Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):m571–m572. doi: 10.1107/S1600536812014390

Dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-κN 2)quinoline-κN]zinc

Muhd Hidayat bin Najib a, Ai Ling Tan a, David J Young a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3344321  PMID: 22590087

Abstract

The ZnII atom in the title compound, [ZnCl2(C14H13N3)], is coordinated by a Cl2N2 donor set defined by quinoline and pyrazole N atoms of the chelating ligand and two Cl atoms. Distortions from the ideal tetra­hedral geometry relate to the restricted bite angle of the chelating ligand [N—Zn—N = 78.54 (12)°]. In the crystal, mol­ecules are connected into a three-dimensional structure by C—H⋯Cl inter­actions, involving both Cl atoms, and π–π inter­actions that occur between the pyrazole ring and each of the pyridine and benzene rings of the quinoline residue [inter­centroid distances = 3.655 (2) and 3.676 (2) Å].

Related literature  

For background to luminescent coordination complexes, see: Bai et al. (2012); Chou et al., (2011); Hu et al. (2011); Wang (2001). For the synthesis, see: Savel’eva et al. (2009); Scott et al. (1952).graphic file with name e-68-0m571-scheme1.jpg

Experimental  

Crystal data  

  • [ZnCl2(C14H13N3)]

  • M r = 359.54

  • Monoclinic, Inline graphic

  • a = 14.3353 (10) Å

  • b = 8.7683 (5) Å

  • c = 11.9839 (8) Å

  • β = 102.181 (7)°

  • V = 1472.42 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.02 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.597, T max = 1.000

  • 6070 measured reflections

  • 3370 independent reflections

  • 2438 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.124

  • S = 1.02

  • 3370 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014390/hg5206sup1.cif

e-68-0m571-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014390/hg5206Isup2.hkl

e-68-0m571-Isup2.hkl (165.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn—N1 2.021 (3)
Zn—N3 2.072 (3)
Zn—Cl1 2.2099 (11)
Zn—Cl2 2.2076 (11)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl1i 0.98 2.81 3.680 (4) 148
C12—H12A⋯Cl2ii 0.95 2.82 3.579 (4) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

Luminescent coordination complexes are used as emitting materials in light-emitting devices (Chou et al., 2011) and it is known that many ZnII nitrogen donor complexes are brightly luminescent in the blue region of the spectrum (Wang, 2001). The title compound (I) was prepared as part of our on-going quest for luminescent organometallic and coordination complexes with improved quantum efficiencies and colour purity (Bai et al., 2012; Hu et al., 2011;).

The ZnII atom in (I), Fig. 1, is chelated by quinolinyl- and pyrazolyl-N atoms and two chloride atoms, Table 1. The resulting Cl2N2 donor set defines a tetrahedron with a significant distortion apparent owing to the restricted bite angle of the chelating ligand, i.e. N1—Zn—N3 78.54 (12)°; the remaining angles lie in the range 111.52 (9)°, for N1—Zn—Cl1, to 115.73 (9)°, for N1—Zn—Cl2. The five-membered chelate ring is essentially planar with a r.m.s. deviation = 0.035 Å with maximum deviations of 0.034 (3) and -0.029 (3) Å for the N2 and N1 atoms, respectively. A small twist is apparent in the bidentate ligand with the dihedral angle between the quinolinyl and pyrazolyl rings being 6.84 (17)°. The overall coordination geometry found for (I) matches that seen in the species carrying an additional methyl group in the 4-position of the quinolinyl residue (Savel'eva et al., 2009).

In the crystal packing, Fig. 2, molecules are connected into a three-dimensional architecture by C—H···Cl interactions, Table 1, involving both chloride atoms, and π—π interactions between the pyrazoyl ring and each of the pyridyl and benzene rings of the quinolinyl residue [inter-centroid distances = 3.655 (2) and 3.676 (2) Å, respectively; angles of inclination = 3.2 (2) and 3.5 (2)°, respectively; for symmetry operation: x, 1/2 - y, -1/2 + z].

Experimental

The title compound was prepared by modification of literature procedures (Savel'eva et al., 2009; Scott et al. 1952). 3,5-Dimethyl-1-(2'-quinolyl)pyrazole (0.080 g) in a mixture of EtOH (4 ml) and CH2Cl2 (2 ml) was added to a solution of ZnCl2 (0.061 g) in EtOH (8 ml). A white precipitate formed and was collected by filtration after 1 h, washed with EtOH and air-dried. The crude product was recrystallized from its CH2Cl2/hexane solution. Yield 0.054 g (42%). M. pt: 607–608 K. IR ν/cm-1: 1619, 1596, 1579, 1559, 1511, 1479, 1439, 1386, 1380, 1346, 1319, 1142, 1090, 994, 983, 825, 783, 760.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.04 and 0.66 e Å-3, respectively, were located 1.00 Å and 0.95 Å from the Zn atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the unit-cell contents of (I) in projection down the b axis. The C—H···Cl and π—π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

[ZnCl2(C14H13N3)] F(000) = 728
Mr = 359.54 Dx = 1.622 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1666 reflections
a = 14.3353 (10) Å θ = 2.5–27.5°
b = 8.7683 (5) Å µ = 2.02 mm1
c = 11.9839 (8) Å T = 100 K
β = 102.181 (7)° Plate, colourless
V = 1472.42 (17) Å3 0.25 × 0.20 × 0.02 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3370 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2438 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.047
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.7°
ω scan h = −17→18
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −11→8
Tmin = 0.597, Tmax = 1.000 l = −9→15
6070 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.2907P] where P = (Fo2 + 2Fc2)/3
3370 reflections (Δ/σ)max = 0.001
183 parameters Δρmax = 1.04 e Å3
0 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.26453 (3) 0.53715 (5) 0.58123 (4) 0.02140 (16)
Cl1 0.37804 (7) 0.65835 (11) 0.70222 (9) 0.0296 (3)
Cl2 0.14937 (7) 0.67975 (11) 0.48204 (9) 0.0300 (3)
N1 0.3193 (2) 0.3781 (3) 0.4912 (3) 0.0185 (7)
N3 0.2198 (2) 0.3372 (3) 0.6458 (3) 0.0179 (7)
C1 0.4079 (3) 0.5145 (4) 0.3689 (4) 0.0255 (9)
H1A 0.4758 0.5071 0.3671 0.038*
H1B 0.3979 0.6015 0.4163 0.038*
H1C 0.3706 0.5289 0.2911 0.038*
C2 0.3767 (3) 0.3710 (4) 0.4180 (3) 0.0194 (8)
C3 0.4000 (3) 0.2193 (4) 0.4009 (3) 0.0200 (8)
H3 0.4400 0.1841 0.3524 0.024*
C4 0.3546 (2) 0.1306 (4) 0.4674 (3) 0.0186 (8)
C5 0.3603 (3) −0.0381 (4) 0.4822 (4) 0.0249 (9)
H5A 0.3798 −0.0626 0.5636 0.037*
H5B 0.4073 −0.0793 0.4415 0.037*
H5C 0.2977 −0.0833 0.4513 0.037*
C6 0.2458 (2) 0.2097 (4) 0.6031 (3) 0.0174 (8)
C7 0.2184 (3) 0.0628 (4) 0.6327 (3) 0.0189 (8)
H7A 0.2373 −0.0265 0.5984 0.023*
C8 0.1632 (3) 0.0549 (4) 0.7129 (3) 0.0207 (8)
H8A 0.1442 −0.0421 0.7358 0.025*
C9 0.1340 (2) 0.1877 (4) 0.7623 (3) 0.0186 (8)
C10 0.0765 (2) 0.1852 (4) 0.8457 (3) 0.0216 (8)
H10A 0.0563 0.0905 0.8710 0.026*
C11 0.0505 (3) 0.3181 (5) 0.8891 (3) 0.0243 (9)
H11A 0.0119 0.3161 0.9446 0.029*
C12 0.0805 (3) 0.4586 (4) 0.8521 (3) 0.0229 (9)
H12A 0.0617 0.5506 0.8830 0.027*
C13 0.1360 (3) 0.4656 (4) 0.7729 (3) 0.0222 (8)
H13A 0.1565 0.5614 0.7499 0.027*
C14 0.1628 (2) 0.3301 (4) 0.7257 (3) 0.0187 (8)
N2 0.3048 (2) 0.2299 (3) 0.5218 (3) 0.0173 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.0306 (3) 0.0144 (2) 0.0210 (3) −0.00055 (19) 0.00946 (19) 0.00027 (19)
Cl1 0.0423 (6) 0.0242 (5) 0.0237 (6) −0.0104 (4) 0.0104 (4) −0.0047 (4)
Cl2 0.0364 (6) 0.0193 (5) 0.0355 (6) 0.0071 (4) 0.0102 (5) 0.0038 (4)
N1 0.0250 (16) 0.0152 (16) 0.0151 (16) −0.0005 (13) 0.0042 (13) −0.0004 (13)
N3 0.0248 (16) 0.0180 (16) 0.0116 (16) −0.0026 (13) 0.0054 (13) −0.0017 (13)
C1 0.031 (2) 0.024 (2) 0.021 (2) −0.0040 (18) 0.0050 (17) 0.0009 (17)
C2 0.0212 (18) 0.023 (2) 0.0139 (19) −0.0034 (16) 0.0029 (15) 0.0013 (16)
C3 0.0205 (18) 0.024 (2) 0.0145 (19) 0.0024 (16) 0.0024 (14) 0.0005 (16)
C4 0.0213 (18) 0.0184 (19) 0.0154 (19) 0.0020 (16) 0.0025 (15) −0.0039 (16)
C5 0.033 (2) 0.017 (2) 0.028 (2) 0.0027 (17) 0.0137 (18) 0.0029 (17)
C6 0.0211 (19) 0.0185 (19) 0.0113 (19) −0.0014 (16) 0.0004 (14) −0.0012 (15)
C7 0.0243 (19) 0.0157 (18) 0.0168 (19) −0.0003 (16) 0.0047 (15) −0.0017 (15)
C8 0.027 (2) 0.0168 (19) 0.019 (2) −0.0016 (16) 0.0064 (16) 0.0047 (16)
C9 0.0199 (18) 0.0198 (19) 0.0149 (19) −0.0009 (16) 0.0011 (14) 0.0004 (16)
C10 0.024 (2) 0.023 (2) 0.018 (2) −0.0061 (16) 0.0044 (16) 0.0004 (17)
C11 0.024 (2) 0.033 (2) 0.018 (2) −0.0044 (18) 0.0078 (16) −0.0030 (18)
C12 0.0244 (19) 0.025 (2) 0.019 (2) 0.0049 (17) 0.0024 (16) −0.0033 (17)
C13 0.0230 (19) 0.023 (2) 0.020 (2) −0.0048 (17) 0.0036 (16) 0.0005 (17)
C14 0.0191 (18) 0.0210 (19) 0.0153 (19) 0.0005 (16) 0.0020 (15) 0.0021 (16)
N2 0.0230 (16) 0.0139 (15) 0.0152 (16) −0.0003 (13) 0.0039 (13) 0.0007 (13)

Geometric parameters (Å, º)

Zn—N1 2.021 (3) C5—H5B 0.9800
Zn—N3 2.072 (3) C5—H5C 0.9800
Zn—Cl1 2.2099 (11) C6—C7 1.414 (5)
Zn—Cl2 2.2076 (11) C6—N2 1.429 (5)
N1—C2 1.325 (5) C7—C8 1.370 (5)
N1—N2 1.378 (4) C7—H7A 0.9500
N3—C6 1.316 (5) C8—C9 1.409 (5)
N3—C14 1.385 (5) C8—H8A 0.9500
C1—C2 1.497 (5) C9—C14 1.414 (5)
C1—H1A 0.9800 C9—C10 1.423 (5)
C1—H1B 0.9800 C10—C11 1.361 (5)
C1—H1C 0.9800 C10—H10A 0.9500
C2—C3 1.397 (5) C11—C12 1.407 (5)
C3—C4 1.373 (5) C11—H11A 0.9500
C3—H3 0.9500 C12—C13 1.362 (5)
C4—N2 1.375 (4) C12—H12A 0.9500
C4—C5 1.490 (5) C13—C14 1.403 (5)
C5—H5A 0.9800 C13—H13A 0.9500
N1—Zn—N3 78.54 (12) H5B—C5—H5C 109.5
N1—Zn—Cl2 115.73 (9) N3—C6—C7 124.0 (3)
N3—Zn—Cl2 115.15 (9) N3—C6—N2 114.6 (3)
N1—Zn—Cl1 111.52 (9) C7—C6—N2 121.3 (3)
N3—Zn—Cl1 113.89 (9) C8—C7—C6 117.0 (3)
Cl2—Zn—Cl1 116.38 (4) C8—C7—H7A 121.5
C2—N1—N2 106.4 (3) C6—C7—H7A 121.5
C2—N1—Zn 138.7 (3) C7—C8—C9 121.3 (3)
N2—N1—Zn 114.3 (2) C7—C8—H8A 119.3
C6—N3—C14 119.2 (3) C9—C8—H8A 119.3
C6—N3—Zn 116.0 (2) C8—C9—C14 117.9 (3)
C14—N3—Zn 124.8 (2) C8—C9—C10 123.3 (3)
C2—C1—H1A 109.5 C14—C9—C10 118.8 (3)
C2—C1—H1B 109.5 C11—C10—C9 120.1 (4)
H1A—C1—H1B 109.5 C11—C10—H10A 119.9
C2—C1—H1C 109.5 C9—C10—H10A 119.9
H1A—C1—H1C 109.5 C10—C11—C12 120.2 (4)
H1B—C1—H1C 109.5 C10—C11—H11A 119.9
N1—C2—C3 110.0 (3) C12—C11—H11A 119.9
N1—C2—C1 120.0 (3) C13—C12—C11 121.4 (4)
C3—C2—C1 129.9 (3) C13—C12—H12A 119.3
C4—C3—C2 107.3 (3) C11—C12—H12A 119.3
C4—C3—H3 126.3 C12—C13—C14 119.5 (4)
C2—C3—H3 126.3 C12—C13—H13A 120.3
C3—C4—N2 105.9 (3) C14—C13—H13A 120.3
C3—C4—C5 127.7 (3) N3—C14—C13 119.5 (3)
N2—C4—C5 126.4 (3) N3—C14—C9 120.5 (3)
C4—C5—H5A 109.5 C13—C14—C9 120.0 (3)
C4—C5—H5B 109.5 C4—N2—N1 110.4 (3)
H5A—C5—H5B 109.5 C4—N2—C6 133.3 (3)
C4—C5—H5C 109.5 N1—N2—C6 116.3 (3)
H5A—C5—H5C 109.5
N3—Zn—N1—C2 −172.9 (4) C7—C8—C9—C10 179.8 (4)
Cl2—Zn—N1—C2 74.6 (4) C8—C9—C10—C11 −179.6 (3)
Cl1—Zn—N1—C2 −61.5 (4) C14—C9—C10—C11 −0.2 (5)
N3—Zn—N1—N2 −3.5 (2) C9—C10—C11—C12 −0.2 (5)
Cl2—Zn—N1—N2 −116.1 (2) C10—C11—C12—C13 −0.2 (6)
Cl1—Zn—N1—N2 107.8 (2) C11—C12—C13—C14 1.0 (6)
N1—Zn—N3—C6 0.5 (2) C6—N3—C14—C13 179.0 (3)
Cl2—Zn—N3—C6 113.7 (2) Zn—N3—C14—C13 −3.6 (5)
Cl1—Zn—N3—C6 −108.2 (2) C6—N3—C14—C9 0.9 (5)
N1—Zn—N3—C14 −177.0 (3) Zn—N3—C14—C9 178.3 (2)
Cl2—Zn—N3—C14 −63.8 (3) C12—C13—C14—N3 −179.5 (3)
Cl1—Zn—N3—C14 74.3 (3) C12—C13—C14—C9 −1.5 (5)
N2—N1—C2—C3 −0.2 (4) C8—C9—C14—N3 −1.5 (5)
Zn—N1—C2—C3 169.6 (3) C10—C9—C14—N3 179.1 (3)
N2—N1—C2—C1 −179.2 (3) C8—C9—C14—C13 −179.6 (3)
Zn—N1—C2—C1 −9.3 (6) C10—C9—C14—C13 1.1 (5)
N1—C2—C3—C4 −0.1 (4) C3—C4—N2—N1 −0.6 (4)
C1—C2—C3—C4 178.7 (4) C5—C4—N2—N1 177.2 (3)
C2—C3—C4—N2 0.5 (4) C3—C4—N2—C6 −178.4 (4)
C2—C3—C4—C5 −177.3 (4) C5—C4—N2—C6 −0.6 (6)
C14—N3—C6—C7 0.7 (5) C2—N1—N2—C4 0.5 (4)
Zn—N3—C6—C7 −176.9 (3) Zn—N1—N2—C4 −172.2 (2)
C14—N3—C6—N2 −179.8 (3) C2—N1—N2—C6 178.7 (3)
Zn—N3—C6—N2 2.6 (4) Zn—N1—N2—C6 6.0 (4)
N3—C6—C7—C8 −1.7 (5) N3—C6—N2—C4 172.0 (3)
N2—C6—C7—C8 178.9 (3) C7—C6—N2—C4 −8.5 (6)
C6—C7—C8—C9 1.0 (6) N3—C6—N2—N1 −5.7 (4)
C7—C8—C9—C14 0.5 (5) C7—C6—N2—N1 173.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···Cl1i 0.98 2.81 3.680 (4) 148
C12—H12A···Cl2ii 0.95 2.82 3.579 (4) 138

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5206).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Bai, S.-Q., Young, A. M., Hu, J. J., Young, D. J., Zhang, X., Zong, Y., Xu, J., Zuo, J.-L. & Hor, T. S. A. (2012). CrystEngComm, 14, 961–971.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Chou, P.-T., Chi, Y., Chung, M.-W. & Lin, C.-C. (2011). Coord. Chem. Rev 255, 2653–2665.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Hu, J. J., Bai, S. Q., Yeh, H. H., Young, D. J., Chi, Y. & Hor, T. S. A. (2011). Dalton Trans. 40, 4402–4406. [DOI] [PubMed]
  7. Savel’eva, Z. A., Popov, S. A., Klevtsova, R. F., Glinskaya, L. A., Uskov, E. M., Tkachev, A. V. & Larionov, S. V. (2009). Russ. Chem. Bull. Int. Ed 58, 1837–1840.
  8. Scott, F. L., Crowley, K. M. & Reilly, J. (1952). J. Am. Chem. Soc. 74, 3444–3445.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, S. (2001). Coord. Chem. Rev. 215, 79–98.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014390/hg5206sup1.cif

e-68-0m571-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014390/hg5206Isup2.hkl

e-68-0m571-Isup2.hkl (165.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES