C15—B2—F6 −164.37 (17)
C22—N2—C14—K1i 87.62 (16) C16—C15—B2—F6 17.0 (3)
C17—N2—C14—K1i −82.10 (13) K1i—C15—B2—F6 120.06 (14)
N2—C14—C15—C16 0.2 (2) C14—C15—B2—F5 −43.5 (2)
K1i—C14—C15—C16 102.32 (12) C16—C15—B2—F5 137.88 (18)
N2—C14—C15—B2 −178.71 (16) K1i—C15—B2—F5 −119.03 (14)
K1i—C14—C15—B2 −76.62 (16) C14—C15—B2—F4 75.8 (2)
N2—C14—C15—K1i −102.09 (14) C16—C15—B2—F4 −102.8 (2)
C14—C15—C16—C21 −179.56 (18) K1i—C15—B2—F4 0.26 (15)
B2—C15—C16—C21 −0.7 (3) C14—C15—B2—K2vi −104.92 (19)
K1i—C15—C16—C21 −94.39 (19) C16—C15—B2—K2vi 76.4 (2)
C14—C15—C16—C17 1.01 (19) K1i—C15—B2—K2vi 179.51 (13)
B2—C15—C16—C17 179.87 (17) C14—C15—B2—K2v 112.3 (2)
K1i—C15—C16—C17 86.18 (13) C16—C15—B2—K2v −66.3 (3)
C21—C16—C17—C18 −4.0 (3) K1i—C15—B2—K2v 36.76 (17)
C15—C16—C17—C18 175.51 (16)

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x−2, y, z; (iv) x−3/2, −y+1/2, −z; (v) x+2, y, z; (vi) x+3/2, −y+1/2, −z; (vii) x−1/2, −y+1/2, −z; (viii) x+1/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H51···F3ix 0.81 (1) 2.14 (1) 2.903 (2) 156 (3)
O5—H51···F1ix 0.81 (1) 2.62 (2) 3.188 (2) 128 (2)
O5—H52···O5x 0.81 (1) 2.41 (1) 3.1968 (16) 164 (3)

Symmetry codes: (ix) x+1/2, −y−1/2, −z; (x) x−1/2, −y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2034).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Baran, P. S., Guerrero, C. A., Ambhaikar, N. B. & Hafensteiner, B. D. (2005). Angew. Chem. Intl. Ed. 44, 606–609. [DOI] [PubMed]
  3. Darses, S. & Genet, J.-P. (2008). Chem. Rev. 108, 288–325. [DOI] [PubMed]
  4. Davies, S. G., Garner, A. C., Ouzman, J. V. A., Roberts, P. M., Smith, A. D., Snow, E. J., Thomson, J. E., Tamayo, J. A. & Vickers, R. J. (2007). Org. Biomol. Chem. 5, 2138–2147. [DOI] [PubMed]
  5. Davies, J. R., Kane, P. D., Moody, C. J. & Slawin, A. M. Z. (2005). J. Org. Chem. 70, 5840–5851. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Hooft, R. W. W. (2004). COLLECT Bruker–Nonius BV, Delft, The Netherlands.
  9. Kassis, P., Beneteau, V., Merour, J.-Y. & Routier, S. (2009). Synthesis, pp. 2447–2453.
  10. Lu, T.-J. & Lin, C.-K. (2011). J. Org. Chem. 76, 1621–1633. [DOI] [PubMed]
  11. Molander, G. A., Canturk, B. & Kennedy, L. E. (2009). J. Org. Chem. 74, 973–980. [DOI] [PMC free article] [PubMed]
  12. Mothes, C., Lavielle, S. & Karoyan, P. (2008). J. Org. Chem. 73, 6706–6710. [DOI] [PubMed]
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Reiter, M., Torssell, S., Lee, S. & MacMillan, D. W. C. (2010). Chem. Sci. 1, 37–42. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014225/hp2034sup1.cif

e-68-0m551-sup1.cif (45.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014225/hp2034Isup2.hkl

e-68-0m551-Isup2.hkl (342.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES