Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):m603–m604. doi: 10.1107/S1600536812015759

Bis(μ-2-{bis­[(2-oxidobenzyl­idene)amino]­meth­yl}phenolato)bis­[(tetra­hydro­furan)­samarium(III)] tetra­hydro­furan disolvate

Li Li a, Yuan Zhou a, Fugen Yuan a,*
PMCID: PMC3344343  PMID: 22590109

Abstract

In the centrosymmetric binuclear complex of the title solvate, [Sm2(C21H15N2O3)2(C4H8O)2]·2C4H8O, the SmIII is coordin­ated in a distorted monocapped octa­hedral geometry by four O atoms and two N atoms from two tridentate deprotonated 2-{bis­[(2-oxidobenzyl­idene)amino]­meth­yl}phenolate ligands and an O atom of a tetra­hydro­furan (THF) mol­ecule. The Sm⋯Sm distance in the complex is 3.8057 (4) Å. Parts of the coordinating THF mol­ecule are disordered over two sets of sites in a 0.56 (3):0.44 (3) ratio. The complex and solvent mol­ecules are linked into a three-dimensional structure via C—H⋯O hydrogen-bonding inter­actions.

Related literature  

For general reports on the tripodal ligand 2-bis-(salicyl­idiene­­amino)­methyl­phenol, see: Nabulsi et al. (1988); Achim et al. (2001); Yu et al. (1991); Snyder et al.(1989); Chaudhuri et al. (1998); Illingsworth et al. (2002). For related structures, see: Howell et al. (1998); Liu et al. (1998); Dubé et al. (1998). For ionic radii, see: Shannon (1976).graphic file with name e-68-0m603-scheme1.jpg

Experimental  

Crystal data  

  • [Sm2(C21H15N2O3)2(C4H8O)2]·2C4H8O

  • M r = 1275.84

  • Monoclinic, Inline graphic

  • a = 11.7184 (11) Å

  • b = 21.378 (2) Å

  • c = 11.1464 (11) Å

  • β = 99.058 (1)°

  • V = 2757.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 293 K

  • 0.23 × 0.18 × 0.16 mm

Data collection  

  • Rigaku Rapid I CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.635, T max = 0.723

  • 23697 measured reflections

  • 6291 independent reflections

  • 5362 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.084

  • S = 1.01

  • 6291 reflections

  • 353 parameters

  • 42 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015759/wm2610sup1.cif

e-68-0m603-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015759/wm2610Isup2.hkl

e-68-0m603-Isup2.hkl (307.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O5 0.93 2.56 3.450 (7) 159
C21—H21A⋯O5i 0.93 2.56 3.424 (6) 155
C22—H22B⋯O3ii 0.97 2.50 3.079 (6) 118

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from the Jiangsu Key Laboratory for Environment Functional Materials and from a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) is gratefully acknowledged.

supplementary crystallographic information

Comment

Since the tripodal schiff base 2-bis-(salicylidiene-amino)-methyl-phenol (salmp) has been characterized by Nabulsi (1988), it has been used as a chelating ligand for numerous transition metals, including FeII, FeIII, MnII, MnIII, TiIII, VIII, CrIII, CoIII and ZrIV (Achim et al., 2001; Yu et al., 1991; Snyder et al., 1989; Chaudhuri et al.,1998; Illingsworth et al., 2002). However, its coordination behaviour with respect to lanthanide elements has not yet reported to the best of our knowledge. Herein we reported a new dinuclear compound [Sm2(C21H15N2O3)2(C4H8O)2].2(C4H8O), (I).

The molecular structure of compound (I) is presented in Fig. 1. The Sm—O bond lengths of 2. 213 (2) Å to the terminal aryloxide and of 2.369 (2) Å to the bridging aryloxide are similar compared to those in the analogous complex [{Sm(api)}2] (H3api = 2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazoline) (2.282 (4) and 2.388 (3) Å, respectively) (Howell et al., 1998) when the difference of the ionic radii is taken into account. In the title compound, Sm has a coordination number of seven resulting in a distorted mono-capped octahedral coordination geometry for the metal (Fig. 2), whereas in the other structure the coordination number is eight. The radii of seven and eight-coordinate SmIII are 1.160 and 1.219 Å (Shannon, 1976), respectively. The bond lengths of Sm—N (2.616 (2) to 2.623 (2) Å) are consistent with those in [(η5-(C5H5)Sm(µ-OC20H20N2O)]2.(µ-THF).2THF (2.55 (5) to 2.67 (7) Å) (Liu et al., 1998). The Sm···Sm distance in (I) is 3.8057 (4) Å, which is a little shorter than that in [(3,5-But4salophen)Sm(OH)]4.4toluene (3.9023 (8) Å) (Dubé et al., 1998). Two Sm atoms are bridged by aryloxide groups forming a Sm2(µ-O)2 planar rhomb with an acute angles O(1)—Sm(1)—O(1 A) of 73.11 (8)° and an obtuse angle Sm(1)—O(1)—Sm(1 A) of 106.89 (8)°.

The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1, Fig. 3), including an intra-molecular hydrogen bond (C22—H22B···O3 ) and inter-molecular hydrogen bonds (C4—H4A···O5 and C21—H21A···O5).

Experimental

2-bis-(salicylidiene-amino)-methyl-phenol was prepared according to the literature procedure (Illingsworth et al., 2002). To a suspension of SmCl3 (0.536 g, 2.09 mmol) in 20 ml THF was added a THF solution of Ph2NK (10.3 ml, 6.27 mmol). The mixture was stirred for 1 d at room temperature. After centrifugation, a clear solution of Sm(NPh2)3 was obtained. To this solution was added the tripodal Schiff base (0.724 g, 2.09 mmol) and then stirred for another day. The resulting solution was concentrated and added with a proper volume of 1,2-dimethyloxyethane. Yellow crystals of [Sm2(C25H23N2O4)].2(C4H8O) were produced in a yield of ca 50%. m.p. > 250°C, IR(KBr, cm-1) 3391(w), 3043(w), 2974(w), 2866(w), 1610(s), 1541(s), 1468(s), 1445(s), 1406(s), 1316(s), 1267(m), 1189(w), 1148(m), 1123(w), 1026(w), 1011(m), 968(w), 914(w), 887(m), 852(w), 822(w), 749(s), 691(m), 578(w), 560(w), 452(w).

Refinement

H atoms bound to tertiary C atoms were constrained to ideal geometry, with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). The other H atoms were also placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic and alkenyl) Uiso(H) = 1.2Ueq(C) or 0.97 Å (THF). The two central CH2- groups of the coordinating THF molecules were treated with disorder over two sites in a 0.56 (3) to 0.44 (3) ratio.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids scaled to 30% probability. H atoms and two uncoordinated THF molecules were omitted. The disorder of one of the THF molecules is not shown. [Symmetry code A: -x+1, -y, -z.]

Fig. 2.

Fig. 2.

View of the distorted monocapped octahedral coordination geometry of SmIII with displacement ellipsoids scaled to 30% probability. [Symmetry code A: -x +1, -y, -z.]

Fig. 3.

Fig. 3.

Packing diagram of the title compound viewed along [100]. Dashed lines indicate hydrogen bonds. The disorder is not shown.

Crystal data

[Sm2(C21H15N2O3)2(C4H8O)2]·2C4H8O F(000) = 1284
Mr = 1275.84 Dx = 1.537 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6291 reflections
a = 11.7184 (11) Å θ = 1.8–27.5°
b = 21.378 (2) Å µ = 2.17 mm1
c = 11.1464 (11) Å T = 293 K
β = 99.058 (1)° Prism, yellow
V = 2757.5 (5) Å3 0.23 × 0.18 × 0.16 mm
Z = 2

Data collection

Rigaku Rapid I CCD diffractometer 6291 independent reflections
Radiation source: fine-focus sealed tube 5362 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
phi and ω scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −15→15
Tmin = 0.635, Tmax = 0.723 k = −27→27
23697 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0311P)2 + 2.4255P] where P = (Fo2 + 2Fc2)/3
6291 reflections (Δ/σ)max = 0.001
353 parameters Δρmax = 0.62 e Å3
42 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sm1 0.633331 (14) 0.050642 (8) 0.045466 (14) 0.03765 (7)
O1 0.4566 (2) 0.04480 (10) −0.0885 (2) 0.0399 (5)
N1 0.4689 (2) 0.08291 (12) 0.1669 (2) 0.0368 (6)
C1 0.4042 (3) 0.10064 (16) −0.1113 (3) 0.0415 (7)
O2 0.7114 (2) 0.05416 (12) 0.2385 (2) 0.0510 (6)
N2 0.2865 (2) 0.03847 (12) 0.0800 (2) 0.0376 (6)
C2 0.4009 (4) 0.1298 (2) −0.2238 (3) 0.0587 (10)
H2B 0.4309 0.1096 −0.2858 0.070*
O3 0.2239 (2) −0.08830 (12) 0.0432 (3) 0.0640 (8)
C3 0.3533 (4) 0.1885 (2) −0.2430 (5) 0.0777 (14)
H3A 0.3516 0.2075 −0.3182 0.093*
C4 0.3082 (4) 0.2194 (2) −0.1527 (5) 0.0732 (13)
H4A 0.2778 0.2595 −0.1660 0.088*
O5 0.1336 (5) 0.3502 (3) −0.1746 (6) 0.1290 (16)
C5 0.3088 (3) 0.19034 (17) −0.0424 (4) 0.0570 (10)
H5A 0.2766 0.2109 0.0178 0.068*
C6 0.3561 (3) 0.13107 (16) −0.0184 (3) 0.0425 (7)
C7 0.3516 (3) 0.09823 (15) 0.0998 (3) 0.0401 (7)
H7A 0.3123 0.1254 0.1511 0.048*
C8 0.6870 (3) 0.05687 (15) 0.3492 (3) 0.0461 (8)
C9 0.7750 (4) 0.0467 (2) 0.4482 (4) 0.0656 (12)
H9A 0.8493 0.0377 0.4336 0.079*
C10 0.7542 (5) 0.0496 (2) 0.5665 (4) 0.0794 (15)
H10A 0.8145 0.0427 0.6301 0.095*
C11 0.6450 (5) 0.0626 (2) 0.5916 (4) 0.0789 (15)
H11A 0.6309 0.0646 0.6713 0.095*
C12 0.5580 (4) 0.0726 (2) 0.4966 (3) 0.0645 (11)
H12A 0.4843 0.0811 0.5133 0.077*
C13 0.5755 (3) 0.07050 (17) 0.3742 (3) 0.0454 (8)
C14 0.4763 (3) 0.08349 (16) 0.2826 (3) 0.0443 (8)
H14A 0.4087 0.0937 0.3120 0.053*
C15 0.1322 (3) −0.07402 (19) 0.0914 (3) 0.0505 (8)
C16 0.0517 (4) −0.1210 (2) 0.1098 (4) 0.0672 (12)
H16A 0.0643 −0.1620 0.0876 0.081*
C17 −0.0452 (4) −0.1066 (2) 0.1603 (4) 0.0672 (12)
H17A −0.0966 −0.1383 0.1721 0.081*
C18 −0.0673 (3) −0.0468 (2) 0.1935 (4) 0.0619 (11)
H18A −0.1333 −0.0377 0.2269 0.074*
C19 0.0096 (3) −0.0006 (2) 0.1764 (3) 0.0517 (9)
H19A −0.0054 0.0402 0.1984 0.062*
C20 0.1104 (3) −0.01278 (17) 0.1268 (3) 0.0425 (7)
C21 0.1904 (3) 0.03821 (16) 0.1224 (3) 0.0419 (7)
H21A 0.1698 0.0759 0.1546 0.050*
O4 0.6278 (2) 0.17034 (12) 0.0626 (2) 0.0548 (7)
C22 0.6431 (5) 0.2121 (2) −0.0357 (4) 0.0754 (14)
H22A 0.5697 0.2300 −0.0723 0.091*
H22B 0.6767 0.1902 −0.0978 0.091*
C23 0.7226 (16) 0.2615 (7) 0.0220 (11) 0.079 (4) 0.56 (3)
H23A 0.8018 0.2524 0.0127 0.094* 0.56 (3)
H23B 0.7014 0.3021 −0.0137 0.094* 0.56 (3)
C23' 0.647 (3) 0.2738 (6) 0.0115 (14) 0.088 (6) 0.44 (3)
H23C 0.5731 0.2945 −0.0144 0.106* 0.44 (3)
H23D 0.7064 0.2977 −0.0188 0.106* 0.44 (3)
C24 0.709 (3) 0.2603 (12) 0.146 (2) 0.138 (10) 0.56 (3)
H24A 0.6689 0.2977 0.1659 0.166* 0.56 (3)
H24B 0.7842 0.2595 0.1970 0.166* 0.56 (3)
C24' 0.671 (3) 0.2708 (12) 0.144 (3) 0.102 (8) 0.44 (3)
H24C 0.7510 0.2802 0.1741 0.122* 0.44 (3)
H24D 0.6220 0.2998 0.1803 0.122* 0.44 (3)
C25 0.6426 (6) 0.2047 (2) 0.1716 (5) 0.099 (2)
H25A 0.6848 0.1804 0.2377 0.119*
H25B 0.5685 0.2166 0.1930 0.119*
C26 0.1419 (11) 0.3737 (5) −0.0552 (11) 0.182 (4)
H26A 0.1247 0.4181 −0.0561 0.219*
H26B 0.2189 0.3671 −0.0104 0.219*
C27 0.0526 (12) 0.3368 (7) 0.0020 (11) 0.210 (5)
H27A 0.0870 0.3019 0.0501 0.252*
H27B 0.0110 0.3632 0.0512 0.252*
C28 −0.0164 (13) 0.3174 (7) −0.1032 (16) 0.234 (7)
H28A −0.0423 0.2752 −0.0907 0.281*
H28B −0.0844 0.3440 −0.1166 0.281*
C29 0.0337 (11) 0.3180 (5) −0.2067 (13) 0.189 (5)
H29A 0.0490 0.2758 −0.2318 0.227*
H29B −0.0159 0.3388 −0.2726 0.227*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sm1 0.04306 (11) 0.03983 (11) 0.03134 (10) 0.00188 (7) 0.00982 (7) −0.00368 (6)
O1 0.0485 (13) 0.0387 (12) 0.0329 (12) 0.0053 (9) 0.0080 (10) 0.0013 (9)
N1 0.0417 (14) 0.0387 (14) 0.0301 (13) 0.0009 (11) 0.0057 (11) −0.0049 (11)
C1 0.0417 (17) 0.0445 (18) 0.0359 (17) −0.0001 (14) −0.0015 (13) 0.0054 (14)
O2 0.0491 (14) 0.0656 (17) 0.0367 (13) 0.0100 (11) 0.0022 (11) −0.0019 (11)
N2 0.0392 (14) 0.0422 (14) 0.0316 (14) 0.0018 (11) 0.0060 (11) −0.0041 (11)
C2 0.069 (3) 0.063 (2) 0.042 (2) 0.002 (2) 0.0040 (18) 0.0136 (18)
O3 0.0641 (17) 0.0511 (15) 0.086 (2) −0.0039 (13) 0.0419 (16) −0.0080 (14)
C3 0.090 (3) 0.070 (3) 0.068 (3) 0.006 (3) −0.005 (3) 0.032 (2)
C4 0.075 (3) 0.048 (2) 0.090 (4) 0.010 (2) −0.005 (3) 0.022 (2)
O5 0.146 (4) 0.104 (3) 0.140 (4) −0.003 (3) 0.031 (3) 0.027 (3)
C5 0.052 (2) 0.044 (2) 0.074 (3) 0.0074 (17) 0.0041 (19) −0.0034 (18)
C6 0.0416 (18) 0.0374 (17) 0.0472 (19) 0.0013 (13) 0.0029 (14) 0.0009 (14)
C7 0.0438 (18) 0.0424 (17) 0.0342 (16) 0.0055 (14) 0.0067 (13) −0.0074 (13)
C8 0.060 (2) 0.0399 (18) 0.0357 (18) 0.0019 (15) −0.0008 (15) −0.0005 (13)
C9 0.069 (3) 0.076 (3) 0.047 (2) 0.016 (2) −0.007 (2) 0.0040 (19)
C10 0.100 (4) 0.092 (4) 0.038 (2) 0.015 (3) −0.016 (2) 0.008 (2)
C11 0.109 (4) 0.094 (4) 0.031 (2) 0.002 (3) 0.004 (2) 0.007 (2)
C12 0.079 (3) 0.082 (3) 0.034 (2) −0.002 (2) 0.0131 (19) 0.0017 (19)
C13 0.054 (2) 0.0492 (19) 0.0322 (17) −0.0051 (16) 0.0049 (15) 0.0009 (14)
C14 0.0471 (19) 0.052 (2) 0.0350 (17) −0.0029 (15) 0.0118 (14) −0.0041 (15)
C15 0.048 (2) 0.059 (2) 0.046 (2) −0.0026 (17) 0.0133 (16) 0.0009 (17)
C16 0.065 (3) 0.059 (2) 0.083 (3) −0.012 (2) 0.028 (2) −0.005 (2)
C17 0.047 (2) 0.084 (3) 0.072 (3) −0.016 (2) 0.015 (2) 0.003 (2)
C18 0.038 (2) 0.098 (3) 0.051 (2) −0.001 (2) 0.0095 (17) 0.006 (2)
C19 0.0440 (19) 0.071 (2) 0.0399 (19) 0.0075 (17) 0.0066 (15) 0.0024 (17)
C20 0.0377 (17) 0.061 (2) 0.0281 (16) 0.0022 (15) 0.0029 (13) 0.0010 (14)
C21 0.0444 (18) 0.0512 (19) 0.0305 (16) 0.0064 (14) 0.0067 (14) −0.0026 (13)
O4 0.0740 (18) 0.0430 (14) 0.0503 (15) −0.0026 (12) 0.0192 (13) −0.0008 (11)
C22 0.117 (4) 0.054 (2) 0.057 (3) −0.003 (3) 0.018 (3) 0.013 (2)
C23 0.083 (8) 0.075 (7) 0.081 (7) −0.023 (6) 0.025 (7) 0.012 (5)
C23' 0.129 (17) 0.041 (6) 0.093 (9) −0.019 (8) 0.010 (10) 0.004 (6)
C24 0.23 (2) 0.093 (15) 0.078 (11) −0.082 (15) −0.006 (13) −0.015 (9)
C24' 0.20 (2) 0.040 (7) 0.082 (12) −0.008 (10) 0.077 (14) −0.004 (7)
C25 0.184 (7) 0.058 (3) 0.062 (3) −0.022 (3) 0.038 (4) −0.011 (2)
C26 0.216 (8) 0.150 (7) 0.170 (7) −0.023 (6) −0.001 (7) −0.007 (6)
C27 0.209 (9) 0.256 (9) 0.175 (8) 0.040 (7) 0.066 (7) 0.020 (7)
C28 0.231 (10) 0.228 (10) 0.262 (10) −0.026 (8) 0.096 (9) −0.013 (8)
C29 0.175 (10) 0.126 (8) 0.259 (15) 0.000 (7) 0.013 (10) 0.013 (9)

Geometric parameters (Å, º)

Sm1—O2 2.203 (2) C15—C20 1.402 (5)
Sm1—O3i 2.223 (3) C15—C16 1.414 (5)
Sm1—O1 2.358 (2) C16—C17 1.380 (6)
Sm1—O1i 2.380 (2) C16—H16A 0.9300
Sm1—O4 2.568 (3) C17—C18 1.365 (6)
Sm1—N1 2.616 (3) C17—H17A 0.9300
Sm1—N2i 2.623 (3) C18—C19 1.371 (6)
Sm1—Sm1i 3.8057 (4) C18—H18A 0.9300
O1—C1 1.348 (4) C19—C20 1.405 (5)
O1—Sm1i 2.380 (2) C19—H19A 0.9300
N1—C14 1.279 (4) C20—C21 1.443 (5)
N1—C7 1.494 (4) C21—H21A 0.9300
C1—C2 1.396 (5) O4—C25 1.407 (5)
C1—C6 1.413 (5) O4—C22 1.446 (5)
O2—C8 1.312 (4) C22—C23' 1.419 (14)
N2—C21 1.289 (4) C22—C23 1.486 (12)
N2—C7 1.487 (4) C22—H22A 0.9700
N2—Sm1i 2.623 (3) C22—H22B 0.9700
C2—C3 1.375 (6) C23—C24 1.42 (3)
C2—H2B 0.9300 C23—H23A 0.9700
O3—C15 1.310 (4) C23—H23B 0.9700
O3—Sm1i 2.223 (3) C23'—C24' 1.46 (3)
C3—C4 1.379 (7) C23'—H23C 0.9700
C3—H3A 0.9300 C23'—H23D 0.9700
C4—C5 1.376 (6) C24—C25 1.47 (3)
C4—H4A 0.9300 C24—H24A 0.9700
O5—C29 1.357 (11) C24—H24B 0.9700
O5—C26 1.412 (11) C24'—C25 1.49 (3)
C5—C6 1.392 (5) C24'—H24C 0.9700
C5—H5A 0.9300 C24'—H24D 0.9700
C6—C7 1.501 (5) C25—H25A 0.9700
C7—H7A 0.9800 C25—H25B 0.9700
C8—C9 1.403 (5) C26—C27 1.527 (14)
C8—C13 1.409 (5) C26—H26A 0.9700
C9—C10 1.380 (7) C26—H26B 0.9700
C9—H9A 0.9300 C27—C28 1.379 (16)
C10—C11 1.381 (8) C27—H27A 0.9700
C10—H10A 0.9300 C27—H27B 0.9700
C11—C12 1.365 (7) C28—C29 1.374 (15)
C11—H11A 0.9300 C28—H28A 0.9700
C12—C13 1.412 (5) C28—H28B 0.9700
C12—H12A 0.9300 C29—H29A 0.9700
C13—C14 1.447 (5) C29—H29B 0.9700
C14—H14A 0.9300
O2—Sm1—O3i 101.30 (11) C18—C17—C16 121.5 (4)
O2—Sm1—O1 143.97 (9) C18—C17—H17A 119.2
O3i—Sm1—O1 112.64 (10) C16—C17—H17A 119.2
O2—Sm1—O1i 87.80 (9) C17—C18—C19 118.7 (4)
O3i—Sm1—O1i 142.00 (8) C17—C18—H18A 120.7
O1—Sm1—O1i 73.11 (8) C19—C18—H18A 120.7
O2—Sm1—O4 84.53 (9) C18—C19—C20 122.2 (4)
O3i—Sm1—O4 72.66 (9) C18—C19—H19A 118.9
O1—Sm1—O4 94.01 (8) C20—C19—H19A 118.9
O1i—Sm1—O4 145.32 (8) C15—C20—C19 119.0 (3)
O2—Sm1—N1 73.27 (9) C15—C20—C21 123.2 (3)
O3i—Sm1—N1 143.28 (9) C19—C20—C21 117.6 (3)
O1—Sm1—N1 72.33 (8) N2—C21—C20 128.7 (3)
O1i—Sm1—N1 74.71 (8) N2—C21—H21A 115.6
O4—Sm1—N1 70.69 (8) C20—C21—H21A 115.6
O2—Sm1—N2i 114.64 (9) C25—O4—C22 108.6 (3)
O3i—Sm1—N2i 70.63 (9) C25—O4—Sm1 125.7 (3)
O1—Sm1—N2i 88.65 (8) C22—O4—Sm1 123.5 (2)
O1i—Sm1—N2i 72.04 (8) C23'—C22—O4 107.1 (7)
O4—Sm1—N2i 141.16 (8) O4—C22—C23 104.8 (6)
N1—Sm1—N2i 145.30 (8) C23'—C22—H22A 76.2
C1—O1—Sm1 113.65 (19) O4—C22—H22A 110.8
C1—O1—Sm1i 126.4 (2) C23—C22—H22A 110.8
Sm1—O1—Sm1i 106.89 (8) C23'—C22—H22B 136.3
C14—N1—C7 114.4 (3) O4—C22—H22B 110.8
C14—N1—Sm1 125.9 (2) C23—C22—H22B 110.8
C7—N1—Sm1 119.56 (18) H22A—C22—H22B 108.9
O1—C1—C2 120.8 (3) C24—C23—C22 104.4 (11)
O1—C1—C6 119.5 (3) C24—C23—H23A 110.9
C2—C1—C6 119.7 (3) C22—C23—H23A 110.9
C8—O2—Sm1 143.3 (2) C24—C23—H23B 110.9
C21—N2—C7 114.0 (3) C22—C23—H23B 110.9
C21—N2—Sm1i 126.8 (2) H23A—C23—H23B 108.9
C7—N2—Sm1i 119.02 (18) C22—C23'—C24' 108.8 (13)
C3—C2—C1 120.0 (4) C22—C23'—H23C 109.9
C3—C2—H2B 120.0 C24'—C23'—H23C 109.9
C1—C2—H2B 120.0 C22—C23'—H23D 109.9
C15—O3—Sm1i 145.1 (3) C24'—C23'—H23D 109.9
C2—C3—C4 121.1 (4) H23C—C23'—H23D 108.3
C2—C3—H3A 119.4 C23—C24—C25 110.3 (14)
C4—C3—H3A 119.4 C23—C24—H24A 109.6
C5—C4—C3 119.1 (4) C25—C24—H24A 109.6
C5—C4—H4A 120.5 C23—C24—H24B 109.6
C3—C4—H4A 120.5 C25—C24—H24B 109.6
C29—O5—C26 110.9 (9) H24A—C24—H24B 108.1
C4—C5—C6 122.0 (4) C25—C24'—C23' 103.6 (18)
C4—C5—H5A 119.0 C25—C24'—H24C 111.0
C6—C5—H5A 119.0 C23'—C24'—H24C 111.0
C5—C6—C1 118.1 (3) C25—C24'—H24D 111.0
C5—C6—C7 121.8 (3) C23'—C24'—H24D 111.0
C1—C6—C7 120.1 (3) H24C—C24'—H24D 109.0
N2—C7—N1 107.2 (2) O4—C25—C24' 108.6 (11)
N2—C7—C6 111.1 (3) O4—C25—C24 104.7 (10)
N1—C7—C6 112.7 (3) O4—C25—H25A 110.8
N2—C7—H7A 108.6 C24'—C25—H25A 124.0
N1—C7—H7A 108.6 C24—C25—H25A 110.8
C6—C7—H7A 108.6 O4—C25—H25B 110.8
O2—C8—C9 119.4 (4) C24'—C25—H25B 92.0
O2—C8—C13 122.8 (3) C24—C25—H25B 110.8
C9—C8—C13 117.8 (4) H25A—C25—H25B 108.9
C10—C9—C8 121.7 (5) O5—C26—C27 105.1 (9)
C10—C9—H9A 119.1 O5—C26—H26A 110.7
C8—C9—H9A 119.1 C27—C26—H26A 110.7
C9—C10—C11 120.7 (4) O5—C26—H26B 110.7
C9—C10—H10A 119.6 C27—C26—H26B 110.7
C11—C10—H10A 119.6 H26A—C26—H26B 108.8
C12—C11—C10 118.5 (4) C28—C27—C26 98.6 (10)
C12—C11—H11A 120.7 C28—C27—H27A 112.1
C10—C11—H11A 120.7 C26—C27—H27A 112.1
C11—C12—C13 122.7 (4) C28—C27—H27B 112.1
C11—C12—H12A 118.6 C26—C27—H27B 112.1
C13—C12—H12A 118.6 H27A—C27—H27B 109.7
C8—C13—C12 118.5 (4) C29—C28—C27 116.1 (14)
C8—C13—C14 124.5 (3) C29—C28—H28A 108.3
C12—C13—C14 117.0 (4) C27—C28—H28A 108.3
N1—C14—C13 129.0 (3) C29—C28—H28B 108.3
N1—C14—H14A 115.5 C27—C28—H28B 108.3
C13—C14—H14A 115.5 H28A—C28—H28B 107.4
O3—C15—C20 122.0 (3) O5—C29—C28 104.4 (12)
O3—C15—C16 120.2 (4) O5—C29—H29A 110.9
C20—C15—C16 117.8 (3) C28—C29—H29A 110.9
C17—C16—C15 120.8 (4) O5—C29—H29B 110.9
C17—C16—H16A 119.6 C28—C29—H29B 110.9
C15—C16—H16A 119.6 H29A—C29—H29B 108.9

Symmetry code: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4A···O5 0.93 2.56 3.450 (7) 159
C21—H21A···O5ii 0.93 2.56 3.424 (6) 155
C22—H22B···O3i 0.97 2.50 3.079 (6) 118

Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2610).

References

  1. Achim, C., Bominaar, E. L., Staples, R. J., Münck, E. & Holm, R. H. (2001). Inorg. Chem. 40, 4389–4403. [DOI] [PubMed]
  2. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chaudhuri, P., Hess, M., Weyhermüller, T., Bill, E., Haupt, H. J. & Flörke, U. (1998). Inorg. Chem. Commun. 1, 39–42.
  4. Dubé, T., Gambarotta, S. & Yap, G. (1998). Organometallics, 17, 3967–3973.
  5. Howell, R. C., Spence, K. V. N., Kahwa, I. A. & Williams, D. J. (1998). J. Chem. Soc. Dalton Trans. pp. 2727–2733.
  6. Illingsworth, M. L., Schwartz, L. J., Jensen, A. J., Zhu, T., Knappenberger, E. J., Sweet, J. E., Wilkinson, P. S., Waltermire, B. E. & Rheingold, A. L. (2002). Polyhedron, 21, 211–218.
  7. Liu, Q.-C., Ding, M.-X., Lin, Y.-H. & Xing, Y. (1998). Polyhedron, 17, 555–559.
  8. Nabulsi, N. A. R., Fronczek, F. R. & Gandour, R. D. (1988). Acta Cryst. C44, 1086–1089. [DOI] [PubMed]
  9. Rigaku (2004). CrystalClear Rigaku Corporation, Tokyo, Japan.
  10. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  11. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Snyder, B. S., Patterson, G. S., Abrahamson, A. J. & Holm, R. H. (1989). J. Am. Chem. Soc. 111, 5214–5223.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Yu, S. B., Wang, C. P., Day, E. P. & Holm, R. H. (1991). Inorg. Chem. 30, 4067–4074.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015759/wm2610sup1.cif

e-68-0m603-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015759/wm2610Isup2.hkl

e-68-0m603-Isup2.hkl (307.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES