Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 28;68(Pt 5):m687. doi: 10.1107/S1600536812017801

1-Cyano­methyl-1,4-diazo­niabicyclo­[2.2.2]octane tetra­chloridocadmate(II)

Yi Zhang a,*, Bo Han Zhu a
PMCID: PMC3344406  PMID: 22590168

Abstract

In the title salt, (C8H15N3)[CdCl4], four Cl atoms coordinate the CdII atom in a slightly distorted tetra­hedral geometry. In the crystal, each [CdCl4]2− anion is connected to the 1-cyano­methyl-1,4-diazo­niabicyclo­[2.2.2]octane dications by N—H⋯Cl hydrogen bonds, forming chains parallel to [001]. C—H⋯Cl inter­actions also occur.

Related literature  

For the use of 1,4-diaza­bicyclo­[2.2.2]octane (DABCO) and its derivatives, see: Basaviah et al. (2003); Zhang, Cheng et al. (2009). For ferroelectric properties of DABCO derivatives, see: Zhang, Ye et al. (2009, 2010). For related structures, see: Cai (2010); Wei (2010). For the isotypic cobaltate(II) analogue, see: Zhang & Zhu (2012). graphic file with name e-68-0m687-scheme1.jpg

Experimental  

Crystal data  

  • (C8H15N3)[CdCl4]

  • M r = 407.43

  • Monoclinic, Inline graphic

  • a = 8.3747 (17) Å

  • b = 13.772 (3) Å

  • c = 12.153 (2) Å

  • β = 93.89 (3)°

  • V = 1398.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 298 K

  • 0.36 × 0.32 × 0.28 mm

Data collection  

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.441, T max = 0.525

  • 14246 measured reflections

  • 3200 independent reflections

  • 2899 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.059

  • S = 1.15

  • 3200 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812017801/pv2531sup1.cif

e-68-0m687-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017801/pv2531Isup2.hkl

e-68-0m687-Isup2.hkl (157KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯Cl2i 0.79 (3) 2.54 (3) 3.193 (2) 141 (3)
N3—H1⋯Cl3ii 0.79 (3) 2.76 (3) 3.285 (2) 126 (3)
C1—H1A⋯Cl3iii 0.97 2.70 3.507 (3) 141 (2)
C3—H3B⋯Cl4iv 0.97 2.67 3.599 (3) 160 (2)
C4—H4A⋯Cl1i 0.97 2.81 3.704 (3) 153 (2)
C7—H7A⋯Cl2iv 0.97 2.61 3.514 (3) 155 (2)
C7—H7B⋯Cl4v 0.97 2.79 3.489 (3) 129 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Start-up Projects for Postdoctoral Research Funds (1112000064), the Major Postdoctoral Research Funds (3212000602) of Southeast University and the Jiangsu Planned Projects for Postdoctoral Research Funds (1101010B).

supplementary crystallographic information

Comment

1,4-Diazabicyclo[2.2.2]octane (DABCO) is used as a effective organocatalyst for a large number of reactions because of its nucleophilicity (Basaviah et al., 2003) and some of it's derivatives are ferroelectrics (Zhang, Cheng et al., 2009). As part of a systematic investigation of dielectric-ferroelectric materials (Zhang, Ye et al., 2009; 2010), we report the crystal structure of the title compound in this article.

The asymmetric unit of the title compound is composed of cationic (C8H15N3)2+ and anionic (CdCl4)2- ions (Fig. 1). The Cd atoms are coordinated by four Cl atoms with very similar distances in the range of 2.2749 (12) to 2.2910 (12) Å. The Cl—Cd—Cl bond angles are between 103.21 (4) and 113.85 (5) ° which shows that the coordination polyhedron can be described as a slightly distorted tetrahedron. The ammonium groups of the organic cations are engaged in bifurcated hydrogen bonds to chlorine atoms of two (CdCl4)2- anions. These weak N—H···Cl interactions cause the formation of a one-dimensional chain along the [0 0 1] (Fig. 2).

The crystal structures of a few related DABCO derivatives have been reported earlier (Cai, 2010; Wei, 2010).

Experimental

Chloroacetonitrile (0.1 mol, 7.55 g) was added to a CH3CN (25 ml) solution of 1,4-diaza-bicyclo[2.2.2]octane (DABCO) (0.1 mol, 11.2 g) with stirring for 1 h at room temperature. 1-(Cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane chloride quickly formed as white solid was filtered, washed with acetonitrile and dried (yield: 80%). CdCl2.2.5H2O (0.01 mol, 2.28 g) and 1 g 36% HCl were dissolved in H2O (20 ml) and 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane chloride (0.01 mol, 1.875 g) in H2O (20 ml) was added. The resulting solution was stirred until a clear solution was obtained. After slow evaporation of the solvent, colourless needle crystals of the title compound suitable for X-ray analysis were obtained in about 60% yield. The title compound has no dielectric disuniform from 80 K to 373 K, (m.p. > 373 K).

Refinement

The C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The H1 bonded to N3 was located from a difference Fourier map and freely refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the N—H···Cl hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

Crystal data

(C8H15N3)[CdCl4] F(000) = 800
Mr = 407.43 Dx = 1.935 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2622 reflections
a = 8.3747 (17) Å θ = 3.1–27.5°
b = 13.772 (3) Å µ = 2.30 mm1
c = 12.153 (2) Å T = 298 K
β = 93.89 (3)° Needle, colourless
V = 1398.4 (5) Å3 0.36 × 0.32 × 0.28 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 3200 independent reflections
Radiation source: fine-focus sealed tube 2899 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −17→17
Tmin = 0.441, Tmax = 0.525 l = −15→15
14246 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.6019P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max < 0.001
3200 reflections Δρmax = 0.46 e Å3
150 parameters Δρmin = −0.48 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0332 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.77481 (2) 0.228314 (13) 0.006713 (15) 0.02939 (9)
Cl2 0.78074 (8) 0.24012 (5) 0.21119 (5) 0.03509 (16)
Cl3 0.80985 (8) 0.40133 (4) −0.03853 (5) 0.03183 (15)
Cl4 0.51643 (8) 0.15674 (5) −0.05148 (5) 0.03630 (16)
Cl1 1.01183 (8) 0.13969 (5) −0.04509 (6) 0.03678 (16)
N2 0.3731 (2) 0.42550 (13) 0.76461 (15) 0.0207 (4)
C4 0.1866 (3) 0.28852 (19) 0.7311 (2) 0.0314 (6)
H4A 0.1242 0.2852 0.6610 0.038*
H4B 0.1932 0.2238 0.7625 0.038*
N3 0.1084 (2) 0.35561 (15) 0.80727 (17) 0.0259 (4)
C2 0.2107 (3) 0.36440 (19) 0.9119 (2) 0.0286 (5)
H2A 0.2340 0.3005 0.9425 0.034*
H2B 0.1554 0.4016 0.9654 0.034*
C8 0.5761 (3) 0.55142 (19) 0.8006 (2) 0.0318 (6)
C3 0.3525 (3) 0.32615 (19) 0.7140 (2) 0.0350 (6)
H3A 0.4319 0.2822 0.7479 0.042*
H3B 0.3681 0.3295 0.6358 0.042*
C7 0.5335 (3) 0.46373 (17) 0.7366 (2) 0.0279 (5)
H7A 0.6144 0.4143 0.7522 0.033*
H7B 0.5307 0.4787 0.6585 0.033*
C1 0.3652 (3) 0.4152 (2) 0.88691 (19) 0.0305 (5)
H1A 0.3695 0.4788 0.9212 0.037*
H1B 0.4561 0.3778 0.9170 0.037*
N1 0.6122 (3) 0.61640 (17) 0.8522 (2) 0.0438 (6)
C6 0.0823 (3) 0.45326 (19) 0.7556 (2) 0.0359 (6)
H6A 0.0400 0.4978 0.8081 0.043*
H6B 0.0057 0.4484 0.6922 0.043*
C5 0.2410 (3) 0.4904 (2) 0.7198 (3) 0.0401 (7)
H5A 0.2391 0.4918 0.6399 0.048*
H5B 0.2592 0.5560 0.7469 0.048*
H1 0.024 (4) 0.333 (2) 0.817 (3) 0.050 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.02778 (12) 0.02888 (12) 0.03141 (13) −0.00082 (7) 0.00131 (8) 0.00145 (7)
Cl2 0.0308 (3) 0.0461 (4) 0.0282 (3) 0.0020 (3) 0.0009 (3) 0.0045 (3)
Cl3 0.0360 (3) 0.0254 (3) 0.0348 (3) 0.0025 (2) 0.0080 (3) −0.0005 (2)
Cl4 0.0314 (3) 0.0443 (4) 0.0334 (3) −0.0076 (3) 0.0032 (3) −0.0087 (3)
Cl1 0.0341 (3) 0.0352 (3) 0.0414 (4) 0.0051 (3) 0.0048 (3) −0.0012 (3)
N2 0.0200 (9) 0.0205 (9) 0.0216 (9) 0.0004 (7) 0.0024 (7) −0.0003 (7)
C4 0.0300 (13) 0.0308 (13) 0.0338 (14) −0.0037 (10) 0.0046 (11) −0.0111 (10)
N3 0.0195 (10) 0.0303 (11) 0.0283 (11) −0.0023 (8) 0.0044 (8) −0.0023 (8)
C2 0.0292 (13) 0.0334 (13) 0.0234 (12) −0.0054 (10) 0.0017 (10) −0.0007 (10)
C8 0.0288 (13) 0.0309 (14) 0.0351 (14) −0.0056 (10) −0.0013 (11) 0.0092 (11)
C3 0.0356 (14) 0.0293 (13) 0.0415 (15) −0.0075 (11) 0.0140 (12) −0.0176 (11)
C7 0.0250 (12) 0.0286 (12) 0.0306 (13) −0.0040 (10) 0.0063 (10) 0.0026 (10)
C1 0.0272 (13) 0.0440 (15) 0.0203 (12) −0.0044 (11) 0.0024 (10) −0.0012 (10)
N1 0.0557 (16) 0.0299 (12) 0.0442 (14) −0.0120 (11) −0.0080 (12) 0.0085 (11)
C6 0.0258 (13) 0.0368 (14) 0.0449 (16) 0.0084 (11) 0.0017 (11) 0.0057 (12)
C5 0.0296 (13) 0.0315 (14) 0.0578 (18) 0.0028 (11) −0.0060 (12) 0.0187 (13)

Geometric parameters (Å, º)

Cd1—Cl4 2.4385 (8) C2—H2A 0.9700
Cd1—Cl1 2.4486 (8) C2—H2B 0.9700
Cd1—Cl3 2.4674 (8) C8—N1 1.123 (3)
Cd1—Cl2 2.4874 (8) C8—C7 1.467 (3)
N2—C5 1.496 (3) C3—H3A 0.9700
N2—C1 1.499 (3) C3—H3B 0.9700
N2—C7 1.503 (3) C7—H7A 0.9700
N2—C3 1.505 (3) C7—H7B 0.9700
C4—N3 1.491 (3) C1—H1A 0.9700
C4—C3 1.511 (4) C1—H1B 0.9700
C4—H4A 0.9700 C6—C5 1.515 (4)
C4—H4B 0.9700 C6—H6A 0.9700
N3—C2 1.489 (3) C6—H6B 0.9700
N3—C6 1.494 (3) C5—H5A 0.9700
N3—H1 0.79 (3) C5—H5B 0.9700
C2—C1 1.520 (3)
Cl4—Cd1—Cl1 116.28 (3) N2—C3—C4 109.66 (19)
Cl4—Cd1—Cl3 116.26 (3) N2—C3—H3A 109.7
Cl1—Cd1—Cl3 108.26 (3) C4—C3—H3A 109.7
Cl4—Cd1—Cl2 105.86 (3) N2—C3—H3B 109.7
Cl1—Cd1—Cl2 109.14 (3) C4—C3—H3B 109.7
Cl3—Cd1—Cl2 99.49 (2) H3A—C3—H3B 108.2
C5—N2—C1 109.6 (2) C8—C7—N2 110.9 (2)
C5—N2—C7 111.00 (18) C8—C7—H7A 109.5
C1—N2—C7 110.95 (18) N2—C7—H7A 109.5
C5—N2—C3 109.5 (2) C8—C7—H7B 109.5
C1—N2—C3 107.91 (19) N2—C7—H7B 109.5
C7—N2—C3 107.77 (18) H7A—C7—H7B 108.0
N3—C4—C3 108.67 (19) N2—C1—C2 109.70 (19)
N3—C4—H4A 110.0 N2—C1—H1A 109.7
C3—C4—H4A 110.0 C2—C1—H1A 109.7
N3—C4—H4B 110.0 N2—C1—H1B 109.7
C3—C4—H4B 110.0 C2—C1—H1B 109.7
H4A—C4—H4B 108.3 H1A—C1—H1B 108.2
C2—N3—C4 109.2 (2) N3—C6—C5 108.6 (2)
C2—N3—C6 110.2 (2) N3—C6—H6A 110.0
C4—N3—C6 110.8 (2) C5—C6—H6A 110.0
C2—N3—H1 112 (2) N3—C6—H6B 110.0
C4—N3—H1 107 (2) C5—C6—H6B 110.0
C6—N3—H1 108 (2) H6A—C6—H6B 108.4
N3—C2—C1 108.38 (19) N2—C5—C6 109.6 (2)
N3—C2—H2A 110.0 N2—C5—H5A 109.8
C1—C2—H2A 110.0 C6—C5—H5A 109.8
N3—C2—H2B 110.0 N2—C5—H5B 109.8
C1—C2—H2B 110.0 C6—C5—H5B 109.8
H2A—C2—H2B 108.4 H5A—C5—H5B 108.2
N1—C8—C7 177.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H1···Cl2i 0.79 (3) 2.54 (3) 3.193 (2) 141 (3)
N3—H1···Cl3ii 0.79 (3) 2.76 (3) 3.285 (2) 126 (3)
C1—H1A···Cl3iii 0.97 2.70 3.507 (3) 141 (2)
C3—H3B···Cl4iv 0.97 2.67 3.599 (3) 160 (2)
C4—H4A···Cl1i 0.97 2.81 3.704 (3) 153 (2)
C7—H7A···Cl2iv 0.97 2.61 3.514 (3) 155 (2)
C7—H7B···Cl4v 0.97 2.79 3.489 (3) 129 (2)

Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) x−1, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) x, −y+1/2, z+1/2; (v) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2531).

References

  1. Basaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–891. [DOI] [PubMed]
  2. Cai, Y. (2010). Acta Cryst. E66, m830. [DOI] [PMC free article] [PubMed]
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wei, B. (2010). Acta Cryst. E66, m1672. [DOI] [PMC free article] [PubMed]
  6. Zhang, W., Cheng, L.-Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545. [DOI] [PubMed]
  7. Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300–7302. [DOI] [PubMed]
  8. Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980–2997.
  9. Zhang, Y. & Zhu, B.-H. (2012). Acta Cryst. E68, m665. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812017801/pv2531sup1.cif

e-68-0m687-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017801/pv2531Isup2.hkl

e-68-0m687-Isup2.hkl (157KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES