Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 6;68(Pt 5):m553. doi: 10.1107/S1600536812014109

Bis{2-amino-2-oxo-N-[(1E)-1-(pyridin-2-yl-κN)ethyl­idene]acetohydrazidato-κ2 N′,O 1}nickel(II)

Cheikh Hamidou Kane a, Ibrahima Elhadj Thiam a, Farba Bouyagui Tamboura a, Mohamed Gaye a,*, Pascal Retailleau b
PMCID: PMC3344308  PMID: 22590074

Abstract

In the title compound, [Ni(C9H9N4O2)2], the NiII ion is situated on a twofold rotation axis and is coordinated by two O and four N atoms from two tridentate {2-amino-2-oxo-N-[(1E)-1-(pyridin-2-yl-κN)ethyl­idene]acetohydrazidate ligands in a distorted octa­hedral geometry. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules into columns in [001]. The porous crystal packing is further stabilized via π–π inter­actions between the pyridine rings of neighbouring mol­ecules [centroid–centroid distance = 3.746 (3) Å] with voids of 270 Å3.

Related literature  

For the structures of related nickel complexes, see: Dieng et al. (2004); Tamboura et al. (2009); Mikuriya et al. (1996).graphic file with name e-68-0m553-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C9H9N4O2)2]

  • M r = 469.11

  • Monoclinic, Inline graphic

  • a = 16.703 (3) Å

  • b = 17.878 (4) Å

  • c = 8.929 (2) Å

  • β = 114.915 (5)°

  • V = 2418.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 293 K

  • 0.21 × 0.14 × 0.13 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.778, T max = 0.897

  • 6288 measured reflections

  • 1781 independent reflections

  • 1285 reflections with I > 2σ(I)

  • R int = 0.046

  • θmax = 23.5°

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.137

  • S = 1.04

  • 1777 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); cell refinement: DENZO and COLLECT; data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014109/cv5274sup1.cif

e-68-0m553-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014109/cv5274Isup2.hkl

e-68-0m553-Isup2.hkl (87.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2i 0.86 2.22 2.976 (5) 147
N4—H4B⋯N3ii 0.86 2.25 3.074 (5) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

In the title compound (Fig. 1), the NiII ion is situated on a twofold rotational and adopts a distorted octahedral geometry. The coordination of the hydrazones to Ni center results in the formation of two five-membered chelating rings. In the two rings, the Ni–Npyridyl bond lengths of 2.094 (3) Å are larger than those for Ni–Niminol bonds [1.980 (3) Å]. The Ni–O1 involving the hydrazonic oxygen have the metal-ligand distance of 2.074 (3) Å. The Ni—N and Ni—O bond distances are similar to those observed in other mononuclear NiII complexes with similar tridentate ligands (Dieng et al., 2004; Tamboura et al., 2009). The following bond C6–N2 is not altered in the complex and remains with double bond character. The bond C8–N3 which was simple in character becomes a double bond after deprotonation of the N–H function. The Nimino–Ni–O1 and Npyridyl–Ni–Nimino angles are 78.25 (13)° and 92.04 (13)° respectively. The deviation from 90° of the bond angles involving the chelation observed is presumably due to the formation of five-membered ring (Mikuriya et al., 1996).

In the crystal structure, the intermolecular hydrogen-bonding network involving the acetamide groups and also the N3 atom (Table 1), propagates parallel to the crystallographic c axis (Fig.2). This contributes to display a double inverted X molecular pattern in the ab plane stabilized by π – π stacking interactions between adjacent pyridine rings with the centroid-centroid distance of 3.746 (3) Å.

Experimental

2-Amino-2-oxo-N'-(1-(pyridin-2-yl)ethylidene)acetohydrazide (0.206 g, 1 mmol) was dissolved in 10 ml of ethanol and the LiOH (0.042 g, 2 mmol) was added with thorough shaking. To the resulting solution, Ni(CH3COO)2.4H2O (0.2489 g, 1 mmol) was added. Immediate change of the colour was observed. The mixture was stirred at room temperature during 2 h. The solution was filtered off and concentrated to tenth. Crystals that separated from the brown solution were filtered off and recrystallized in ethanol. On standing for three weeks, suitable X-rays crystals were obtained. Yield: 73.5%. Anal. Calc. for [C18H18N8O4Ni] (%): C, 46.09; H, 3.87; N, 23.89. Found: C, 46.06; H, 3.85; N, 23.87. Selected IR data (cm-1, KBr pellet): 3214, 1728, 1645, 1585, 1459, 768.

Refinement

All H atoms were located in difference maps. They were then treated as riding in geometrically idealized positions, with C—H = 0.93 (aryl), or 0.96 Å(CH3) and N—H = 0.86 Å, and with Uiso(H)=kUeq(C,N), where k = 1.5 for the methyl groups, and 1.2 for all other H atoms. Four low-resolution reflections were omitted due to beamstop shading (OMIT instruction in SHELX97-L)). Infinite cylindrical channels of 8 Å diameters ran through the crystal packing along the crystallographic c axis at positions x=0, y=1/2, z and x=1/2, y=0, z accounting for voids of 270 Å3 per unit cell but no solvent contribution to the X-ray diffraction was found.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound, showing the atom-numbering scheme [symmetry code: (a) -x + 1, y, -z + 1/2]. Displacement ellipsoids are plotted at the 30% probability level.

Fig. 2.

Fig. 2.

A portion of the crystal packing viewed down the a axis and showing hydrogen bonds as cyan lines.

Crystal data

[Ni(C9H9N4O2)2] F(000) = 968
Mr = 469.11 Dx = 1.289 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2yc Cell parameters from 1780 reflections
a = 16.703 (3) Å θ = 0.4–23.5°
b = 17.878 (4) Å µ = 0.84 mm1
c = 8.929 (2) Å T = 293 K
β = 114.915 (5)° Block, brown
V = 2418.2 (9) Å3 0.21 × 0.14 × 0.13 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 1781 independent reflections
Radiation source: fine-focus sealed tube, Nonius Kappa CCD 1285 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
Detector resolution: 9 pixels mm-1 θmax = 23.5°, θmin = 2.3°
phi and ω scans h = −18→18
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) k = −18→20
Tmin = 0.778, Tmax = 0.897 l = −9→9
6288 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: difference Fourier map
wR(F2) = 0.137 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0757P)2] where P = (Fo2 + 2Fc2)/3
1777 reflections (Δ/σ)max < 0.001
142 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Five low-resolution reflections were omitted due to beamstop shading (OMIT instruction in SHELX97-L).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.30602 (4) 0.2500 0.0392 (3)
O1 0.41866 (19) 0.38561 (16) 0.2833 (3) 0.0451 (8)
O2 0.3304 (2) 0.4879 (2) 0.3757 (4) 0.0722 (11)
N1 0.5999 (2) 0.22513 (19) 0.3236 (4) 0.0438 (9)
N2 0.5383 (2) 0.30400 (18) 0.4922 (4) 0.0368 (8)
N3 0.4949 (2) 0.35081 (19) 0.5577 (4) 0.0406 (9)
N4 0.3876 (3) 0.4413 (2) 0.6353 (4) 0.0572 (11)
H4A 0.3576 0.4710 0.6676 0.069*
H4B 0.4232 0.4094 0.7031 0.069*
C1 0.6314 (3) 0.1867 (3) 0.2321 (6) 0.0567 (13)
H1 0.6064 0.1948 0.1187 0.068*
C2 0.6990 (4) 0.1356 (3) 0.2970 (7) 0.0708 (16)
H2 0.7189 0.1097 0.2290 0.085*
C3 0.7360 (4) 0.1241 (3) 0.4635 (7) 0.0733 (17)
H3 0.7822 0.0902 0.5109 0.088*
C4 0.7050 (3) 0.1624 (3) 0.5594 (6) 0.0631 (14)
H4 0.7302 0.1550 0.6731 0.076*
C5 0.6359 (3) 0.2127 (2) 0.4885 (5) 0.0475 (12)
C6 0.5976 (3) 0.2576 (2) 0.5825 (5) 0.0453 (11)
C7 0.6273 (4) 0.2469 (3) 0.7638 (5) 0.0713 (17)
H7A 0.5935 0.2786 0.8020 0.107*
H7B 0.6887 0.2595 0.8202 0.107*
H7C 0.6189 0.1956 0.7856 0.107*
C8 0.4349 (3) 0.3894 (2) 0.4339 (5) 0.0369 (10)
C9 0.3792 (3) 0.4445 (3) 0.4806 (5) 0.0482 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0409 (5) 0.0462 (5) 0.0311 (5) 0.000 0.0158 (4) 0.000
O1 0.0491 (19) 0.0503 (18) 0.0330 (16) 0.0100 (15) 0.0144 (14) 0.0013 (14)
O2 0.091 (3) 0.080 (3) 0.052 (2) 0.042 (2) 0.036 (2) 0.0173 (19)
N1 0.044 (2) 0.047 (2) 0.040 (2) 0.0055 (18) 0.0176 (18) −0.0014 (18)
N2 0.037 (2) 0.0394 (19) 0.0332 (19) 0.0013 (18) 0.0144 (16) 0.0023 (17)
N3 0.049 (2) 0.045 (2) 0.0321 (19) 0.0077 (18) 0.0208 (18) 0.0014 (17)
N4 0.064 (3) 0.069 (3) 0.042 (2) 0.023 (2) 0.026 (2) 0.002 (2)
C1 0.058 (3) 0.065 (3) 0.052 (3) 0.008 (3) 0.028 (3) −0.009 (3)
C2 0.069 (4) 0.075 (4) 0.065 (4) 0.019 (3) 0.025 (3) −0.019 (3)
C3 0.062 (4) 0.072 (4) 0.072 (4) 0.032 (3) 0.016 (3) −0.009 (3)
C4 0.058 (3) 0.067 (3) 0.051 (3) 0.020 (3) 0.010 (3) −0.001 (3)
C5 0.045 (3) 0.051 (3) 0.043 (3) 0.004 (2) 0.015 (2) −0.001 (2)
C6 0.043 (3) 0.053 (3) 0.036 (2) 0.004 (2) 0.013 (2) 0.004 (2)
C7 0.082 (4) 0.091 (4) 0.036 (3) 0.034 (3) 0.020 (3) 0.012 (3)
C8 0.041 (3) 0.039 (2) 0.031 (2) −0.001 (2) 0.016 (2) −0.001 (2)
C9 0.050 (3) 0.057 (3) 0.038 (3) 0.008 (2) 0.018 (2) 0.002 (2)

Geometric parameters (Å, º)

Ni1—N2i 1.980 (3) N4—H4B 0.8600
Ni1—N2 1.980 (3) C1—C2 1.376 (6)
Ni1—O1i 2.074 (3) C1—H1 0.9300
Ni1—O1 2.074 (3) C2—C3 1.364 (7)
Ni1—N1i 2.094 (3) C2—H2 0.9300
Ni1—N1 2.094 (3) C3—C4 1.359 (7)
O1—C8 1.257 (5) C3—H3 0.9300
O2—C9 1.225 (5) C4—C5 1.388 (6)
N1—C1 1.333 (6) C4—H4 0.9300
N1—C5 1.354 (5) C5—C6 1.487 (6)
N2—C6 1.283 (5) C6—C7 1.492 (6)
N2—N3 1.387 (5) C7—H7A 0.9600
N3—C8 1.330 (5) C7—H7B 0.9600
N4—C9 1.329 (5) C7—H7C 0.9600
N4—H4A 0.8600 C8—C9 1.528 (6)
N2i—Ni1—N2 177.92 (19) C2—C1—H1 118.3
N2i—Ni1—O1i 77.63 (12) C3—C2—C1 118.3 (5)
N2—Ni1—O1i 103.84 (12) C3—C2—H2 120.8
N2i—Ni1—O1 103.84 (12) C1—C2—H2 120.8
N2—Ni1—O1 77.63 (12) C4—C3—C2 119.5 (5)
O1i—Ni1—O1 93.34 (17) C4—C3—H3 120.3
N2i—Ni1—N1i 78.26 (13) C2—C3—H3 120.3
N2—Ni1—N1i 100.27 (13) C3—C4—C5 120.3 (5)
O1i—Ni1—N1i 155.88 (12) C3—C4—H4 119.9
O1—Ni1—N1i 92.02 (13) C5—C4—H4 119.9
N2i—Ni1—N1 100.27 (13) N1—C5—C4 120.4 (4)
N2—Ni1—N1 78.26 (13) N1—C5—C6 115.2 (4)
O1i—Ni1—N1 92.02 (13) C4—C5—C6 124.4 (4)
O1—Ni1—N1 155.88 (12) N2—C6—C5 113.3 (4)
N1i—Ni1—N1 92.6 (2) N2—C6—C7 125.5 (4)
C8—O1—Ni1 109.4 (2) C5—C6—C7 121.2 (4)
C1—N1—C5 118.2 (4) C6—C7—H7A 109.5
C1—N1—Ni1 129.2 (3) C6—C7—H7B 109.5
C5—N1—Ni1 112.6 (3) H7A—C7—H7B 109.5
C6—N2—N3 121.8 (3) C6—C7—H7C 109.5
C6—N2—Ni1 120.5 (3) H7A—C7—H7C 109.5
N3—N2—Ni1 117.6 (2) H7B—C7—H7C 109.5
C8—N3—N2 107.9 (3) O1—C8—N3 127.4 (4)
C9—N4—H4A 120.0 O1—C8—C9 116.4 (4)
C9—N4—H4B 120.0 N3—C8—C9 116.2 (3)
H4A—N4—H4B 120.0 O2—C9—N4 124.6 (4)
N1—C1—C2 123.4 (5) O2—C9—C8 119.0 (4)
N1—C1—H1 118.3 N4—C9—C8 116.4 (4)
N2i—Ni1—O1—C8 177.3 (3) Ni1—N1—C1—C2 178.8 (4)
N2—Ni1—O1—C8 −1.2 (3) N1—C1—C2—C3 −0.4 (8)
O1i—Ni1—O1—C8 −104.6 (3) C1—C2—C3—C4 0.5 (9)
N1i—Ni1—O1—C8 98.9 (3) C2—C3—C4—C5 0.4 (9)
N1—Ni1—O1—C8 −2.1 (5) C1—N1—C5—C4 1.5 (7)
N2i—Ni1—N1—C1 3.4 (4) Ni1—N1—C5—C4 −178.0 (4)
N2—Ni1—N1—C1 −178.1 (4) C1—N1—C5—C6 179.9 (4)
O1i—Ni1—N1—C1 −74.4 (4) Ni1—N1—C5—C6 0.4 (5)
O1—Ni1—N1—C1 −177.2 (3) C3—C4—C5—N1 −1.4 (8)
N1i—Ni1—N1—C1 81.9 (4) C3—C4—C5—C6 −179.6 (5)
N2i—Ni1—N1—C5 −177.3 (3) N3—N2—C6—C5 179.9 (3)
N2—Ni1—N1—C5 1.2 (3) Ni1—N2—C6—C5 4.1 (5)
O1i—Ni1—N1—C5 104.9 (3) N3—N2—C6—C7 0.5 (7)
O1—Ni1—N1—C5 2.1 (5) Ni1—N2—C6—C7 −175.3 (4)
N1i—Ni1—N1—C5 −98.7 (3) N1—C5—C6—N2 −2.8 (6)
O1i—Ni1—N2—C6 −92.3 (3) C4—C5—C6—N2 175.5 (4)
O1—Ni1—N2—C6 177.3 (3) N1—C5—C6—C7 176.7 (4)
N1i—Ni1—N2—C6 87.5 (3) C4—C5—C6—C7 −5.0 (7)
N1—Ni1—N2—C6 −3.1 (3) Ni1—O1—C8—N3 1.1 (5)
O1i—Ni1—N2—N3 91.7 (3) Ni1—O1—C8—C9 −178.8 (3)
O1—Ni1—N2—N3 1.3 (3) N2—N3—C8—O1 −0.1 (6)
N1i—Ni1—N2—N3 −88.5 (3) N2—N3—C8—C9 179.8 (3)
N1—Ni1—N2—N3 −179.1 (3) O1—C8—C9—O2 −8.8 (6)
C6—N2—N3—C8 −177.0 (4) N3—C8—C9—O2 171.4 (4)
Ni1—N2—N3—C8 −1.1 (4) O1—C8—C9—N4 171.0 (4)
C5—N1—C1—C2 −0.6 (7) N3—C8—C9—N4 −8.9 (6)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4A···O2ii 0.86 2.22 2.976 (5) 147
N4—H4B···N3iii 0.86 2.25 3.074 (5) 160

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5274).

References

  1. Dieng, M., Gaye, M., Sall, A. S. & Welter, R. (2004). Z. Kristallogr. 219, 15–16.
  2. Mikuriya, M., Nakadera, K. & Kotera, T. (1996). Bull. Chem. Soc. Jpn, 69, 399–405.
  3. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  4. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161. [DOI] [PMC free article] [PubMed]
  8. Welter, R. (2006). Acta Cryst. A62, s252.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014109/cv5274sup1.cif

e-68-0m553-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014109/cv5274Isup2.hkl

e-68-0m553-Isup2.hkl (87.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES