Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):m600. doi: 10.1107/S160053681201495X

Diaqua­bis­[5-(pyrazin-2-yl-κN 1)-3-(pyridin-4-yl)-1H-1,2,4-triazol-1-ido-κN 1]cobalt(II) methanol disolvate

Yan Bi a, Na Wu a, Jing Chen a,*
PMCID: PMC3344341  PMID: 22590107

Abstract

The CoII ion in the title mononuclear compound, [Co(C11H7N6)2(H2O)2]·2CH3OH, is located on an inversion center and is six-coordinated in a distorted octa­hedral geometry defined by four N atoms from two deprotonated 5-(pyrazin-2-yl-κN)-3-(pyridin-4-yl)-1H-1,2,4-triazol-1-ide (ppt) ligands and two water mol­ecules. In the crystal, the complex mol­ecules and lattice methanol mol­ecules are linked via O—H⋯N and O—H⋯O hydrogen bonds, generating a two-dimensional supra­molecular network parallel to (001). π–π inter­actions between the triazole and pyrazine rings and between the pyridine rings are present [centroid–centroid distances = 3.686 (3) and 3.929 (4) Å, respectively].

Related literature  

For coordination complexes based on N-involved polydentate ligands, see: Guo et al. (2010); Ha (2011); Sun et al. (2011); Tang et al. (2011); Yang et al. (2010). For related structures based on 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole, see: Liu et al. (2009).graphic file with name e-68-0m600-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C11H7N6)2(H2O)2]·2CH4O

  • M r = 605.50

  • Monoclinic, Inline graphic

  • a = 11.462 (9) Å

  • b = 7.121 (5) Å

  • c = 16.116 (12) Å

  • β = 95.418 (14)°

  • V = 1309.6 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 296 K

  • 0.36 × 0.22 × 0.10 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.783, T max = 0.932

  • 6377 measured reflections

  • 2307 independent reflections

  • 1685 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.104

  • S = 1.03

  • 2307 reflections

  • 189 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201495X/hy2533sup1.cif

e-68-0m600-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201495X/hy2533Isup2.hkl

e-68-0m600-Isup2.hkl (113.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N6i 0.82 1.97 2.760 (4) 163
O1—H1B⋯N5ii 0.85 1.94 2.785 (3) 176
O1—H1A⋯O2iii 0.85 1.81 2.660 (3) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported financially by Tianjin Normal University (No. 52XQ1104).

supplementary crystallographic information

Comment

The selection of organic ligands is generally considered as the critical factor for constructing metallosupramolecular complexes. In this connection, nitrogen-involved polydentate ligands have attracted special attentions because of their preference and reliability for coordinating to transition metal ions in versatile fashions (Guo et al., 2010; Ha, 2011; Sun et al., 2011; Tang et al., 2011; Yang et al., 2010). For example, 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole (Hppt) has been recently used to prepare two Cu(II) complexes with the observation of unique structural transformations (Liu et al., 2009). Herein, the reaction of Hppt with Co(NO3)2.6H2O produces the title mononuclear complex.

The asymmetric unit of the title complex consists of a CoII ion that lies on an inversion center, one deprotonated ppt anion, one water ligand and one lattice methanol molecule. As shown in Fig. 1, the CoII ion takes a distorted octahedral geometry, coordinating to four N atoms from two ppt ligands [Co—N = 2.076 (2) and 2.130 (2) Å] in the equatorial plane and to two axial water ligands [Co—O = 2.087 (2) Å]. The deprotonated ppt ligand adopts a chelating mode through both the pyrazinyl and triazolyl N donors.

As shown in Fig. 2, the lattice methanol molecule is bonded to the water ligand via O1—H1A···O2iii and the uncoordinated pyridyl group of the ppt ligand via O2—H2···N6i hydrogen bonds [symmetry codes: (i) x, -1+y, z; (iii) -1+x, y, z], linking the adjacent mononuclear complexes into a two-dimensional network. O1—H1B···N5ii hydrogen bond [symmetry code: (ii) -x, 1-y, -z] between the coordinated water and triazole ring is also observed to reinforce this two-dimensional network. In addition, aromatic stacking interactions between the triazolyl (N3—N5, C5, C6) and pyrazinyl (N1, N2, C1—C4) rings as well as between the parallel pyridyl groups (N6, C7—C11) are also found within this supramolecular layer, with centroid–centroid distances and dihedral angles of 3.686 (3)/3.929 (4) Å and 4.2/0.0°.

Experimental

A CH3OH solution (3 ml) of Hppt (11.2 mg, 0.05 mmol) was carefully layered onto an aqueous solution (5 ml) of Co(NO3)2.6H2O (29.1 mg, 0.1 mmol) in a straight glass tube. After evaporating the solvents slowly for ca 1 week, yellow block single crystals suitable for X-ray diffraction analysis were obtained in ca 40% yield. Analysis, calculated for C24H26CoN12O4: C 47.61, H 4.33, N 27.76%; found: C 48.02, H 4.19, N 27.89%.

Refinement

All H atoms were initially located in a difference Fourier map, then constrained to an ideal geometry and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and O—H = 0.85 (water) and 0.82 (methanol) Å and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title complex, showing displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (iv) -x, -y, -z.]

Fig. 2.

Fig. 2.

View of the two-dimensional supramolecular network linked via O—H···O and O—H···N hydrogen bonds (red dashed lines).

Crystal data

[Co(C11H7N6)2(H2O)2]·2CH4O F(000) = 626
Mr = 605.50 Dx = 1.536 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1325 reflections
a = 11.462 (9) Å θ = 2.5–22.3°
b = 7.121 (5) Å µ = 0.71 mm1
c = 16.116 (12) Å T = 296 K
β = 95.418 (14)° Block, yellow
V = 1309.6 (17) Å3 0.36 × 0.22 × 0.10 mm
Z = 2

Data collection

Bruker APEX CCD diffractometer 2307 independent reflections
Radiation source: fine-focus sealed tube 1685 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
φ and ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −13→13
Tmin = 0.783, Tmax = 0.932 k = −8→7
6377 measured reflections l = −16→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.3583P] where P = (Fo2 + 2Fc2)/3
2307 reflections (Δ/σ)max < 0.001
189 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.0000 0.0000 0.0000 0.03537 (19)
O1 −0.09917 (17) 0.1407 (3) 0.08265 (12) 0.0466 (5)
H1A −0.1489 0.0789 0.1075 0.070*
H1B −0.1214 0.2496 0.0663 0.070*
O2 0.7363 (2) −0.0266 (4) 0.16227 (19) 0.0799 (8)
H2 0.6906 −0.1150 0.1557 0.120*
N1 −0.06613 (19) 0.1782 (3) −0.09975 (14) 0.0354 (6)
N2 −0.1322 (2) 0.4390 (4) −0.22262 (17) 0.0549 (8)
N3 0.1212 (2) 0.2174 (3) 0.00719 (14) 0.0375 (6)
N4 0.2220 (2) 0.2651 (3) 0.05380 (15) 0.0414 (6)
N5 0.1735 (2) 0.4979 (3) −0.03782 (14) 0.0364 (5)
N6 0.5474 (3) 0.7349 (5) 0.1316 (2) 0.0752 (10)
C1 −0.1573 (3) 0.1507 (4) −0.15428 (18) 0.0438 (8)
H1 −0.2012 0.0415 −0.1512 0.053*
C2 −0.1893 (3) 0.2791 (4) −0.2156 (2) 0.0527 (9)
H2A −0.2535 0.2530 −0.2536 0.063*
C3 −0.0408 (3) 0.4681 (4) −0.16709 (19) 0.0454 (8)
H3 0.0009 0.5797 −0.1693 0.055*
C4 −0.0058 (2) 0.3391 (4) −0.10655 (17) 0.0353 (7)
C5 0.0967 (2) 0.3570 (4) −0.04610 (17) 0.0333 (7)
C6 0.2498 (2) 0.4331 (4) 0.02493 (18) 0.0371 (7)
C7 0.3528 (3) 0.5369 (4) 0.06056 (19) 0.0422 (8)
C8 0.4329 (3) 0.4564 (5) 0.1186 (2) 0.0639 (10)
H8 0.4235 0.3328 0.1354 0.077*
C9 0.5269 (3) 0.5597 (6) 0.1513 (3) 0.0807 (13)
H9 0.5801 0.5018 0.1903 0.097*
C10 0.4694 (4) 0.8116 (6) 0.0775 (3) 0.0824 (13)
H10 0.4802 0.9367 0.0636 0.099*
C11 0.3724 (3) 0.7207 (5) 0.0397 (2) 0.0663 (11)
H11 0.3211 0.7826 0.0008 0.080*
C12 0.6909 (4) 0.1064 (7) 0.2107 (3) 0.1041 (16)
H12A 0.6849 0.0563 0.2654 0.156*
H12B 0.6145 0.1422 0.1863 0.156*
H12C 0.7413 0.2143 0.2145 0.156*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0389 (3) 0.0217 (3) 0.0427 (3) −0.0062 (2) −0.0105 (2) 0.0049 (2)
O1 0.0551 (13) 0.0266 (11) 0.0577 (14) −0.0033 (9) 0.0037 (11) 0.0067 (9)
O2 0.0714 (18) 0.0657 (18) 0.104 (2) −0.0281 (14) 0.0175 (17) −0.0126 (16)
N1 0.0378 (13) 0.0258 (12) 0.0405 (14) −0.0034 (11) −0.0076 (11) 0.0018 (10)
N2 0.0617 (18) 0.0399 (15) 0.0577 (18) −0.0012 (13) −0.0231 (15) 0.0110 (13)
N3 0.0373 (13) 0.0268 (12) 0.0457 (14) −0.0045 (10) −0.0106 (11) 0.0061 (11)
N4 0.0371 (13) 0.0325 (13) 0.0516 (15) −0.0061 (11) −0.0122 (12) 0.0037 (12)
N5 0.0380 (13) 0.0237 (12) 0.0460 (14) −0.0063 (11) −0.0038 (11) 0.0025 (11)
N6 0.060 (2) 0.064 (2) 0.096 (2) −0.0251 (17) −0.0236 (18) 0.0072 (19)
C1 0.0445 (17) 0.0324 (16) 0.0510 (19) −0.0083 (14) −0.0149 (15) 0.0006 (14)
C2 0.054 (2) 0.0427 (19) 0.057 (2) −0.0076 (16) −0.0208 (17) 0.0035 (16)
C3 0.0520 (19) 0.0308 (17) 0.0499 (19) −0.0047 (14) −0.0138 (16) 0.0088 (14)
C4 0.0387 (16) 0.0270 (14) 0.0385 (17) 0.0004 (12) −0.0058 (13) 0.0007 (13)
C5 0.0351 (15) 0.0249 (14) 0.0383 (17) −0.0041 (12) −0.0053 (13) 0.0008 (12)
C6 0.0376 (16) 0.0281 (14) 0.0437 (18) −0.0043 (12) −0.0052 (14) 0.0010 (13)
C7 0.0377 (17) 0.0366 (18) 0.0510 (19) −0.0062 (13) −0.0030 (14) −0.0005 (14)
C8 0.050 (2) 0.049 (2) 0.087 (3) −0.0112 (16) −0.021 (2) 0.0122 (19)
C9 0.056 (2) 0.064 (3) 0.113 (3) −0.0139 (19) −0.038 (2) 0.009 (2)
C10 0.086 (3) 0.060 (3) 0.095 (3) −0.040 (2) −0.022 (3) 0.020 (2)
C11 0.065 (2) 0.052 (2) 0.076 (2) −0.0246 (18) −0.024 (2) 0.0138 (19)
C12 0.085 (3) 0.096 (4) 0.134 (4) −0.010 (3) 0.023 (3) −0.029 (3)

Geometric parameters (Å, º)

Co1—N3i 2.076 (2) N6—C9 1.314 (5)
Co1—N3 2.076 (2) C1—C2 1.370 (4)
Co1—O1i 2.087 (2) C1—H1 0.9300
Co1—O1 2.087 (2) C2—H2A 0.9300
Co1—N1i 2.130 (2) C3—C4 1.372 (4)
Co1—N1 2.130 (2) C3—H3 0.9300
O1—H1A 0.8502 C4—C5 1.460 (4)
O1—H1B 0.8501 C6—C7 1.464 (4)
O2—C12 1.361 (5) C7—C8 1.373 (4)
O2—H2 0.8200 C7—C11 1.375 (4)
N1—C1 1.315 (3) C8—C9 1.369 (5)
N1—C4 1.348 (3) C8—H8 0.9300
N2—C2 1.324 (4) C9—H9 0.9300
N2—C3 1.328 (4) C10—C11 1.378 (5)
N3—C5 1.326 (3) C10—H10 0.9300
N3—N4 1.361 (3) C11—H11 0.9300
N4—C6 1.333 (4) C12—H12A 0.9600
N5—C5 1.332 (3) C12—H12B 0.9600
N5—C6 1.354 (3) C12—H12C 0.9600
N6—C10 1.307 (5)
N3i—Co1—N3 180.00 (12) C1—C2—H2A 118.8
N3i—Co1—O1i 90.47 (10) N2—C3—C4 122.3 (3)
N3—Co1—O1i 89.53 (10) N2—C3—H3 118.9
N3i—Co1—O1 89.53 (10) C4—C3—H3 118.9
N3—Co1—O1 90.47 (10) N1—C4—C3 120.6 (3)
O1i—Co1—O1 180.00 (14) N1—C4—C5 114.0 (2)
N3i—Co1—N1i 77.67 (9) C3—C4—C5 125.3 (3)
N3—Co1—N1i 102.33 (9) N3—C5—N5 113.7 (2)
O1i—Co1—N1i 91.11 (10) N3—C5—C4 118.3 (2)
O1—Co1—N1i 88.89 (10) N5—C5—C4 128.0 (2)
N3i—Co1—N1 102.33 (9) N4—C6—N5 114.1 (2)
N3—Co1—N1 77.67 (9) N4—C6—C7 121.8 (3)
O1i—Co1—N1 88.89 (10) N5—C6—C7 124.2 (2)
O1—Co1—N1 91.11 (10) C8—C7—C11 116.7 (3)
N1i—Co1—N1 180.00 (17) C8—C7—C6 121.3 (3)
Co1—O1—H1A 118.9 C11—C7—C6 122.0 (3)
Co1—O1—H1B 113.9 C9—C8—C7 119.3 (3)
H1A—O1—H1B 115.1 C9—C8—H8 120.4
C12—O2—H2 109.5 C7—C8—H8 120.4
C1—N1—C4 117.0 (2) N6—C9—C8 124.7 (4)
C1—N1—Co1 128.27 (19) N6—C9—H9 117.6
C4—N1—Co1 114.77 (18) C8—C9—H9 117.6
C2—N2—C3 116.2 (3) N6—C10—C11 124.8 (4)
C5—N3—N4 106.7 (2) N6—C10—H10 117.6
C5—N3—Co1 115.07 (17) C11—C10—H10 117.6
N4—N3—Co1 138.23 (18) C7—C11—C10 118.9 (3)
C6—N4—N3 104.4 (2) C7—C11—H11 120.6
C5—N5—C6 101.1 (2) C10—C11—H11 120.6
C10—N6—C9 115.5 (3) O2—C12—H12A 109.5
N1—C1—C2 121.6 (3) O2—C12—H12B 109.5
N1—C1—H1 119.2 H12A—C12—H12B 109.5
C2—C1—H1 119.2 O2—C12—H12C 109.5
N2—C2—C1 122.3 (3) H12A—C12—H12C 109.5
N2—C2—H2A 118.8 H12B—C12—H12C 109.5
N3i—Co1—N1—C1 −3.1 (3) N2—C3—C4—C5 176.9 (3)
N3—Co1—N1—C1 176.9 (3) N4—N3—C5—N5 −1.0 (3)
O1i—Co1—N1—C1 87.1 (3) Co1—N3—C5—N5 177.47 (18)
O1—Co1—N1—C1 −92.9 (3) N4—N3—C5—C4 177.7 (2)
N3i—Co1—N1—C4 176.62 (19) Co1—N3—C5—C4 −3.9 (3)
N3—Co1—N1—C4 −3.38 (19) C6—N5—C5—N3 0.8 (3)
O1i—Co1—N1—C4 −93.1 (2) C6—N5—C5—C4 −177.7 (3)
O1—Co1—N1—C4 86.9 (2) N1—C4—C5—N3 0.9 (4)
O1i—Co1—N3—C5 92.8 (2) C3—C4—C5—N3 −178.0 (3)
O1—Co1—N3—C5 −87.2 (2) N1—C4—C5—N5 179.4 (3)
N1i—Co1—N3—C5 −176.2 (2) C3—C4—C5—N5 0.4 (5)
N1—Co1—N3—C5 3.8 (2) N3—N4—C6—N5 −0.2 (3)
O1i—Co1—N3—N4 −89.4 (3) N3—N4—C6—C7 178.5 (3)
O1—Co1—N3—N4 90.6 (3) C5—N5—C6—N4 −0.4 (3)
N1i—Co1—N3—N4 1.7 (3) C5—N5—C6—C7 −179.0 (3)
N1—Co1—N3—N4 −178.3 (3) N4—C6—C7—C8 7.8 (5)
C5—N3—N4—C6 0.7 (3) N5—C6—C7—C8 −173.7 (3)
Co1—N3—N4—C6 −177.3 (2) N4—C6—C7—C11 −170.2 (3)
C4—N1—C1—C2 0.4 (4) N5—C6—C7—C11 8.3 (5)
Co1—N1—C1—C2 −179.9 (2) C11—C7—C8—C9 −0.8 (6)
C3—N2—C2—C1 0.6 (5) C6—C7—C8—C9 −178.9 (4)
N1—C1—C2—N2 −1.3 (5) C10—N6—C9—C8 1.1 (7)
C2—N2—C3—C4 1.1 (5) C7—C8—C9—N6 0.2 (7)
C1—N1—C4—C3 1.2 (4) C9—N6—C10—C11 −1.9 (7)
Co1—N1—C4—C3 −178.6 (2) C8—C7—C11—C10 0.0 (6)
C1—N1—C4—C5 −177.8 (3) C6—C7—C11—C10 178.1 (3)
Co1—N1—C4—C5 2.4 (3) N6—C10—C11—C7 1.5 (7)
N2—C3—C4—N1 −2.0 (5)

Symmetry code: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···N6ii 0.82 1.97 2.760 (4) 163
O1—H1B···N5iii 0.85 1.94 2.785 (3) 176
O1—H1A···O2iv 0.85 1.81 2.660 (3) 173

Symmetry codes: (ii) x, y−1, z; (iii) −x, −y+1, −z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2533).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Guo, W., Yang, Y.-Y. & Du, M. (2010). Inorg. Chem. Commun. 13, 863–866.
  5. Ha, K. (2011). Acta Cryst. E67, m1655. [DOI] [PMC free article] [PubMed]
  6. Liu, D., Li, M. & Li, D. (2009). Chem. Commun. pp. 6943–6945. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sun, Y., Guo, W. & Du, M. (2011). Inorg. Chem. Commun. 14, 873–876.
  9. Tang, M., Guo, W., Zhang, S.-Z. & Du, M. (2011). Inorg. Chem. Commun. 14, 1217–1220.
  10. Yang, Y.-Y., Guo, W. & Du, M. (2010). Inorg. Chem. Commun. 13, 1195–1198.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201495X/hy2533sup1.cif

e-68-0m600-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201495X/hy2533Isup2.hkl

e-68-0m600-Isup2.hkl (113.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES