Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):m588. doi: 10.1107/S160053681201478X

trans-Dichloridobis[diphen­yl(thio­phen-2-yl)phosphane-κP]palladium(II)

Andrew R Burgoyne a, Reinout Meijboom a,*, Haleden Chiririwa a, Leo Kirsten a
PMCID: PMC3344332  PMID: 22590098

Abstract

The title compound, trans-[PdCl2(C16H13PS)2], forms a monomeric complex with a trans-square-planar geometry. The Pd—P bond lengths are 2.3387 (11) Å, as the Pd atom lies on an inversion point, while the Pd—Cl bond lengths are 2.2950 (12) Å.

Related literature  

For a review on related compounds, see: Spessard & Miessler (1996). For the synthesis of the starting materials, see: Drew & Doyle (1990). For (R 3P)2PdCl2 compounds with consanguinities, see: Muller & Meijboom (2010); Meijboom (2011); Burgoyne et al. (2012); Ogutu & Meijboom, (2011). For their applications, see: Bedford et al. (2004).graphic file with name e-68-0m588-scheme1.jpg

Experimental  

Crystal data  

  • [PdCl2(C16H13PS)2]

  • M r = 713.91

  • Monoclinic, Inline graphic

  • a = 9.019 (2) Å

  • b = 18.427 (4) Å

  • c = 9.658 (2) Å

  • β = 110.14 (4)°

  • V = 1507.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.16 mm

Data collection  

  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.812, T max = 0.841

  • 20792 measured reflections

  • 3747 independent reflections

  • 3591 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.111

  • S = 1.19

  • 3747 reflections

  • 198 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.49 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201478X/hb6729sup1.cif

e-68-0m588-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201478X/hb6729Isup2.hkl

e-68-0m588-Isup2.hkl (180KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ARB thanks the University of Johannesburg and the South African National Research Foundation for financial support.

supplementary crystallographic information

Comment

The catalytic abilities of palladium metal centre complexes make them amongst the most popular catalytic precursors in organic synthesis. They are used in carbon-carbon bond formation reactions like the Heck, Stille and Suzuki reactions (Bedford et al., 2004).

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{P(C6H5)2(C4SH3)}2], crystallizes with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not displaced out of the coordinating atoms plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 87.50 (5)° and P—Pd—Cli = 92.50 (5)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°.

The title compound compares well with other closely related Pd(II) complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry (Muller & Meijboom, 2010). The title compound, having a Pd—Cl bond length of 2.2950 (12) Å and a Pd—P bond length of 2.3387 (11) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallize as a solvated complex; these type of Pd(II) complexes have a tendency to crystallize as solvates (Ogutu & Meijboom, 2011).

Experimental

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). A solution of diphenyl(thiophenyl-2-yl)phosphine (0.2 mmol) in dichloromethane (2.0 ml) was added to a solution of [PdCl2(COD)] (0.1 mmol) in dichloromethane (3.0 ml). Slow evaporation of the solvent gave the parent palladium compound. Recrystallization from dichloromethane afforded crystals of the title compound with 60% yield.

Refinement

A disorder refinement model was applied to the thiophene ring. Ellipsoid displacement constraints (SIMU) were used to improve the model of the structure. The occupation parameters were linked to a free variable with a distribution of 0.57 (1):0.43 (1). P1, C1A, C2A and C3A were all constrained to have equal ADPs. All hydrogen atoms were positioned geometrically with C—H = 0.95 Å for aromatic H atoms. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq. The remaining highest electron peak was 1.54 at 0.06 Å from C1A and the deepest hole was -1.49 at 0.24 Å from C4B.

Figures

Fig. 1.

Fig. 1.

The structure of the trans-dichlorobis {diphenyl(thiophenyl-2-yl)phosphine}palladium(II) showing 50% probability displacement ellipsoids. Symmetry code to generate molecule through inversion point: - x, - y, 1 - z. Hydrogen atoms were omitted for clarity.

Fig. 2.

Fig. 2.

The structure of the disordered phenyl ring within trans-dichlorobis {diphenyl(thiophenyl-2-yl)phosphine}palladium(II), with the lower occupancy atoms shown as semi-transparent.

Crystal data

[PdCl2(C16H13PS)2] F(000) = 720.0
Mr = 713.91 Dx = 1.573 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9973 reflections
a = 9.019 (2) Å θ = 2.5–28.3°
b = 18.427 (4) Å µ = 1.06 mm1
c = 9.658 (2) Å T = 100 K
β = 110.14 (4)° Cube, orange
V = 1507.0 (7) Å3 0.20 × 0.20 × 0.16 mm
Z = 2

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer 3747 independent reflections
Radiation source: fine-focus sealed tube 3591 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −7→12
Tmin = 0.812, Tmax = 0.841 k = −24→24
20792 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0193P)2 + 7.7351P] where P = (Fo2 + 2Fc2)/3
3747 reflections (Δ/σ)max < 0.001
198 parameters Δρmax = 1.54 e Å3
40 restraints Δρmin = −1.49 e Å3

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A collection frame width of 0.5 ° covering up to θ = 28.4° resulted in 99% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pd1 0.5000 0.5000 0.5000 0.01794 (11)
Cl1 0.70661 (12) 0.45351 (6) 0.69206 (10) 0.0280 (2)
P1 0.52138 (11) 0.39844 (5) 0.36286 (10) 0.01804 (18)
C5 0.4185 (5) 0.4000 (2) 0.1640 (4) 0.0225 (7)
C11 0.7266 (4) 0.3790 (2) 0.3872 (4) 0.0205 (7)
C10 0.5040 (6) 0.4028 (2) 0.0598 (5) 0.0310 (9)
H10 0.6137 0.4036 0.0907 0.037*
C16 0.7978 (5) 0.3108 (2) 0.4353 (4) 0.0231 (7)
H16 0.7386 0.2724 0.4507 0.028*
C12 0.8193 (6) 0.4352 (2) 0.3639 (5) 0.0325 (9)
H12 0.7745 0.4806 0.3342 0.039*
C13 0.9756 (5) 0.4240 (3) 0.3845 (5) 0.0362 (10)
H13 1.0357 0.4612 0.3655 0.043*
C6 0.2505 (5) 0.3988 (2) 0.1073 (5) 0.0309 (9)
H6 0.1941 0.3982 0.1717 0.037*
C7 0.1722 (7) 0.3984 (3) −0.0409 (5) 0.0442 (12)
H7 0.0624 0.3964 −0.0772 0.053*
C8 0.2528 (7) 0.4010 (3) −0.1360 (5) 0.0472 (14)
H8 0.1975 0.4004 −0.2369 0.057*
C9 0.4108 (7) 0.4042 (3) −0.0871 (5) 0.0412 (12)
H9 0.4608 0.4076 −0.1566 0.049*
C15 0.9557 (5) 0.3024 (3) 0.4588 (5) 0.0340 (10)
H15 1.0043 0.2581 0.4929 0.041*
C14 1.0427 (5) 0.3582 (3) 0.4327 (5) 0.0347 (10)
H14 1.1493 0.3512 0.4482 0.042*
C1A 0.4428 (9) 0.3176 (4) 0.4104 (7) 0.01804 (18) 0.570 (6)
C2A 0.4540 (9) 0.3048 (5) 0.5578 (9) 0.01804 (18) 0.570 (6)
H2A 0.4988 0.3356 0.6377 0.022* 0.570 (6)
C3A 0.3748 (8) 0.2270 (4) 0.5617 (8) 0.0180 (6) 0.570 (6)
H3A 0.3626 0.2043 0.6432 0.022* 0.570 (6)
C4A 0.3287 (19) 0.2006 (7) 0.4190 (13) 0.041 (3) 0.570 (6)
H4A 0.2832 0.1550 0.3943 0.049* 0.570 (6)
S1A 0.3563 (4) 0.24996 (17) 0.3057 (3) 0.0386 (7) 0.570 (6)
C1B 0.4544 (10) 0.3199 (4) 0.4465 (6) 0.0178 (7) 0.430 (6)
C2B 0.3665 (17) 0.2577 (7) 0.3461 (10) 0.071 (6) 0.430 (6)
H2B 0.3453 0.2543 0.2451 0.085* 0.430 (6)
C3B 0.3197 (19) 0.2020 (6) 0.4418 (12) 0.030 (3) 0.430 (6)
H3B 0.2652 0.1589 0.4089 0.036* 0.430 (6)
C4B 0.3787 (12) 0.2298 (4) 0.6013 (8) 0.043 (2) 0.430 (6)
H4B 0.3662 0.2065 0.6820 0.052* 0.430 (6)
S1B 0.4619 (3) 0.30264 (15) 0.6042 (3) 0.0244 (7) 0.430 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.01662 (18) 0.0228 (2) 0.01334 (18) 0.00304 (14) 0.00382 (13) −0.00107 (14)
Cl1 0.0254 (5) 0.0336 (5) 0.0192 (4) 0.0079 (4) 0.0001 (3) −0.0004 (4)
P1 0.0168 (4) 0.0231 (4) 0.0145 (4) 0.0022 (3) 0.0057 (3) −0.0025 (3)
C5 0.0288 (19) 0.0210 (18) 0.0163 (16) 0.0016 (15) 0.0060 (14) −0.0022 (13)
C11 0.0178 (16) 0.0247 (18) 0.0205 (16) 0.0008 (14) 0.0084 (13) −0.0038 (14)
C10 0.040 (2) 0.0190 (18) 0.0249 (19) 0.0044 (17) −0.0009 (17) −0.0008 (15)
C16 0.0234 (18) 0.030 (2) 0.0170 (16) −0.0005 (15) 0.0085 (14) 0.0036 (14)
C12 0.037 (2) 0.023 (2) 0.041 (2) 0.0011 (17) 0.0168 (19) −0.0033 (17)
C13 0.029 (2) 0.040 (3) 0.044 (3) −0.0133 (19) 0.019 (2) −0.014 (2)
C6 0.032 (2) 0.034 (2) 0.0248 (19) −0.0045 (18) 0.0067 (16) −0.0041 (17)
C7 0.046 (3) 0.041 (3) 0.031 (2) −0.011 (2) −0.004 (2) 0.003 (2)
C8 0.071 (4) 0.035 (3) 0.025 (2) −0.016 (2) 0.003 (2) 0.0041 (19)
C9 0.072 (4) 0.033 (2) 0.025 (2) −0.004 (2) 0.025 (2) −0.0026 (18)
C15 0.029 (2) 0.046 (3) 0.029 (2) 0.0137 (19) 0.0129 (17) 0.0069 (19)
C14 0.0185 (18) 0.058 (3) 0.029 (2) 0.0033 (19) 0.0089 (16) −0.007 (2)
C1A 0.0168 (4) 0.0231 (4) 0.0145 (4) 0.0022 (3) 0.0057 (3) −0.0025 (3)
C2A 0.0168 (4) 0.0231 (4) 0.0145 (4) 0.0022 (3) 0.0057 (3) −0.0025 (3)
C3A 0.0168 (9) 0.0231 (5) 0.0145 (9) 0.0022 (8) 0.0057 (4) −0.0025 (8)
C4A 0.036 (5) 0.028 (5) 0.058 (5) −0.008 (4) 0.015 (5) −0.015 (4)
S1A 0.0460 (14) 0.0398 (13) 0.0342 (13) −0.0067 (10) 0.0191 (10) 0.0007 (9)
C1B 0.0166 (11) 0.0224 (11) 0.0145 (11) 0.0018 (10) 0.0056 (10) −0.0026 (11)
C2B 0.067 (8) 0.077 (9) 0.062 (9) 0.025 (7) 0.014 (7) −0.002 (8)
C3B 0.029 (5) 0.018 (5) 0.059 (6) −0.007 (4) 0.037 (4) −0.009 (5)
C4B 0.043 (4) 0.053 (4) 0.033 (4) 0.014 (4) 0.012 (4) 0.007 (4)
S1B 0.0279 (12) 0.0342 (13) 0.0112 (11) −0.0045 (9) 0.0069 (10) −0.0001 (10)

Geometric parameters (Å, º)

Pd1—Cl1 2.2950 (12) C7—H7 0.9300
Pd1—Cl1i 2.2950 (12) C8—C9 1.340 (8)
Pd1—P1 2.3387 (11) C8—H8 0.9300
Pd1—P1i 2.3387 (11) C9—H9 0.9300
P1—C1A 1.777 (7) C15—C14 1.370 (7)
P1—C11 1.820 (4) C15—H15 0.9300
P1—C5 1.823 (4) C14—H14 0.9300
P1—C1B 1.857 (6) C1A—C2A 1.412 (9)
C5—C6 1.423 (6) C1A—S1A 1.625 (7)
C5—C10 1.465 (6) C2A—C3A 1.608 (10)
C11—C12 1.397 (6) C2A—H2A 0.9300
C11—C16 1.414 (5) C3A—C4A 1.384 (12)
C10—C9 1.378 (6) C3A—H3A 0.9300
C10—H10 0.9300 C4A—S1A 1.507 (12)
C16—C15 1.371 (6) C4A—H4A 0.9300
C16—H16 0.9300 C1B—S1B 1.534 (5)
C12—C13 1.369 (6) C1B—C2B 1.534 (5)
C12—H12 0.9300 C2B—C3B 1.534 (5)
C13—C14 1.363 (7) C2B—H2B 0.9300
C13—H13 0.9300 C3B—C4B 1.534 (5)
C6—C7 1.361 (6) C3B—H3B 0.9300
C6—H6 0.9300 C4B—S1B 1.534 (5)
C7—C8 1.354 (8) C4B—H4B 0.9300
Cl1—Pd1—Cl1i 180.000 (1) C9—C8—C7 121.2 (5)
Cl1—Pd1—P1 87.52 (4) C9—C8—H8 119.4
Cl1i—Pd1—P1 92.48 (4) C7—C8—H8 119.4
Cl1—Pd1—P1i 92.48 (4) C8—C9—C10 124.0 (5)
Cl1i—Pd1—P1i 87.52 (4) C8—C9—H9 118.0
P1—Pd1—P1i 180.0 C10—C9—H9 118.0
C1A—P1—C11 106.3 (3) C14—C15—C16 120.8 (4)
C1A—P1—C5 100.5 (2) C14—C15—H15 119.6
C11—P1—C5 105.39 (18) C16—C15—H15 119.6
C11—P1—C1B 105.0 (3) C13—C14—C15 121.1 (4)
C5—P1—C1B 110.3 (2) C13—C14—H14 119.5
C1A—P1—Pd1 114.0 (2) C15—C14—H14 119.5
C11—P1—Pd1 111.29 (12) C2A—C1A—S1A 110.6 (6)
C5—P1—Pd1 118.21 (13) C2A—C1A—P1 120.3 (5)
C1B—P1—Pd1 105.9 (2) S1A—C1A—P1 129.1 (4)
C6—C5—C10 118.6 (4) C1A—C2A—C3A 107.1 (6)
C6—C5—P1 119.6 (3) C1A—C2A—H2A 126.4
C10—C5—P1 121.8 (3) C3A—C2A—H2A 126.4
C12—C11—C16 118.8 (4) C4A—C3A—C2A 105.8 (7)
C12—C11—P1 118.1 (3) C4A—C3A—H3A 127.1
C16—C11—P1 123.0 (3) C2A—C3A—H3A 127.1
C9—C10—C5 115.5 (4) C3A—C4A—S1A 116.4 (7)
C9—C10—H10 122.3 C3A—C4A—H4A 121.8
C5—C10—H10 122.3 S1A—C4A—H4A 121.8
C15—C16—C11 118.9 (4) C4A—S1A—C1A 100.0 (5)
C15—C16—H16 120.5 S1B—C1B—C2B 108.0
C11—C16—H16 120.5 S1B—C1B—P1 133.1 (4)
C13—C12—C11 120.5 (4) C2B—C1B—P1 118.8 (4)
C13—C12—H12 119.7 C3B—C2B—C1B 108.0
C11—C12—H12 119.7 C3B—C2B—H2B 126.0
C14—C13—C12 119.8 (4) C1B—C2B—H2B 126.0
C14—C13—H13 120.1 C2B—C3B—C4B 108.0
C12—C13—H13 120.1 C2B—C3B—H3B 126.0
C7—C6—C5 120.2 (4) C4B—C3B—H3B 126.0
C7—C6—H6 119.9 S1B—C4B—C3B 108.0
C5—C6—H6 119.9 S1B—C4B—H4B 126.0
C8—C7—C6 120.5 (5) C3B—C4B—H4B 126.0
C8—C7—H7 119.8 C1B—S1B—C4B 108.0
C6—C7—H7 119.8

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6729).

References

  1. Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burgoyne, A. R., Meijboom, R. & Ogutu, H. (2012). Acta Cryst. E68, m404. [DOI] [PMC free article] [PubMed]
  5. Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Meijboom, R. (2011). Acta Cryst. E67, m1663. [DOI] [PMC free article] [PubMed]
  8. Muller, A. & Meijboom, R. (2010). Acta Cryst. E66, m1463. [DOI] [PMC free article] [PubMed]
  9. Ogutu, H. & Meijboom, R. (2011). Acta Cryst. E67, m1662. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. New Jersey: Prentice Hall.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201478X/hb6729sup1.cif

e-68-0m588-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201478X/hb6729Isup2.hkl

e-68-0m588-Isup2.hkl (180KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES