Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):m639–m640. doi: 10.1107/S160053681201625X

[(E)-Oxido(pyridin-2-yl­methyl­idene)amine-κ2 N,N′][(E)-N-(pyridin-2-yl­methyl­idene)hydroxyl­amine-κ2 N,N′]silver(I) perchlorate–bis­[(E)-N-(pyridin-2-yl­methyl­idene)hydroxyl­amine-κ2 N,N′]silver(I) (1/1)

Jing Xu a, Shan Gao a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3344365  PMID: 22590131

Abstract

In the title salt co-crystal, [Ag(C6H5N2O)(C6H6N2O)]ClO4·[Ag(C6H6N2O)2], the asymmetric unit comprises a [Ag(LH)2]+ cation, a perchlorate anion and a neutral (LH)AgL mol­ecule, where LH is pyridine-2-carboxaldoxime. Both silver-containing species feature N,N′-chelating LH and L ligands, which define an N4 donor set that is highly distorted [dihedral angles between AgC2N2 chelate rings = 45.7 (3) and 44.3 (2)°, respectively] owing, in part, to the close approach of a neighbouring Ag atom, leading to an argentophilic inter­action [Ag⋯Ag = 3.1868 (11) Å]. The mol­ecular conformations are stabilized by intra­molecular O—H⋯O hydrogen bonds. In the crystal, O—H⋯O inter­actions lead to supra­molecular chains along [010]. Chains aggregate into layers in the ab plane, defining channels along [100] in which reside the perchlorate anions; the latter are disordered over two overlapped orientations in a 50:50 ratio.

Related literature  

For structural diversity in the structures of silver salts, see: Kundu et al. (2010). For a related structure, see: Abu-Youssef et al. (2010).graphic file with name e-68-0m639-scheme1.jpg

Experimental  

Crystal data  

  • [Ag(C6H5N2O)(C6H6N2O)]ClO4·[Ag(C6H6N2O)2]

  • M r = 802.69

  • Triclinic, Inline graphic

  • a = 7.3925 (18) Å

  • b = 8.3419 (19) Å

  • c = 25.626 (6) Å

  • α = 90.226 (6)°

  • β = 92.753 (6)°

  • γ = 114.409 (6)°

  • V = 1436.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 293 K

  • 0.21 × 0.13 × 0.13 mm

Data collection  

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.356, T max = 1.000

  • 11387 measured reflections

  • 5042 independent reflections

  • 3660 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.187

  • S = 1.09

  • 5042 reflections

  • 430 parameters

  • 64 restraints

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201625X/hb6736sup1.cif

e-68-0m639-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201625X/hb6736Isup2.hkl

e-68-0m639-Isup2.hkl (246.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ag1—N1 2.280 (5)
Ag1—N2 2.392 (5)
Ag1—N3 2.281 (5)
Ag1—N4 2.384 (5)
Ag2—N5 2.235 (5)
Ag2—N6 2.448 (4)
Ag2—N7 2.256 (5)
Ag2—N8 2.401 (5)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O4 0.84 1.91 2.673 (8) 151
O3—H3o⋯O2 0.84 1.81 2.610 (6) 160
O4—H4o⋯O2i 0.84 1.64 2.475 (6) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Nitrogen adducts of silver salts are notorious for their structural diversity with very different coordination geometries let alone supramolecular architectures being observed by a simple change in counter-ion, for example (Kundu et al., 2010). A molecule that has yet to attract significant interest in terms of coordination chemistry towards silver is pyridine-2-carboxaldoxime (LH) with only the Ag(LH)NO3 salt reported thus far (Abu-Youssef et al., 2010). Herein, the crystal structure determination of the perchlorate analogue (I) is described.

In (I), the asymmetric unit comprises a neutral (LH)AgL molecule, a [Ag(LH)2]+ cation and a perchlorate anion, Fig. 1. In both silver-containing species, the pyridine-2-carboxaldoxime and the derived anion are N,N-chelating, Table 1. The Ag—N(pyridine) and Ag—N(oxime) bond lengths are systematically shorter and longer, respectively, in the neutral molecule than in the cation, Table 1, and the Ag—N4(oximate) distance is shorter compared with the Ag—N(oxime) bond lengths, Table 1. Each five-membered AgC2N2 chelate ring is essentially planar with r.m.s. deviations of 0.062, 0.049, 0.080 and 0.035 Å, respectively for the N1, N3, N4 and N6-containing rings. The dihedral between the chelate rings involving the Ag1 atom is 44.3 (2)° indicating a distorted coordination geometry; the comparable angle for the Ag2-containing molecule is 45.7 (3)°. The close approach of a neighbouring silver atom contributes to the distortion as the silver atoms are connected by an agentophilic Ag1···Ag2 interaction, Table 1.

The most prominent feature of the crystal packing is the formation of a supramolecular chain along [010] mediated by O—H···O interactions, Fig. 2 and Table 2. In both the neutral (LH)AgL molecule and in the [Ag(LH)2]+ cation an intramolecular O—H···O interaction is formed. Links between molecules to form the chain are also of the type O—H···O and involve the formally anionic O2 atom which is bifurcated. A detailed analysis of the crystal packing is precluded owing to the disorder associated with the perchlorate anions. However, globally the Ag-containing molecules aggregate into layers in the ab plane to define channels along [100] in which reside the perchlorate anions, Fig. 3.

Experimental

Silver perchlorate (1 mmol) and picolinaldehyde oxime (1 mmol) was dissolved in methanol solution (10 ml). The solution was filtered and set aside, away from light, for the growth of crystals. Colourless prisms deposited after several days.

Refinement

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C—H = 0.93 and O—H = 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).

The perchlorate anion is disordered over two sites of equal weight, with each of the two chlorides located on a centre of inversion. The oxygen atoms of each perchlorate anion are further disordered and assumed to have a 1:1 type of disorder. All Cl—O distances were restrained to 1.41±0.01 Å and the O···O distances to 2.30±0.01 Å. Each set of four oxygen atoms was restrained to have the same anisotropic displacement parameters and these were restrained to be nearly isotropic.

The final difference Fourier map had a peak at 0.91 Å from the Ag1 atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 20% probability level. Each perchlorate anion has half-weight and for each, only one orientation is shown.

Fig. 2.

Fig. 2.

A view of the supramolecular chain along [010] in (I). The O—H···O hydrogen bonds are shown as orange dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents for (I). The O—H···O interactions are shown as orange dashed lines. Only one orientation of the disordered perchlorate anions is shown.

Crystal data

[Ag(C6H5N2O)(C6H6N2O)]ClO4·[Ag(C6H6N2O)2] Z = 2
Mr = 802.69 F(000) = 796
Triclinic, P1 Dx = 1.855 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3925 (18) Å Cell parameters from 7282 reflections
b = 8.3419 (19) Å θ = 3.0–27.4°
c = 25.626 (6) Å µ = 1.52 mm1
α = 90.226 (6)° T = 293 K
β = 92.753 (6)° Prism, colourless
γ = 114.409 (6)° 0.21 × 0.13 × 0.13 mm
V = 1436.9 (6) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer 5042 independent reflections
Radiation source: fine-focus sealed tube 3660 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
ω scan θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −7→8
Tmin = 0.356, Tmax = 1.000 k = −10→10
11387 measured reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0985P)2 + 1.259P] where P = (Fo2 + 2Fc2)/3
5042 reflections (Δ/σ)max = 0.001
430 parameters Δρmax = 1.19 e Å3
64 restraints Δρmin = −0.58 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ag1 0.70514 (8) 0.49157 (7) 0.260394 (19) 0.0752 (2)
Ag2 0.27551 (9) 0.48831 (8) 0.23871 (2) 0.0791 (2)
Cl1 0.5000 0.0000 0.0000 0.0665 (6)
Cl2 0.0000 1.0000 0.5000 0.0662 (6)
O5 0.580 (3) 0.1840 (12) 0.0097 (9) 0.135 (5) 0.25
O6 0.597 (3) −0.072 (3) 0.0356 (8) 0.135 (5) 0.25
O7 0.2954 (14) −0.073 (3) 0.0089 (9) 0.135 (5) 0.25
O8 0.530 (4) −0.037 (3) −0.0512 (5) 0.135 (5) 0.25
O9 0.170 (2) 1.086 (2) 0.4738 (7) 0.110 (4) 0.25
O10 −0.089 (3) 0.8170 (12) 0.4851 (7) 0.110 (4) 0.25
O11 −0.143 (2) 1.069 (3) 0.4902 (8) 0.110 (4) 0.25
O12 0.043 (3) 1.008 (3) 0.5550 (3) 0.110 (4) 0.25
O5' 0.623 (3) 0.1818 (14) −0.0045 (10) 0.151 (6) 0.25
O6' 0.433 (4) −0.034 (3) 0.0503 (5) 0.151 (6) 0.25
O7' 0.336 (3) −0.046 (4) −0.0369 (8) 0.151 (6) 0.25
O8' 0.610 (3) −0.097 (3) −0.0124 (10) 0.151 (6) 0.25
O9' 0.040 (4) 1.033 (4) 0.4463 (4) 0.148 (6) 0.25
O10' −0.136 (3) 0.8217 (16) 0.5034 (10) 0.148 (6) 0.25
O11' −0.085 (4) 1.111 (3) 0.5179 (10) 0.148 (6) 0.25
O12' 0.178 (2) 1.031 (4) 0.5285 (10) 0.148 (6) 0.25
O1 0.7001 (8) 0.8834 (6) 0.3068 (2) 0.0852 (14)
H1o 0.7215 0.9063 0.2752 0.128*
O2 0.4335 (6) 0.0784 (5) 0.20609 (19) 0.0714 (12)
O3 0.2203 (8) 0.0720 (5) 0.2850 (2) 0.0771 (13)
H3o 0.2629 0.0680 0.2554 0.116*
O4 0.6262 (7) 0.8966 (5) 0.2041 (2) 0.0786 (13)
H4o 0.5628 0.9593 0.2071 0.118*
N1 0.6765 (7) 0.3991 (6) 0.3444 (2) 0.0591 (12)
N2 0.6812 (7) 0.7126 (6) 0.3159 (2) 0.0591 (12)
N3 0.8625 (7) 0.5765 (6) 0.18431 (19) 0.0549 (11)
N4 0.5644 (7) 0.2521 (5) 0.1986 (2) 0.0553 (11)
N5 0.1855 (7) 0.5423 (6) 0.3166 (2) 0.0574 (12)
N6 0.2256 (7) 0.2365 (6) 0.2941 (2) 0.0557 (11)
N7 0.2272 (7) 0.4018 (6) 0.1538 (2) 0.0590 (12)
N8 0.4962 (7) 0.7274 (6) 0.1894 (2) 0.0624 (13)
C1 0.6511 (10) 0.2356 (9) 0.3590 (3) 0.0764 (19)
H1A 0.6668 0.1610 0.3343 0.092*
C2 0.6039 (12) 0.1754 (12) 0.4076 (4) 0.102 (3)
H2 0.5821 0.0603 0.4156 0.122*
C3 0.5889 (12) 0.2856 (14) 0.4448 (4) 0.104 (3)
H3A 0.5595 0.2472 0.4786 0.125*
C4 0.6173 (11) 0.4529 (13) 0.4322 (3) 0.088 (2)
H4A 0.6096 0.5302 0.4573 0.106*
C5 0.6581 (8) 0.5058 (9) 0.3807 (3) 0.0591 (15)
C6 0.6811 (9) 0.6802 (8) 0.3638 (3) 0.0659 (16)
H6 0.6957 0.7673 0.3885 0.079*
C7 0.9996 (9) 0.7365 (8) 0.1739 (3) 0.0677 (17)
H7 1.0476 0.8197 0.2012 0.081*
C8 1.0742 (10) 0.7860 (9) 0.1258 (3) 0.0757 (19)
H8 1.1715 0.8984 0.1208 0.091*
C9 1.0014 (10) 0.6654 (10) 0.0853 (3) 0.0756 (19)
H9 1.0489 0.6943 0.0521 0.091*
C10 0.8557 (10) 0.4994 (10) 0.0943 (3) 0.0698 (17)
H10 0.8016 0.4169 0.0670 0.084*
C11 0.7920 (8) 0.4581 (7) 0.1443 (2) 0.0521 (13)
C12 0.6440 (8) 0.2828 (8) 0.1552 (2) 0.0579 (14)
H12 0.6081 0.1930 0.1299 0.070*
C13 0.1915 (10) 0.6977 (9) 0.3323 (3) 0.0738 (18)
H13 0.2120 0.7833 0.3074 0.089*
C14 0.1695 (10) 0.7387 (9) 0.3823 (3) 0.0776 (19)
H14 0.1757 0.8492 0.3911 0.093*
C15 0.1382 (10) 0.6140 (11) 0.4194 (3) 0.078 (2)
H15 0.1225 0.6385 0.4539 0.093*
C16 0.1301 (10) 0.4511 (10) 0.4051 (3) 0.0703 (18)
H16 0.1077 0.3644 0.4298 0.084*
C17 0.1556 (7) 0.4185 (7) 0.3538 (2) 0.0509 (13)
C18 0.1551 (9) 0.2518 (7) 0.3372 (2) 0.0577 (14)
H18 0.1026 0.1548 0.3585 0.069*
C19 0.1015 (12) 0.2427 (9) 0.1338 (3) 0.083 (2)
H19 0.0159 0.1619 0.1560 0.100*
C20 0.0939 (16) 0.1945 (12) 0.0825 (4) 0.109 (3)
H20 0.0058 0.0828 0.0704 0.130*
C21 0.2162 (19) 0.3111 (16) 0.0493 (4) 0.116 (3)
H21 0.2131 0.2792 0.0143 0.139*
C22 0.3443 (13) 0.4759 (12) 0.0674 (3) 0.086 (2)
H22 0.4271 0.5580 0.0449 0.103*
C23 0.3474 (11) 0.5172 (9) 0.1202 (3) 0.0662 (17)
C24 0.4803 (10) 0.6905 (8) 0.1411 (3) 0.0661 (16)
H24 0.5555 0.7762 0.1183 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0860 (4) 0.0851 (4) 0.0572 (4) 0.0386 (3) 0.0006 (3) −0.0154 (3)
Ag2 0.0911 (4) 0.0918 (4) 0.0588 (4) 0.0408 (3) 0.0170 (3) 0.0185 (3)
Cl1 0.0764 (13) 0.0598 (12) 0.0535 (11) 0.0180 (10) 0.0091 (10) −0.0010 (9)
Cl2 0.0880 (15) 0.0592 (12) 0.0552 (12) 0.0340 (11) 0.0075 (11) 0.0040 (9)
O5 0.145 (8) 0.127 (8) 0.126 (8) 0.046 (6) 0.015 (7) −0.004 (7)
O6 0.145 (8) 0.127 (8) 0.126 (8) 0.046 (6) 0.015 (7) −0.004 (7)
O7 0.145 (8) 0.127 (8) 0.126 (8) 0.046 (6) 0.015 (7) −0.004 (7)
O8 0.145 (8) 0.127 (8) 0.126 (8) 0.046 (6) 0.015 (7) −0.004 (7)
O9 0.124 (7) 0.113 (7) 0.091 (7) 0.048 (6) 0.015 (6) −0.018 (6)
O10 0.124 (7) 0.113 (7) 0.091 (7) 0.048 (6) 0.015 (6) −0.018 (6)
O11 0.124 (7) 0.113 (7) 0.091 (7) 0.048 (6) 0.015 (6) −0.018 (6)
O12 0.124 (7) 0.113 (7) 0.091 (7) 0.048 (6) 0.015 (6) −0.018 (6)
O5' 0.169 (9) 0.133 (9) 0.145 (10) 0.054 (8) 0.028 (8) −0.012 (7)
O6' 0.169 (9) 0.133 (9) 0.145 (10) 0.054 (8) 0.028 (8) −0.012 (7)
O7' 0.169 (9) 0.133 (9) 0.145 (10) 0.054 (8) 0.028 (8) −0.012 (7)
O8' 0.169 (9) 0.133 (9) 0.145 (10) 0.054 (8) 0.028 (8) −0.012 (7)
O9' 0.162 (9) 0.143 (9) 0.135 (9) 0.060 (8) −0.001 (8) −0.023 (7)
O10' 0.162 (9) 0.143 (9) 0.135 (9) 0.060 (8) −0.001 (8) −0.023 (7)
O11' 0.162 (9) 0.143 (9) 0.135 (9) 0.060 (8) −0.001 (8) −0.023 (7)
O12' 0.162 (9) 0.143 (9) 0.135 (9) 0.060 (8) −0.001 (8) −0.023 (7)
O1 0.104 (4) 0.050 (2) 0.107 (4) 0.039 (2) −0.013 (3) −0.011 (2)
O2 0.071 (3) 0.043 (2) 0.097 (3) 0.0182 (18) 0.019 (2) −0.001 (2)
O3 0.093 (3) 0.041 (2) 0.102 (4) 0.029 (2) 0.028 (3) 0.010 (2)
O4 0.075 (3) 0.051 (2) 0.111 (4) 0.028 (2) −0.006 (3) 0.000 (2)
N1 0.051 (2) 0.058 (3) 0.067 (3) 0.022 (2) −0.003 (2) −0.008 (2)
N2 0.060 (3) 0.051 (3) 0.069 (3) 0.027 (2) −0.002 (2) −0.010 (2)
N3 0.053 (2) 0.043 (2) 0.068 (3) 0.021 (2) −0.004 (2) −0.002 (2)
N4 0.055 (2) 0.037 (2) 0.071 (3) 0.0168 (19) −0.003 (2) −0.005 (2)
N5 0.057 (3) 0.048 (3) 0.071 (3) 0.024 (2) 0.014 (2) 0.010 (2)
N6 0.055 (2) 0.042 (2) 0.071 (3) 0.0211 (19) 0.001 (2) 0.004 (2)
N7 0.063 (3) 0.055 (3) 0.065 (3) 0.031 (2) −0.009 (2) 0.003 (2)
N8 0.064 (3) 0.045 (3) 0.081 (4) 0.023 (2) 0.015 (3) 0.010 (2)
C1 0.067 (4) 0.065 (4) 0.097 (5) 0.029 (3) −0.018 (4) 0.000 (4)
C2 0.078 (5) 0.086 (6) 0.126 (8) 0.020 (4) −0.006 (5) 0.032 (6)
C3 0.074 (5) 0.120 (7) 0.101 (7) 0.023 (5) 0.003 (5) 0.046 (6)
C4 0.066 (4) 0.124 (7) 0.074 (5) 0.039 (4) 0.004 (4) 0.001 (5)
C5 0.050 (3) 0.072 (4) 0.058 (4) 0.028 (3) −0.001 (3) −0.008 (3)
C6 0.063 (3) 0.068 (4) 0.072 (4) 0.034 (3) −0.010 (3) −0.027 (3)
C7 0.067 (4) 0.050 (3) 0.087 (5) 0.028 (3) −0.014 (3) −0.013 (3)
C8 0.064 (4) 0.061 (4) 0.099 (5) 0.022 (3) 0.012 (4) 0.027 (4)
C9 0.068 (4) 0.080 (5) 0.083 (5) 0.034 (3) 0.017 (4) 0.031 (4)
C10 0.066 (4) 0.084 (5) 0.060 (4) 0.032 (3) −0.001 (3) −0.001 (3)
C11 0.050 (3) 0.050 (3) 0.058 (3) 0.024 (2) −0.003 (3) −0.002 (3)
C12 0.058 (3) 0.054 (3) 0.062 (4) 0.023 (3) 0.003 (3) −0.016 (3)
C13 0.069 (4) 0.061 (4) 0.098 (5) 0.033 (3) 0.016 (4) 0.007 (4)
C14 0.062 (4) 0.066 (4) 0.106 (6) 0.029 (3) 0.005 (4) −0.019 (4)
C15 0.062 (4) 0.102 (6) 0.076 (5) 0.041 (4) 0.000 (3) −0.020 (4)
C16 0.060 (3) 0.089 (5) 0.068 (4) 0.036 (3) 0.006 (3) 0.010 (4)
C17 0.043 (3) 0.056 (3) 0.053 (3) 0.020 (2) 0.003 (2) 0.011 (3)
C18 0.061 (3) 0.049 (3) 0.065 (4) 0.025 (3) 0.013 (3) 0.019 (3)
C19 0.093 (5) 0.056 (4) 0.107 (6) 0.041 (4) −0.020 (4) −0.001 (4)
C20 0.143 (8) 0.089 (6) 0.110 (7) 0.072 (6) −0.061 (6) −0.040 (5)
C21 0.175 (10) 0.140 (9) 0.078 (6) 0.116 (8) −0.038 (6) −0.032 (6)
C22 0.102 (6) 0.110 (6) 0.065 (4) 0.064 (5) −0.003 (4) 0.000 (4)
C23 0.081 (4) 0.080 (4) 0.059 (4) 0.054 (4) 0.006 (3) 0.012 (3)
C24 0.068 (4) 0.064 (4) 0.067 (4) 0.026 (3) 0.010 (3) 0.022 (3)

Geometric parameters (Å, º)

Ag1—N1 2.280 (5) N5—C13 1.338 (8)
Ag1—N2 2.392 (5) N5—C17 1.365 (7)
Ag1—N3 2.281 (5) N6—C18 1.274 (7)
Ag1—N4 2.384 (5) N7—C19 1.348 (8)
Ag2—N5 2.235 (5) N7—C23 1.353 (8)
Ag2—N6 2.448 (4) N8—C24 1.263 (8)
Ag2—N7 2.256 (5) C1—C2 1.352 (11)
Ag2—N8 2.401 (5) C1—H1A 0.9300
Ag1—Ag2 3.1868 (11) C2—C3 1.360 (13)
Cl1—O6' 1.392 (8) C2—H2 0.9300
Cl1—O6'i 1.392 (8) C3—C4 1.365 (12)
Cl1—O8i 1.395 (8) C3—H3A 0.9300
Cl1—O8 1.395 (8) C4—C5 1.399 (10)
Cl1—O8' 1.407 (9) C4—H4A 0.9300
Cl1—O8'i 1.407 (9) C5—C6 1.464 (9)
Cl1—O7 1.409 (8) C6—H6 0.9300
Cl1—O7i 1.409 (8) C7—C8 1.371 (10)
Cl1—O5 1.414 (8) C7—H7 0.9300
Cl1—O5i 1.414 (8) C8—C9 1.366 (10)
Cl1—O7'i 1.418 (9) C8—H8 0.9300
Cl1—O7' 1.418 (9) C9—C10 1.387 (10)
Cl2—O9 1.375 (8) C9—H9 0.9300
Cl2—O9ii 1.375 (8) C10—C11 1.382 (9)
Cl2—O11'ii 1.400 (9) C10—H10 0.9300
Cl2—O11' 1.400 (9) C11—C12 1.458 (8)
Cl2—O12' 1.400 (9) C12—H12 0.9300
Cl2—O12'ii 1.400 (9) C13—C14 1.359 (10)
Cl2—O11ii 1.410 (8) C13—H13 0.9300
Cl2—O11 1.410 (8) C14—C15 1.367 (10)
Cl2—O10' 1.415 (9) C14—H14 0.9300
Cl2—O10'ii 1.415 (9) C15—C16 1.383 (11)
Cl2—O12 1.424 (8) C15—H15 0.9300
Cl2—O12ii 1.424 (8) C16—C17 1.379 (9)
O1—N2 1.395 (6) C16—H16 0.9300
O1—H1o 0.8400 C17—C18 1.450 (8)
O2—N4 1.391 (6) C18—H18 0.9300
O3—N6 1.375 (6) C19—C20 1.365 (12)
O3—H3o 0.8400 C19—H19 0.9300
O4—N8 1.378 (6) C20—C21 1.357 (14)
O4—H4o 0.8400 C20—H20 0.9300
N1—C5 1.334 (8) C21—C22 1.370 (13)
N1—C1 1.354 (8) C21—H21 0.9300
N2—C6 1.257 (8) C22—C23 1.392 (10)
N3—C7 1.338 (7) C22—H22 0.9300
N3—C11 1.347 (7) C23—C24 1.453 (10)
N4—C12 1.261 (7) C24—H24 0.9300
N1—Ag1—N3 154.92 (17) C2—C3—H3A 120.1
N1—Ag1—N4 112.19 (17) C4—C3—H3A 120.1
N3—Ag1—N4 71.69 (16) C3—C4—C5 118.7 (9)
N1—Ag1—N2 70.69 (18) C3—C4—H4A 120.6
N3—Ag1—N2 118.35 (16) C5—C4—H4A 120.6
N4—Ag1—N2 151.77 (17) N1—C5—C4 121.6 (7)
N1—Ag1—Ag2 99.47 (12) N1—C5—C6 116.6 (6)
N3—Ag1—Ag2 105.57 (12) C4—C5—C6 121.8 (7)
N4—Ag1—Ag2 79.91 (11) N2—C6—C5 120.1 (6)
N2—Ag1—Ag2 72.01 (12) N2—C6—H6 119.9
N5—Ag2—N7 155.54 (18) C5—C6—H6 119.9
N5—Ag2—N8 119.88 (17) N3—C7—C8 124.4 (6)
N7—Ag2—N8 72.02 (18) N3—C7—H7 117.8
N5—Ag2—N6 71.74 (16) C8—C7—H7 117.8
N7—Ag2—N6 109.99 (17) C9—C8—C7 118.0 (6)
N8—Ag2—N6 148.63 (16) C9—C8—H8 121.0
N5—Ag2—Ag1 105.18 (13) C7—C8—H8 121.0
N7—Ag2—Ag1 98.55 (12) C8—C9—C10 119.3 (6)
N8—Ag2—Ag1 74.53 (12) C8—C9—H9 120.4
N6—Ag2—Ag1 74.24 (11) C10—C9—H9 120.4
O6'—Cl1—O8' 111.4 (8) C11—C10—C9 119.1 (7)
O8—Cl1—O7 110.5 (8) C11—C10—H10 120.4
O8—Cl1—O5 110.4 (8) C9—C10—H10 120.4
O7—Cl1—O5 108.9 (8) N3—C11—C10 121.9 (5)
O6'—Cl1—O7' 110.0 (8) N3—C11—C12 117.8 (5)
O8'—Cl1—O7' 108.7 (8) C10—C11—C12 120.3 (6)
O11'—Cl2—O12' 111.0 (8) N4—C12—C11 120.4 (5)
O9—Cl2—O11 112.9 (8) N4—C12—H12 119.8
O11'—Cl2—O10' 110.1 (8) C11—C12—H12 119.8
O12'—Cl2—O10' 110.3 (8) N5—C13—C14 124.4 (7)
O9—Cl2—O12 111.2 (8) N5—C13—H13 117.8
N2—O1—H1o 109.5 C14—C13—H13 117.8
N6—O3—H3o 109.5 C13—C14—C15 118.6 (7)
N8—O4—H4o 109.5 C13—C14—H14 120.7
C5—N1—C1 117.5 (6) C15—C14—H14 120.7
C5—N1—Ag1 117.3 (4) C14—C15—C16 119.2 (7)
C1—N1—Ag1 124.6 (5) C14—C15—H15 120.4
C6—N2—O1 112.4 (5) C16—C15—H15 120.4
C6—N2—Ag1 114.2 (4) C17—C16—C15 119.3 (7)
O1—N2—Ag1 132.4 (4) C17—C16—H16 120.3
C7—N3—C11 117.2 (5) C15—C16—H16 120.3
C7—N3—Ag1 126.8 (4) N5—C17—C16 121.6 (6)
C11—N3—Ag1 115.6 (3) N5—C17—C18 117.2 (5)
C12—N4—O2 115.8 (5) C16—C17—C18 121.3 (5)
C12—N4—Ag1 113.9 (4) N6—C18—C17 120.8 (5)
O2—N4—Ag1 129.4 (4) N6—C18—H18 119.6
C13—N5—C17 116.9 (6) C17—C18—H18 119.6
C13—N5—Ag2 124.8 (4) N7—C19—C20 123.1 (8)
C17—N5—Ag2 117.3 (4) N7—C19—H19 118.4
C18—N6—O3 113.6 (4) C20—C19—H19 118.4
C18—N6—Ag2 111.1 (4) C21—C20—C19 119.4 (8)
O3—N6—Ag2 133.8 (4) C21—C20—H20 120.3
C19—N7—C23 116.9 (6) C19—C20—H20 120.3
C19—N7—Ag2 126.6 (5) C20—C21—C22 119.9 (9)
C23—N7—Ag2 116.3 (4) C20—C21—H21 120.1
C24—N8—O4 115.8 (5) C22—C21—H21 120.1
C24—N8—Ag2 112.5 (4) C21—C22—C23 118.3 (9)
O4—N8—Ag2 131.6 (4) C21—C22—H22 120.8
C2—C1—N1 123.3 (8) C23—C22—H22 120.8
C2—C1—H1A 118.3 N7—C23—C22 122.4 (7)
N1—C1—H1A 118.3 N7—C23—C24 117.3 (6)
C1—C2—C3 119.0 (8) C22—C23—C24 120.3 (7)
C1—C2—H2 120.5 N8—C24—C23 121.5 (6)
C3—C2—H2 120.5 N8—C24—H24 119.2
C2—C3—C4 119.8 (8) C23—C24—H24 119.2
N1—Ag1—Ag2—N5 29.36 (18) N6—Ag2—N7—C23 −143.4 (4)
N3—Ag1—Ag2—N5 −151.98 (17) Ag1—Ag2—N7—C23 −67.1 (4)
N4—Ag1—Ag2—N5 140.41 (17) N5—Ag2—N8—C24 −156.9 (4)
N2—Ag1—Ag2—N5 −36.65 (18) N7—Ag2—N8—C24 −0.4 (4)
N1—Ag1—Ag2—N7 −144.67 (18) N6—Ag2—N8—C24 98.7 (5)
N3—Ag1—Ag2—N7 34.00 (17) Ag1—Ag2—N8—C24 104.2 (4)
N4—Ag1—Ag2—N7 −33.61 (17) N5—Ag2—N8—O4 19.4 (5)
N2—Ag1—Ag2—N7 149.33 (17) N7—Ag2—N8—O4 175.9 (5)
N1—Ag1—Ag2—N8 146.78 (19) N6—Ag2—N8—O4 −85.0 (5)
N3—Ag1—Ag2—N8 −34.56 (18) Ag1—Ag2—N8—O4 −79.5 (5)
N4—Ag1—Ag2—N8 −102.17 (18) C5—N1—C1—C2 1.6 (9)
N2—Ag1—Ag2—N8 80.78 (19) Ag1—N1—C1—C2 −169.4 (5)
N1—Ag1—Ag2—N6 −36.19 (17) N1—C1—C2—C3 −2.8 (12)
N3—Ag1—Ag2—N6 142.47 (17) C1—C2—C3—C4 1.4 (12)
N4—Ag1—Ag2—N6 74.86 (17) C2—C3—C4—C5 1.0 (12)
N2—Ag1—Ag2—N6 −102.20 (18) C1—N1—C5—C4 1.0 (8)
N3—Ag1—N1—C5 117.1 (5) Ag1—N1—C5—C4 172.7 (5)
N4—Ag1—N1—C5 −148.8 (4) C1—N1—C5—C6 −178.5 (5)
N2—Ag1—N1—C5 1.1 (4) Ag1—N1—C5—C6 −6.8 (7)
Ag2—Ag1—N1—C5 −65.9 (4) C3—C4—C5—N1 −2.3 (10)
N3—Ag1—N1—C1 −71.8 (6) C3—C4—C5—C6 177.2 (7)
N4—Ag1—N1—C1 22.2 (5) O1—N2—C6—C5 178.6 (5)
N2—Ag1—N1—C1 172.1 (5) Ag1—N2—C6—C5 −11.2 (7)
Ag2—Ag1—N1—C1 105.1 (5) N1—C5—C6—N2 12.6 (9)
N1—Ag1—N2—C6 5.5 (4) C4—C5—C6—N2 −167.0 (6)
N3—Ag1—N2—C6 −148.9 (4) C11—N3—C7—C8 −1.0 (9)
N4—Ag1—N2—C6 106.6 (5) Ag1—N3—C7—C8 −172.7 (5)
Ag2—Ag1—N2—C6 112.8 (4) N3—C7—C8—C9 1.3 (10)
N1—Ag1—N2—O1 173.1 (5) C7—C8—C9—C10 0.3 (10)
N3—Ag1—N2—O1 18.8 (6) C8—C9—C10—C11 −2.0 (10)
N4—Ag1—N2—O1 −85.7 (6) C7—N3—C11—C10 −0.8 (8)
Ag2—Ag1—N2—O1 −79.6 (5) Ag1—N3—C11—C10 171.8 (5)
N1—Ag1—N3—C7 −81.3 (6) C7—N3—C11—C12 179.4 (5)
N4—Ag1—N3—C7 175.3 (5) Ag1—N3—C11—C12 −8.0 (6)
N2—Ag1—N3—C7 24.1 (5) C9—C10—C11—N3 2.3 (10)
Ag2—Ag1—N3—C7 101.8 (5) C9—C10—C11—C12 −177.9 (6)
N1—Ag1—N3—C11 106.9 (5) O2—N4—C12—C11 −176.6 (5)
N4—Ag1—N3—C11 3.5 (4) Ag1—N4—C12—C11 −6.6 (7)
N2—Ag1—N3—C11 −147.7 (4) N3—C11—C12—N4 10.1 (8)
Ag2—Ag1—N3—C11 −70.0 (4) C10—C11—C12—N4 −169.6 (6)
N1—Ag1—N4—C12 −151.8 (4) C17—N5—C13—C14 −0.1 (9)
N3—Ag1—N4—C12 1.7 (4) Ag2—N5—C13—C14 −168.2 (5)
N2—Ag1—N4—C12 117.9 (5) N5—C13—C14—C15 −0.3 (10)
Ag2—Ag1—N4—C12 112.0 (4) C13—C14—C15—C16 0.1 (10)
N1—Ag1—N4—O2 16.5 (5) C14—C15—C16—C17 0.6 (10)
N3—Ag1—N4—O2 170.0 (5) C13—N5—C17—C16 0.9 (8)
N2—Ag1—N4—O2 −73.8 (6) Ag2—N5—C17—C16 169.8 (4)
Ag2—Ag1—N4—O2 −79.7 (4) C13—N5—C17—C18 −178.1 (5)
N7—Ag2—N5—C13 −91.9 (6) Ag2—N5—C17—C18 −9.2 (6)
N8—Ag2—N5—C13 21.8 (6) C15—C16—C17—N5 −1.1 (9)
N6—Ag2—N5—C13 169.8 (5) C15—C16—C17—C18 177.9 (6)
Ag1—Ag2—N5—C13 102.5 (5) O3—N6—C18—C17 177.9 (5)
N7—Ag2—N5—C17 100.0 (5) Ag2—N6—C18—C17 −13.9 (7)
N8—Ag2—N5—C17 −146.2 (4) N5—C17—C18—N6 16.3 (8)
N6—Ag2—N5—C17 1.7 (4) C16—C17—C18—N6 −162.7 (6)
Ag1—Ag2—N5—C17 −65.6 (4) C23—N7—C19—C20 1.1 (10)
N5—Ag2—N6—C18 6.4 (4) Ag2—N7—C19—C20 −173.7 (6)
N7—Ag2—N6—C18 −147.7 (4) N7—C19—C20—C21 −0.7 (12)
N8—Ag2—N6—C18 124.2 (4) C19—C20—C21—C22 −0.6 (14)
Ag1—Ag2—N6—C18 118.7 (4) C20—C21—C22—C23 1.3 (13)
N5—Ag2—N6—O3 171.5 (5) C19—N7—C23—C22 −0.3 (9)
N7—Ag2—N6—O3 17.3 (5) Ag2—N7—C23—C22 175.0 (5)
N8—Ag2—N6—O3 −70.7 (6) C19—N7—C23—C24 178.7 (6)
Ag1—Ag2—N6—O3 −76.2 (5) Ag2—N7—C23—C24 −6.0 (7)
N5—Ag2—N7—C19 −58.3 (7) C21—C22—C23—N7 −0.9 (11)
N8—Ag2—N7—C19 178.2 (5) C21—C22—C23—C24 −179.8 (7)
N6—Ag2—N7—C19 31.4 (5) O4—N8—C24—C23 −179.6 (5)
Ag1—Ag2—N7—C19 107.6 (5) Ag2—N8—C24—C23 −2.7 (8)
N5—Ag2—N7—C23 126.9 (5) N7—C23—C24—N8 6.0 (9)
N8—Ag2—N7—C23 3.4 (4) C22—C23—C24—N8 −175.0 (6)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1o···O4 0.84 1.91 2.673 (8) 151
O3—H3o···O2 0.84 1.81 2.610 (6) 160
O4—H4o···O2iii 0.84 1.64 2.475 (6) 174

Symmetry code: (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6736).

References

  1. Abu-Youssef, M. A. M., Soliman, S. M., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Ohrstrom, L. R. (2010). Inorg. Chem 49, 9788–9797. [DOI] [PubMed]
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Kundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269–1282.
  6. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC and Rigaku (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201625X/hb6736sup1.cif

e-68-0m639-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201625X/hb6736Isup2.hkl

e-68-0m639-Isup2.hkl (246.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES