Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):m599. doi: 10.1107/S1600536812015747

Bis(acetato-κO)bis­[2-(pyridin-2-yl)ethanol-κ2 N,O]copper(II)

Katja Lapanje a, Ivan Leban a, Nina Lah a,*
PMCID: PMC3344340  PMID: 22590106

Abstract

The title compound, [Cu(CH3COO)2(C7H9NO)2], is a monomeric complex with an octa­hedral geometry. The CuII atom is located on an inversion center and is coordinated by acetate and 2-(pyridin-2-yl)ethanol ligands. The acetate group is coordinated in a monodentate manner, while the 2-(pyridin-2-yl)ethanol is coordinated as a bidentate ligand involving the endocyclic N atom and the hy­droxy O atom of the ligand side chain. An intra­molecular hydrogen bond is observed between the hy­droxy O atom and the non-coordinated acetate O atom. No classical inter­molecular hydrogen-bond contacts were observed. However, the crystal packing is effected by C—H⋯O inter­actions, which link the mononuclear entities into layers parallel to the bc plane.

Related literature  

For related structures, see: Pothiraja et al. (2011); Yilmaz et al. (2003). For copper halogenido complexes with 2-(pyridin-2-yl)ethanol, see: Hamamci et al. (2004); Lah & Leban (2010). For copper complexes with acetate and 2-(pyridin-2-yl)ethanol in its deprotonated form, see, for example: Mobin et al. (2010). graphic file with name e-68-0m599-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C2H3O2)2(C7H9NO)2]

  • M r = 427.93

  • Monoclinic, Inline graphic

  • a = 8.3521 (3) Å

  • b = 7.7547 (2) Å

  • c = 15.1953 (5) Å

  • β = 104.447 (3)°

  • V = 953.05 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 150 K

  • 0.2 × 0.18 × 0.15 mm

Data collection  

  • Agilent SuperNova Dual/Cu at zero/Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.792, T max = 1.0

  • 5287 measured reflections

  • 2178 independent reflections

  • 1867 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.072

  • S = 1.05

  • 2178 reflections

  • 126 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015747/bq2349sup1.cif

e-68-0m599-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015747/bq2349Isup2.hkl

e-68-0m599-Isup2.hkl (104.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O1 1.9816 (12)
Cu1—N11 2.0324 (14)
Cu1—O3A 2.4218 (13)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O3Ai 0.93 2.46 3.105 (2) 127
C13—H13⋯O1ii 0.93 2.51 3.424 (2) 168
C14—H14⋯O2iii 0.93 2.53 3.050 (2) 115
O3A—H3A⋯O2 0.82 1.79 2.595 (2) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The work was supported by the Slovenian Ministry of Education, Science, Culture and Sport through grant No. P1–0175. EN-FIST Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia is acknowledged for the use of the Supernova diffractometer.

supplementary crystallographic information

Comment

Simple pyridine alcohol ligands are commercially available substances which are of particular interest in coordination chemistry since they possess two functional groups, both capable to coordinate to metal centers. They can react as neutral ligands with a preserved alcohol function or as anionic (alkoxo) ligands with the OH group being deprotonated. The literature reports on some CuII species incorporating 2-(pyridin-2-yl)ethanol (2-pyEtOH) as a neutral ligand to copper atoms (i.e. Pothiraja et al., 2011; Yilmaz et al., 2003; Hamamci et al., 2004; Lah & Leban, 2010) and a series of CuII acetato compounds with 2-pyEtOH in its deprotonated form (Mobin et al., 2010). We report here the synthesis and crystal structure of new mononuclear CuII complex with 2-pyEtOH coordinated as a neutral ligand in a chelating manner using both functional groups. Cu atom is located on the inversion center and possesses a distorted octahedral environment with two O-atoms belonging to two acetato ligands, two O-atoms of the 2-pyEtOH side chains and two pyridine N atoms of the 2-pyEtOH ligands (Figure 1). An intramolecular hydrogen bond is observed between the hydroxy oxygen as a donor and the noncoordinated acetato oxygen as an acceptor. No classical intermolecular hydrogen-bond contacts were observed. However, crystal packing is effected by intermolecular C—H···O interactions involving aromatic C—H as donors and oxygen atoms of both ligands as acceptors. Thus, mononuclear units are linked into two-dimensional layers parallel to bc plane. See Table 2 for details.

Experimental

0,20 g of copper acetate hydrate was dissolved in 10,0 ml of methanol. 0,10 g of malonic acid and 0,10 ml of 2-(pyridin-2-yl)ethanol was added during intense stirring. The resulting blue solution was left at ambient condition to slowly evaporate the solvent. Within few days light blue crystals of the title compound appeared.

Refinement

All H atoms were initially found in a Fourier-difference map, but they were repositioned to their calculated positions and were refined using a riding model. Aromatic H atoms were permitted to ride with C—H = 0.93 Å and Ueq(H) = 1.2Uiso(C). H atoms bonded to O were permitted to ride with O—H = 0.820 Å and Ueq(H)=1.5iso(O), those of the CH2 group were constrained with C—H = 0.97 Å and Ueq(H)=1.2Uiso(C).

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cu(C2H3O2)2(C7H9NO)2] F(000) = 446
Mr = 427.93 Dx = 1.491 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3095 reflections
a = 8.3521 (3) Å θ = 3.0–30.6°
b = 7.7547 (2) Å µ = 1.18 mm1
c = 15.1953 (5) Å T = 150 K
β = 104.447 (3)° Prismatic, blue
V = 953.05 (5) Å3 0.2 × 0.18 × 0.15 mm
Z = 2

Data collection

Agilent SuperNova Dual/Cu at zero/Atlas diffractometer 2178 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1867 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.024
Detector resolution: 10.4933 pixels mm-1 θmax = 27.5°, θmin = 3.0°
ω–scans h = −8→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −9→10
Tmin = 0.792, Tmax = 1.0 l = −19→10
5287 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0265P)2 + 0.6754P] where P = (Fo2 + 2Fc2)/3
2178 reflections (Δ/σ)max < 0.001
126 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.0000 0.0000 1.0000 0.01445 (10)
N11 0.85389 (18) 0.16632 (18) 0.91187 (10) 0.0167 (3)
C12 0.8605 (2) 0.3316 (2) 0.94034 (13) 0.0192 (4)
H12 0.9201 0.3564 0.9993 0.023*
C13 0.7832 (2) 0.4656 (2) 0.88638 (13) 0.0211 (4)
H13 0.7895 0.5777 0.9087 0.025*
C14 0.6963 (2) 0.4293 (3) 0.79849 (13) 0.0224 (4)
H14 0.6442 0.5168 0.7601 0.027*
C15 0.6882 (2) 0.2599 (2) 0.76858 (13) 0.0214 (4)
H15 0.6300 0.2333 0.7096 0.026*
C16 0.7665 (2) 0.1294 (2) 0.82624 (12) 0.0175 (4)
C1A 0.7575 (2) −0.0547 (2) 0.79380 (12) 0.0210 (4)
H1A1 0.6764 −0.0622 0.7358 0.025*
H1A2 0.7190 −0.1263 0.8367 0.025*
C2A 0.9212 (2) −0.1272 (2) 0.78271 (12) 0.0223 (4)
H2A1 0.9008 −0.2326 0.7473 0.027*
H2A2 0.9722 −0.0448 0.7500 0.027*
O3A 1.03055 (16) −0.16208 (17) 0.86893 (9) 0.0223 (3)
H3A 1.1191 −0.1133 0.8724 0.033*
O1 1.19060 (15) 0.15137 (15) 0.99881 (9) 0.0192 (3)
C2 1.4324 (3) 0.2700 (3) 0.96919 (16) 0.0338 (5)
H2A 1.5099 0.2478 1.0263 0.051*
H2B 1.3846 0.3823 0.9706 0.051*
H2C 1.4885 0.2656 0.9212 0.051*
C1 1.2976 (2) 0.1355 (2) 0.95261 (12) 0.0217 (4)
O2 1.2994 (2) 0.0195 (2) 0.89625 (11) 0.0378 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01415 (16) 0.01239 (16) 0.01711 (16) −0.00139 (11) 0.00446 (11) −0.00008 (11)
N11 0.0160 (7) 0.0153 (7) 0.0190 (7) −0.0021 (6) 0.0047 (6) −0.0003 (6)
C12 0.0192 (9) 0.0174 (9) 0.0210 (9) −0.0027 (7) 0.0050 (7) −0.0019 (7)
C13 0.0201 (9) 0.0169 (9) 0.0280 (10) −0.0006 (7) 0.0090 (8) 0.0011 (7)
C14 0.0201 (10) 0.0233 (9) 0.0254 (9) 0.0025 (8) 0.0085 (8) 0.0078 (7)
C15 0.0184 (9) 0.0275 (10) 0.0179 (9) −0.0005 (8) 0.0036 (7) 0.0024 (7)
C16 0.0135 (8) 0.0208 (9) 0.0196 (8) −0.0021 (7) 0.0069 (7) −0.0004 (7)
C1A 0.0206 (9) 0.0215 (9) 0.0193 (9) −0.0031 (8) 0.0020 (7) −0.0032 (7)
C2A 0.0245 (10) 0.0232 (9) 0.0191 (9) −0.0007 (8) 0.0050 (8) −0.0049 (7)
O3A 0.0200 (7) 0.0248 (7) 0.0221 (7) −0.0007 (6) 0.0052 (5) −0.0005 (5)
O1 0.0183 (6) 0.0168 (6) 0.0240 (6) −0.0035 (5) 0.0081 (5) −0.0016 (5)
C2 0.0280 (11) 0.0401 (12) 0.0374 (12) −0.0155 (10) 0.0156 (10) −0.0041 (10)
C1 0.0188 (9) 0.0278 (10) 0.0184 (9) −0.0030 (8) 0.0046 (7) 0.0021 (7)
O2 0.0285 (8) 0.0553 (10) 0.0339 (8) −0.0153 (7) 0.0159 (7) −0.0229 (7)

Geometric parameters (Å, º)

Cu1—O1i 1.9816 (12) C16—C1A 1.506 (3)
Cu1—O1 1.9816 (12) C1A—C2A 1.526 (3)
Cu1—N11 2.0324 (14) C1A—H1A1 0.9700
Cu1—N11i 2.0324 (14) C1A—H1A2 0.9700
Cu1—O3A 2.4218 (13) C2A—O3A 1.424 (2)
N11—C12 1.349 (2) C2A—H2A1 0.9700
N11—C16 1.354 (2) C2A—H2A2 0.9700
C12—C13 1.380 (3) O3A—H3A 0.8200
C12—H12 0.9300 O1—C1 1.273 (2)
C13—C14 1.381 (3) C2—C1 1.509 (3)
C13—H13 0.9300 C2—H2A 0.9600
C14—C15 1.386 (3) C2—H2B 0.9600
C14—H14 0.9300 C2—H2C 0.9600
C15—C16 1.390 (3) C1—O2 1.245 (2)
C15—H15 0.9300
O1i—Cu1—O1 180.0 N11—C16—C1A 119.08 (15)
O1i—Cu1—N11 91.73 (5) C15—C16—C1A 120.42 (16)
O1—Cu1—N11 88.27 (5) C16—C1A—C2A 114.37 (15)
O1i—Cu1—N11i 88.27 (5) C16—C1A—H1A1 108.7
O1—Cu1—N11i 91.73 (5) C2A—C1A—H1A1 108.7
N11—Cu1—N11i 180.00 (7) C16—C1A—H1A2 108.7
O1i—Cu1—O3Ai 92.88 (5) C2A—C1A—H1A2 108.7
O1—Cu1—O3Ai 87.12 (5) H1A1—C1A—H1A2 107.6
N11—Cu1—O3Ai 92.49 (5) O3A—C2A—C1A 110.80 (15)
N11i—Cu1—O3Ai 87.51 (5) O3A—C2A—H2A1 109.5
C12—N11—C16 118.56 (15) C1A—C2A—H2A1 109.5
C12—N11—Cu1 114.94 (12) O3A—C2A—H2A2 109.5
C16—N11—Cu1 126.15 (12) C1A—C2A—H2A2 109.5
N11—C12—C13 123.31 (17) H2A1—C2A—H2A2 108.1
N11—C12—H12 118.3 C2A—O3A—H3A 109.5
C13—C12—H12 118.3 C1—O1—Cu1 128.62 (12)
C12—C13—C14 118.42 (17) C1—C2—H2A 109.5
C12—C13—H13 120.8 C1—C2—H2B 109.5
C14—C13—H13 120.8 H2A—C2—H2B 109.5
C13—C14—C15 118.79 (17) C1—C2—H2C 109.5
C13—C14—H14 120.6 H2A—C2—H2C 109.5
C15—C14—H14 120.6 H2B—C2—H2C 109.5
C14—C15—C16 120.41 (17) O2—C1—O1 125.43 (18)
C14—C15—H15 119.8 O2—C1—C2 118.56 (18)
C16—C15—H15 119.8 O1—C1—C2 116.01 (17)
N11—C16—C15 120.49 (16)

Symmetry code: (i) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O3Ai 0.93 2.46 3.105 (2) 127
C13—H13···O1ii 0.93 2.51 3.424 (2) 168
C14—H14···O2iii 0.93 2.53 3.050 (2) 115
O3A—H3A···O2 0.82 1.79 2.595 (2) 169

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+2, −y+1, −z+2; (iii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2349).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Hamamci, S., Yilmaz, V. T. & Thöne, C. (2004). Acta Cryst. E60, m159–m161.
  3. Lah, N. & Leban, I. (2010). Struct. Chem. 21, 263–267.
  4. Mobin, S. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447–1449. [DOI] [PubMed]
  5. Pothiraja, R., Sathiyendiran, M., Steiner, A. & Murugavel, R. (2011). Inorg. Chim. Acta, 372, 347–352.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yilmaz, V. T., Hamamci, S. & Thone, C. (2003). J. Coord. Chem. 56, 787–795.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015747/bq2349sup1.cif

e-68-0m599-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015747/bq2349Isup2.hkl

e-68-0m599-Isup2.hkl (104.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES