Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):m618. doi: 10.1107/S1600536812015425

(2,2′-Biquinoline-κ2 N,N′)dibromidopalladium(II)

Kwang Ha a,*
PMCID: PMC3344352  PMID: 22590118

Abstract

The PdII ion in the title complex, [PdBr2(C18H12N2)], is four-coordinated in a distorted square-planar environment by the two N atoms from the chelating 2,2′-biquinoline (Biqu) ligand and two mutually cis Br anions. The Biqu ligand is not planar, the dihedral angle between the quinoline systems being 17.2 (2)°. In the crystal, the complex mol­ecules are connected by C—H⋯Br hydrogen bonds, forming chains along the c axis. When viewed down the b axis, successive chains are stacked in opposite directions. Intra­molecular C—H⋯Br hydrogen bonds are also observed.

Related literature  

For the crystal structure of the related chlorido PdII complex [PdCl2(Biqu)], see: Muranishi et al. (2005).graphic file with name e-68-0m618-scheme1.jpg

Experimental  

Crystal data  

  • [PdBr2(C18H12N2)]

  • M r = 522.50

  • Triclinic, Inline graphic

  • a = 8.9390 (5) Å

  • b = 9.2187 (5) Å

  • c = 11.1486 (6) Å

  • α = 72.398 (1)°

  • β = 69.318 (1)°

  • γ = 87.258 (1)°

  • V = 817.47 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.02 mm−1

  • T = 200 K

  • 0.17 × 0.12 × 0.11 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.813, T max = 1.000

  • 5100 measured reflections

  • 3126 independent reflections

  • 2612 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.070

  • S = 1.12

  • 3126 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015425/rk2351sup1.cif

e-68-0m618-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015425/rk2351Isup2.hkl

e-68-0m618-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br1 0.95 2.73 3.252 (5) 116
C14—H14⋯Br1i 0.95 2.90 3.754 (5) 150
C17—H17⋯Br2 0.95 2.85 3.261 (5) 107

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030747).

supplementary crystallographic information

Comment

The title complex, [PdBr2(C18H12N2)], crystallized in the triclinic space group P1, whereas the analogous chlorido PdII complex [PdCl2(C18H12N2)] crystallized in the monoclinic space group P21/c (Muranishi et al., 2005).

The central PdII ion is four-coordinated in a distorted square-planar environment by the two N atoms from the chelating 2,2'-biquinoline (Biqu) ligand and two mutually cis Br- anions (Fig. 1). The main contribution to the distortion is the tight N1-Pd1-N2 chelate angle of 78.90 (15)°, which results in non-linear trans axes [angle Br1–Pd1-N2 = 169.85 (10)° and angle Br2–Pd1-N1 = 167.99 (11)°]. The pairs of Pd-N and Pd–Br bond lengths are nearly equivalent [Pd-N = 2.064 (4)Å and 2.073 (4)Å; Pd–Br = 2.4113 (6)Å and 2.4151 (6)Å]. In the crystal structure, the Biqu ligand is not planar. The dihedral angle between the least-squares planes of the quinoline rings is 17.2 (2)°. The quinoline rings are inclined considerably to the least-squares plane of the PdBr2N2 unit [maximum deviation = 0.162 (1)Å], making dihedral angles of 41.46 (8)° and 44.33 (8)°. In the crystal, the complex molecules are connected by intermolecular C–H···Br hydrogen bonds, forming chains along the c axis (Fig. 2 and Table 1). When viewed down the b axis, successive chains are stacked in opposite directions. Intramolecular C–H···Br hydrogen bonds are also observed (Table 1). In addition, intermolecular π···π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.753 (3)Å between pyridine rings.

Experimental

To a solution of K2PdBr4 (0.1507 g, 0.299 mmol) in MeOH (20 ml) was added 2,2'-biquinoline (0.0772 g, 0.301 mmol) and stirred for 3 h at room temperature. After addition of H2O (30 ml) to the reaction mixture, the formed precipitate was separated by filtration and washed with H2O and acetone, and dried at 323 K, to give a pale red powder (0.1305 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C–H = 0.95Å with Uiso(H) = 1.2Ueq(C). The highest peak (0.67eÅ-3) and the deepest hole (-0.65eÅ-3) in the difference Fourier map are located 0.86Å and 0.84Å, respectively, from the atoms H14 and Pd1.

Figures

Fig. 1.

Fig. 1.

A molecular structure of the title complex with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the unit-cell contents of the title complex. Intermolecular C–H···Br H-bond interactions are drawn with dashed lines.

Crystal data

[PdBr2(C18H12N2)] Z = 2
Mr = 522.50 F(000) = 500
Triclinic, P1 Dx = 2.123 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.9390 (5) Å Cell parameters from 3201 reflections
b = 9.2187 (5) Å θ = 2.6–26.0°
c = 11.1486 (6) Å µ = 6.02 mm1
α = 72.398 (1)° T = 200 K
β = 69.318 (1)° Block, red
γ = 87.258 (1)° 0.17 × 0.12 × 0.11 mm
V = 817.47 (8) Å3

Data collection

Bruker SMART 1000 CCD diffractometer 3126 independent reflections
Radiation source: fine-focus sealed tube 2612 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
φ and ω scans θmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→11
Tmin = 0.813, Tmax = 1.000 k = −11→10
5100 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0152P)2 + 2.2618P] where P = (Fo2 + 2Fc2)/3
3126 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.65 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.18588 (4) 0.23543 (4) 0.12682 (3) 0.02511 (10)
Br1 0.27983 (6) 0.30923 (6) 0.27917 (5) 0.03917 (15)
Br2 0.46432 (6) 0.24992 (6) −0.01469 (5) 0.03636 (14)
N1 −0.0535 (4) 0.2651 (4) 0.2177 (4) 0.0272 (8)
N2 0.0935 (4) 0.2114 (4) −0.0130 (4) 0.0262 (8)
C1 −0.1396 (6) 0.2604 (5) 0.3488 (5) 0.0298 (11)
C2 −0.0886 (6) 0.1742 (6) 0.4531 (5) 0.0355 (11)
H2 0.0083 0.1239 0.4333 0.043*
C3 −0.1800 (7) 0.1634 (6) 0.5841 (5) 0.0429 (13)
H3 −0.1471 0.1023 0.6546 0.051*
C4 −0.3222 (7) 0.2412 (7) 0.6164 (6) 0.0492 (15)
H4 −0.3821 0.2355 0.7073 0.059*
C5 −0.3710 (7) 0.3236 (7) 0.5160 (6) 0.0488 (15)
H5 −0.4661 0.3762 0.5375 0.059*
C6 −0.2853 (6) 0.3342 (6) 0.3796 (5) 0.0340 (11)
C7 −0.3393 (6) 0.4086 (6) 0.2740 (6) 0.0428 (13)
H7 −0.4315 0.4659 0.2909 0.051*
C8 −0.2613 (6) 0.3996 (5) 0.1484 (6) 0.0350 (12)
H8 −0.3032 0.4427 0.0789 0.042*
C9 −0.1173 (6) 0.3254 (5) 0.1219 (5) 0.0297 (11)
C10 −0.0315 (5) 0.2984 (5) −0.0078 (5) 0.0267 (10)
C11 −0.0841 (6) 0.3520 (5) −0.1181 (5) 0.0358 (12)
H11 −0.1739 0.4125 −0.1125 0.043*
C12 −0.0034 (6) 0.3152 (6) −0.2328 (5) 0.0386 (13)
H12 −0.0303 0.3588 −0.3108 0.046*
C13 0.1192 (6) 0.2134 (6) −0.2371 (5) 0.0367 (12)
C14 0.1985 (7) 0.1614 (7) −0.3494 (5) 0.0426 (14)
H14 0.1746 0.2013 −0.4292 0.051*
C15 0.3082 (7) 0.0553 (6) −0.3442 (6) 0.0432 (13)
H15 0.3597 0.0206 −0.4200 0.052*
C16 0.3463 (6) −0.0038 (6) −0.2269 (5) 0.0390 (12)
H16 0.4214 −0.0800 −0.2235 0.047*
C17 0.2771 (6) 0.0469 (5) −0.1187 (5) 0.0327 (11)
H17 0.3049 0.0066 −0.0408 0.039*
C18 0.1640 (6) 0.1591 (5) −0.1213 (5) 0.0293 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.02232 (19) 0.03082 (19) 0.02356 (19) 0.00450 (14) −0.01142 (15) −0.00677 (15)
Br1 0.0325 (3) 0.0603 (3) 0.0312 (3) 0.0010 (2) −0.0168 (2) −0.0163 (3)
Br2 0.0241 (3) 0.0522 (3) 0.0343 (3) 0.0056 (2) −0.0098 (2) −0.0166 (2)
N1 0.021 (2) 0.030 (2) 0.031 (2) 0.0009 (16) −0.0103 (17) −0.0085 (17)
N2 0.023 (2) 0.031 (2) 0.023 (2) 0.0006 (16) −0.0107 (16) −0.0026 (17)
C1 0.024 (2) 0.031 (2) 0.037 (3) −0.003 (2) −0.011 (2) −0.012 (2)
C2 0.034 (3) 0.040 (3) 0.031 (3) −0.001 (2) −0.011 (2) −0.008 (2)
C3 0.041 (3) 0.049 (3) 0.032 (3) −0.009 (3) −0.007 (2) −0.008 (3)
C4 0.042 (3) 0.061 (4) 0.035 (3) −0.009 (3) 0.006 (3) −0.021 (3)
C5 0.028 (3) 0.053 (3) 0.062 (4) −0.002 (3) 0.000 (3) −0.032 (3)
C6 0.021 (2) 0.035 (3) 0.043 (3) −0.002 (2) −0.006 (2) −0.015 (2)
C7 0.029 (3) 0.038 (3) 0.067 (4) 0.010 (2) −0.017 (3) −0.026 (3)
C8 0.028 (3) 0.032 (3) 0.050 (3) 0.004 (2) −0.021 (2) −0.012 (2)
C9 0.028 (3) 0.026 (2) 0.041 (3) 0.002 (2) −0.020 (2) −0.010 (2)
C10 0.026 (2) 0.023 (2) 0.033 (3) −0.0025 (19) −0.015 (2) −0.005 (2)
C11 0.033 (3) 0.034 (3) 0.048 (3) 0.001 (2) −0.027 (3) −0.008 (2)
C12 0.046 (3) 0.042 (3) 0.032 (3) −0.008 (3) −0.026 (3) −0.001 (2)
C13 0.037 (3) 0.043 (3) 0.030 (3) −0.006 (2) −0.015 (2) −0.007 (2)
C14 0.046 (3) 0.058 (4) 0.023 (3) −0.018 (3) −0.013 (2) −0.007 (2)
C15 0.040 (3) 0.053 (3) 0.037 (3) −0.007 (3) −0.004 (3) −0.025 (3)
C16 0.035 (3) 0.038 (3) 0.045 (3) −0.005 (2) −0.009 (2) −0.018 (3)
C17 0.033 (3) 0.035 (3) 0.030 (3) 0.000 (2) −0.010 (2) −0.011 (2)
C18 0.031 (3) 0.033 (3) 0.027 (3) −0.005 (2) −0.013 (2) −0.009 (2)

Geometric parameters (Å, º)

Pd1—N1 2.064 (4) C7—H7 0.9500
Pd1—N2 2.073 (4) C8—C9 1.407 (7)
Pd1—Br1 2.4113 (6) C8—H8 0.9500
Pd1—Br2 2.4151 (6) C9—C10 1.468 (7)
N1—C9 1.349 (6) C10—C11 1.413 (6)
N1—C1 1.378 (6) C11—C12 1.363 (7)
N2—C10 1.339 (6) C11—H11 0.9500
N2—C18 1.369 (6) C12—C13 1.405 (7)
C1—C2 1.405 (7) C12—H12 0.9500
C1—C6 1.421 (7) C13—C14 1.415 (7)
C2—C3 1.373 (7) C13—C18 1.425 (6)
C2—H2 0.9500 C14—C15 1.355 (8)
C3—C4 1.416 (8) C14—H14 0.9500
C3—H3 0.9500 C15—C16 1.411 (8)
C4—C5 1.350 (8) C15—H15 0.9500
C4—H4 0.9500 C16—C17 1.357 (7)
C5—C6 1.415 (7) C16—H16 0.9500
C5—H5 0.9500 C17—C18 1.413 (7)
C6—C7 1.404 (7) C17—H17 0.9500
C7—C8 1.352 (7)
N1—Pd1—N2 78.90 (15) C7—C8—C9 119.2 (5)
N1—Pd1—Br1 96.71 (11) C7—C8—H8 120.4
N2—Pd1—Br1 169.85 (10) C9—C8—H8 120.4
N1—Pd1—Br2 167.99 (11) N1—C9—C8 121.8 (5)
N2—Pd1—Br2 96.02 (11) N1—C9—C10 114.9 (4)
Br1—Pd1—Br2 86.49 (2) C8—C9—C10 123.1 (4)
C9—N1—C1 119.3 (4) N2—C10—C11 121.6 (4)
C9—N1—Pd1 109.1 (3) N2—C10—C9 116.2 (4)
C1—N1—Pd1 130.2 (3) C11—C10—C9 122.1 (4)
C10—N2—C18 120.3 (4) C12—C11—C10 118.7 (5)
C10—N2—Pd1 107.9 (3) C12—C11—H11 120.7
C18—N2—Pd1 129.2 (3) C10—C11—H11 120.7
N1—C1—C2 119.9 (4) C11—C12—C13 120.8 (5)
N1—C1—C6 120.1 (4) C11—C12—H12 119.6
C2—C1—C6 119.9 (5) C13—C12—H12 119.6
C3—C2—C1 119.4 (5) C12—C13—C14 123.4 (5)
C3—C2—H2 120.3 C12—C13—C18 117.9 (5)
C1—C2—H2 120.3 C14—C13—C18 118.7 (5)
C2—C3—C4 121.6 (5) C15—C14—C13 120.7 (5)
C2—C3—H3 119.2 C15—C14—H14 119.6
C4—C3—H3 119.2 C13—C14—H14 119.6
C5—C4—C3 118.8 (5) C14—C15—C16 120.3 (5)
C5—C4—H4 120.6 C14—C15—H15 119.9
C3—C4—H4 120.6 C16—C15—H15 119.9
C4—C5—C6 122.2 (5) C17—C16—C15 120.9 (5)
C4—C5—H5 118.9 C17—C16—H16 119.6
C6—C5—H5 118.9 C15—C16—H16 119.6
C7—C6—C5 123.6 (5) C16—C17—C18 120.4 (5)
C7—C6—C1 118.3 (5) C16—C17—H17 119.8
C5—C6—C1 118.0 (5) C18—C17—H17 119.8
C8—C7—C6 120.6 (5) N2—C18—C17 121.0 (4)
C8—C7—H7 119.7 N2—C18—C13 120.1 (4)
C6—C7—H7 119.7 C17—C18—C13 118.9 (4)
N2—Pd1—N1—C9 −29.4 (3) C1—N1—C9—C10 −168.6 (4)
Br1—Pd1—N1—C9 141.3 (3) Pd1—N1—C9—C10 23.2 (5)
Br2—Pd1—N1—C9 36.4 (7) C7—C8—C9—N1 −1.0 (7)
N2—Pd1—N1—C1 164.1 (4) C7—C8—C9—C10 174.6 (5)
Br1—Pd1—N1—C1 −25.1 (4) C18—N2—C10—C11 −6.7 (7)
Br2—Pd1—N1—C1 −130.0 (5) Pd1—N2—C10—C11 156.5 (4)
N1—Pd1—N2—C10 30.8 (3) C18—N2—C10—C9 169.1 (4)
Br1—Pd1—N2—C10 −34.3 (8) Pd1—N2—C10—C9 −27.7 (4)
Br2—Pd1—N2—C10 −138.2 (3) N1—C9—C10—N2 3.3 (6)
N1—Pd1—N2—C18 −168.0 (4) C8—C9—C10—N2 −172.6 (4)
Br1—Pd1—N2—C18 126.9 (5) N1—C9—C10—C11 179.1 (4)
Br2—Pd1—N2—C18 23.0 (4) C8—C9—C10—C11 3.1 (7)
C9—N1—C1—C2 168.6 (4) N2—C10—C11—C12 −0.9 (7)
Pd1—N1—C1—C2 −26.1 (6) C9—C10—C11—C12 −176.4 (4)
C9—N1—C1—C6 −7.3 (6) C10—C11—C12—C13 6.4 (7)
Pd1—N1—C1—C6 158.0 (3) C11—C12—C13—C14 174.8 (5)
N1—C1—C2—C3 −176.4 (4) C11—C12—C13—C18 −4.5 (7)
C6—C1—C2—C3 −0.5 (7) C12—C13—C14—C15 −175.5 (5)
C1—C2—C3—C4 −2.1 (8) C18—C13—C14—C15 3.8 (8)
C2—C3—C4—C5 2.2 (8) C13—C14—C15—C16 −0.7 (8)
C3—C4—C5—C6 0.3 (9) C14—C15—C16—C17 −1.6 (8)
C4—C5—C6—C7 174.7 (5) C15—C16—C17—C18 0.6 (7)
C4—C5—C6—C1 −2.8 (8) C10—N2—C18—C17 −169.1 (4)
N1—C1—C6—C7 1.1 (7) Pd1—N2—C18—C17 31.7 (6)
C2—C1—C6—C7 −174.7 (4) C10—N2—C18—C13 8.5 (6)
N1—C1—C6—C5 178.7 (4) Pd1—N2—C18—C13 −150.7 (4)
C2—C1—C6—C5 2.9 (7) C16—C17—C18—N2 −179.9 (4)
C5—C6—C7—C8 −172.2 (5) C16—C17—C18—C13 2.5 (7)
C1—C6—C7—C8 5.3 (7) C12—C13—C18—N2 −3.0 (7)
C6—C7—C8—C9 −5.3 (8) C14—C13—C18—N2 177.7 (4)
C1—N1—C9—C8 7.4 (7) C12—C13—C18—C17 174.7 (4)
Pd1—N1—C9—C8 −160.8 (4) C14—C13—C18—C17 −4.7 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···Br1 0.95 2.73 3.252 (5) 116
C14—H14···Br1i 0.95 2.90 3.754 (5) 150
C17—H17···Br2 0.95 2.85 3.261 (5) 107

Symmetry code: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2351).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Muranishi, Y., Wang, Y., Odoko, M. & Okabe, N. (2005). Acta Cryst. C61, m307–m310. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015425/rk2351sup1.cif

e-68-0m618-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015425/rk2351Isup2.hkl

e-68-0m618-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES