Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 28;68(Pt 5):m705. doi: 10.1107/S1600536812018399

Poly[[μ-ethane-1,2-diyl bis­(pyridine-3-carboxyl­ate)](μ-tetra­fluorido­borato)silver(I)]

Javier Vallejos a, Iván Brito a,*, Alejandro Cárdenas b, Michael Bolte c
PMCID: PMC3344420  PMID: 22590182

Abstract

In the title compound, [Ag(BF4)(C14H12N2O4)]n, the coordination of the Ag+ ion is trigonal–bipyramidal with the N atoms of two ethane-1,2-diyl bis­(pyridine-3-carboxyl­ate) ligands in the apical positions and three F atoms belonging to different tetra­fluorido­borate anions in the equatorial plane. The material consists of infinite chains of [Ag(C14H12N2O4)] units running along [001], held together by BF4 bridging anions.

Related literature  

For the crystal structure of the ethane-1,2-diyl bis­(pyridine-3-carboxyl­ate) ligand, see: Brito et al. (2010). For background to coordination chemistry, see: Blake et al. (1999); Brito et al. (2011). graphic file with name e-68-0m705-scheme1.jpg

Experimental  

Crystal data  

  • [Ag(BF4)(C14H12N2O4)]

  • M r = 466.94

  • Orthorhombic, Inline graphic

  • a = 15.2667 (11) Å

  • b = 6.7170 (4) Å

  • c = 30.8598 (16) Å

  • V = 3164.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 173 K

  • 0.16 × 0.04 × 0.04 mm

Data collection  

  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) T min = 0.814, T max = 0.948

  • 27909 measured reflections

  • 2772 independent reflections

  • 1605 reflections with I > 2σ(I)

  • R int = 0.115

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.144

  • S = 0.93

  • 2772 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −1.14 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018399/ff2064sup1.cif

e-68-0m705-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018399/ff2064Isup2.hkl

e-68-0m705-Isup2.hkl (136.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ag1—N11 2.145 (6)
Ag1—N23i 2.155 (6)
Ag1—F1ii 3.168 (9)
Ag1—F2 2.832 (8)
Ag1—F2iii 2.972 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Thanks are given to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database (CSD). JV thanks the Universidad de Antofagasta for a PhD fellowship.

supplementary crystallographic information

Comment

The design of polymeric organic-inorganic materials with novel topologies and structural motifs is of current interest in the field of coordination chemistry (Blake et al., 1999). This paper forms part of our continuing study of the synthesis, structural characterization and physical properties of coordination polymers (Brito et al., 2011). We report here the crystal structure of the title compound (Fig.1). It crystallizes as colorless needles, which were found to be stable to air and light. In the title compound, the coordination of the AgI atom is a trigonal bipyramid with the N atoms of two 1,2-diyl-bis(pyridine-3-carboxylate)ethane ligands in the apical positions and three F atoms belonging to different tetrafluoroborate anions in the equatorial plane. The Ag–N distances are 2.145 (6) and 2.155 (6) Å and the Ag–F distances are 2.832 (8) Å, 2.972 (7) Å and 3.168 (9) Å. The N–Ag–N angle [168.8 (3)°] is not far from being linear and the Ag—N vectors are almost perpendicular to the Ag—F vectors [76.7 (3)° to 103.1 (3)°]. The F–Ag–F angles are 106.4 (2)°, 120.7 (2)° and 127.4 (2)°. The molecular dimensions of the 1,2-bis(3-pyridyl)ethane ligand are within normal ranges and the ethylene moiety retains the gauche conformation (Brito et al., 2010). The material consists of infinite chains of [Ag(C14H12N2O4)] moieties running along [001] held together by BF4- bridging anions (Fig. 2).

Experimental

A solution of AgBF4 (19.4 mg, 0.1 mmol) in water was slowly added to a solution of the ligand (27.2 mg, 0.1 mmol) in THF (4 ml). Colorless single crystals suitable for X-ray were obtained after a few days (82%).The FT—IR (KBr, cm-1): 1724 s, 1609, 1434 m, 1280 s, 742 m.

Refinement

All H-atoms were positioned geometrically with C—H in the range of 0.95 or 0.99 Å and refined using a riding model with Uiso(H)= 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Part of the polymeric structure and the atom-numbering scheme of the title compound. Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes (i) x, 3/2 - y, -1/2 + z; (ii) 1/2 - x, 1/2 + y, z; (iii) 1/2 - x, -1/2 + y, z].

Fig. 2.

Fig. 2.

Infinite chains of [Ag(C14H12N2O4)] moieties running along [001] held together by BF4- bridging anions. The H-toms have been omitted for clarity.

Crystal data

[Ag(BF4)(C14H12N2O4)] F(000) = 1840
Mr = 466.94 Dx = 1.960 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 9495 reflections
a = 15.2667 (11) Å θ = 2.7–25.9°
b = 6.7170 (4) Å µ = 1.34 mm1
c = 30.8598 (16) Å T = 173 K
V = 3164.6 (3) Å3 Needle, colourless
Z = 8 0.16 × 0.04 × 0.04 mm

Data collection

Stoe IPDS-II two-circle diffractometer 2772 independent reflections
Radiation source: fine-focus sealed tube 1605 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.115
ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) h = −18→18
Tmin = 0.814, Tmax = 0.948 k = −7→7
27909 measured reflections l = −36→36

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0668P)2] where P = (Fo2 + 2Fc2)/3
2772 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 1.75 e Å3
0 restraints Δρmin = −1.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.32630 (5) 0.68683 (11) 0.122155 (18) 0.0436 (2)
O1 0.1384 (4) 0.6081 (9) 0.27974 (18) 0.0388 (14)
O2 0.2325 (3) 0.4748 (8) 0.32836 (16) 0.0318 (13)
O3 0.1274 (4) 0.7200 (9) 0.46953 (18) 0.0426 (15)
O4 0.2171 (3) 0.6095 (9) 0.41696 (16) 0.0350 (13)
C1 0.2118 (6) 0.5608 (13) 0.2904 (2) 0.0318 (19)
C2 0.1594 (5) 0.4311 (13) 0.3564 (2) 0.0347 (19)
H2A 0.1715 0.3060 0.3723 0.042*
H2B 0.1065 0.4096 0.3385 0.042*
C3 0.1415 (5) 0.5929 (15) 0.3883 (2) 0.038 (2)
H3A 0.1317 0.7205 0.3730 0.046*
H3B 0.0884 0.5611 0.4054 0.046*
C4 0.1992 (5) 0.6804 (12) 0.4566 (2) 0.0305 (17)
N11 0.3421 (4) 0.6597 (11) 0.1910 (2) 0.0385 (17)
C12 0.2759 (6) 0.6318 (12) 0.2184 (2) 0.035 (2)
H12 0.2174 0.6408 0.2080 0.041*
C13 0.2907 (5) 0.5899 (12) 0.2618 (2) 0.0287 (17)
C14 0.3766 (5) 0.5786 (12) 0.2780 (3) 0.0310 (18)
H14 0.3881 0.5471 0.3074 0.037*
C15 0.4436 (5) 0.6155 (12) 0.2490 (3) 0.036 (2)
H15 0.5027 0.6141 0.2586 0.044*
C16 0.4251 (6) 0.6540 (14) 0.2065 (3) 0.042 (2)
H16 0.4723 0.6777 0.1871 0.050*
C21 0.2811 (5) 0.7043 (13) 0.4833 (2) 0.0295 (17)
C22 0.2702 (6) 0.7513 (12) 0.5268 (2) 0.032 (2)
H22 0.2126 0.7616 0.5382 0.039*
N23 0.3379 (5) 0.7822 (10) 0.5529 (2) 0.0384 (17)
C24 0.4197 (6) 0.7680 (13) 0.5363 (3) 0.041 (2)
H24 0.4682 0.7907 0.5549 0.049*
C25 0.4354 (6) 0.7217 (14) 0.4934 (3) 0.040 (2)
H25 0.4936 0.7149 0.4827 0.048*
C26 0.3651 (5) 0.6855 (13) 0.4662 (2) 0.0332 (17)
H26 0.3739 0.6490 0.4367 0.040*
B1 0.0651 (6) 0.6709 (18) 0.1252 (3) 0.040 (2)
F1 0.0369 (5) 0.8388 (12) 0.1072 (3) 0.107 (3)
F2 0.1447 (5) 0.6209 (11) 0.1101 (3) 0.098 (3)
F3 0.0720 (6) 0.7014 (14) 0.1693 (2) 0.110 (3)
F4 0.0034 (5) 0.5200 (11) 0.1204 (3) 0.097 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0429 (4) 0.0680 (5) 0.0198 (3) −0.0014 (4) −0.0011 (3) 0.0042 (3)
O1 0.021 (3) 0.065 (4) 0.030 (3) −0.002 (3) −0.003 (2) 0.007 (3)
O2 0.030 (3) 0.046 (4) 0.019 (3) −0.002 (2) 0.003 (2) 0.003 (2)
O3 0.026 (3) 0.068 (4) 0.033 (3) 0.005 (3) 0.003 (3) −0.012 (3)
O4 0.029 (3) 0.059 (4) 0.018 (3) −0.002 (2) −0.002 (2) −0.002 (2)
C1 0.035 (5) 0.040 (5) 0.020 (4) −0.003 (4) −0.003 (3) −0.001 (4)
C2 0.032 (5) 0.054 (5) 0.017 (4) −0.009 (4) 0.006 (3) −0.001 (4)
C3 0.024 (4) 0.067 (6) 0.024 (4) −0.003 (4) −0.004 (3) −0.010 (4)
C4 0.040 (5) 0.033 (4) 0.018 (3) −0.004 (4) 0.000 (3) −0.006 (4)
N11 0.036 (4) 0.053 (5) 0.026 (3) −0.002 (4) 0.004 (3) 0.000 (3)
C12 0.030 (4) 0.050 (6) 0.024 (4) 0.004 (4) −0.002 (3) −0.003 (4)
C13 0.025 (4) 0.040 (5) 0.021 (4) −0.002 (3) 0.003 (3) −0.004 (3)
C14 0.032 (5) 0.039 (5) 0.022 (4) −0.001 (4) −0.002 (3) 0.001 (4)
C15 0.030 (5) 0.054 (5) 0.025 (4) −0.001 (3) −0.002 (4) −0.002 (4)
C16 0.029 (4) 0.069 (7) 0.027 (4) −0.001 (4) 0.006 (3) −0.002 (4)
C21 0.025 (4) 0.044 (5) 0.019 (3) 0.002 (4) 0.001 (3) 0.000 (4)
C22 0.031 (5) 0.047 (6) 0.018 (4) −0.001 (3) 0.001 (3) 0.002 (3)
N23 0.034 (4) 0.051 (4) 0.030 (3) 0.001 (3) 0.000 (3) 0.002 (3)
C24 0.030 (5) 0.065 (7) 0.029 (4) −0.003 (4) −0.005 (4) −0.001 (4)
C25 0.028 (5) 0.063 (7) 0.030 (5) 0.004 (4) −0.004 (4) −0.006 (4)
C26 0.040 (4) 0.042 (5) 0.017 (4) 0.001 (4) 0.001 (3) −0.002 (4)
B1 0.028 (4) 0.058 (6) 0.034 (5) 0.011 (5) 0.006 (4) −0.003 (5)
F1 0.071 (5) 0.122 (7) 0.127 (7) 0.029 (5) 0.007 (5) 0.055 (5)
F2 0.057 (4) 0.103 (6) 0.136 (7) 0.016 (4) 0.042 (4) 0.000 (4)
F3 0.118 (6) 0.166 (7) 0.044 (4) −0.038 (6) 0.003 (4) −0.018 (5)
F4 0.079 (5) 0.118 (6) 0.095 (5) −0.046 (4) 0.005 (4) −0.025 (5)

Geometric parameters (Å, º)

Ag1—N11 2.145 (6) C13—C14 1.405 (11)
Ag1—N23i 2.155 (6) C14—C15 1.382 (11)
Ag1—F1ii 3.168 (9) C14—H14 0.9500
Ag1—F2 2.832 (8) C15—C16 1.365 (11)
Ag1—F2iii 2.972 (7) C15—H15 0.9500
O1—C1 1.210 (9) C16—H16 0.9500
O2—C1 1.345 (9) C21—C22 1.389 (10)
O2—C2 1.443 (9) C21—C26 1.394 (11)
O3—C4 1.196 (9) C22—N23 1.327 (10)
O4—C4 1.341 (9) C22—H22 0.9500
O4—C3 1.458 (9) N23—C24 1.352 (11)
C1—C13 1.504 (11) N23—Ag1iv 2.155 (6)
C2—C3 1.492 (12) C24—C25 1.382 (12)
C2—H2A 0.9900 C24—H24 0.9500
C2—H2B 0.9900 C25—C26 1.383 (12)
C3—H3A 0.9900 C25—H25 0.9500
C3—H3B 0.9900 C26—H26 0.9500
C4—C21 1.506 (10) B1—F1 1.329 (13)
N11—C12 1.332 (10) B1—F2 1.344 (11)
N11—C16 1.356 (11) B1—F3 1.379 (12)
C12—C13 1.389 (11) B1—F4 1.391 (13)
C12—H12 0.9500
N11—Ag1—N23i 168.8 (3) C13—C14—H14 121.5
C1—O2—C2 115.4 (6) C16—C15—C14 120.1 (8)
C4—O4—C3 114.7 (6) C16—C15—H15 119.9
O1—C1—O2 124.5 (7) C14—C15—H15 119.9
O1—C1—C13 123.3 (7) N11—C16—C15 122.6 (8)
O2—C1—C13 112.2 (7) N11—C16—H16 118.7
O2—C2—C3 112.9 (7) C15—C16—H16 118.7
O2—C2—H2A 109.0 C22—C21—C26 119.8 (7)
C3—C2—H2A 109.0 C22—C21—C4 117.0 (7)
O2—C2—H2B 109.0 C26—C21—C4 123.2 (6)
C3—C2—H2B 109.0 N23—C22—C21 121.9 (8)
H2A—C2—H2B 107.8 N23—C22—H22 119.0
O4—C3—C2 108.1 (7) C21—C22—H22 119.0
O4—C3—H3A 110.1 C22—N23—C24 118.6 (7)
C2—C3—H3A 110.1 C22—N23—Ag1iv 123.5 (6)
O4—C3—H3B 110.1 C24—N23—Ag1iv 117.3 (5)
C2—C3—H3B 110.1 N23—C24—C25 122.7 (8)
H3A—C3—H3B 108.4 N23—C24—H24 118.7
O3—C4—O4 124.8 (7) C25—C24—H24 118.7
O3—C4—C21 123.7 (7) C24—C25—C26 119.1 (8)
O4—C4—C21 111.6 (6) C24—C25—H25 120.4
C12—N11—C16 118.7 (7) C26—C25—H25 120.4
C12—N11—Ag1 123.7 (5) C25—C26—C21 117.9 (7)
C16—N11—Ag1 117.3 (5) C25—C26—H26 121.1
N11—C12—C13 121.2 (8) C21—C26—H26 121.1
N11—C12—H12 119.4 F1—B1—F2 111.1 (9)
C13—C12—H12 119.4 F1—B1—F3 108.1 (10)
C12—C13—C14 120.3 (7) F2—B1—F3 108.0 (9)
C12—C13—C1 117.5 (7) F1—B1—F4 110.8 (9)
C14—C13—C1 122.2 (7) F2—B1—F4 113.1 (9)
C15—C14—C13 116.9 (7) F3—B1—F4 105.3 (8)
C15—C14—H14 121.5
C2—O2—C1—O1 2.8 (11) C13—C14—C15—C16 −2.1 (13)
C2—O2—C1—C13 −176.4 (6) C12—N11—C16—C15 1.8 (14)
C1—O2—C2—C3 −93.6 (8) Ag1—N11—C16—C15 −172.7 (7)
C4—O4—C3—C2 −152.9 (7) C14—C15—C16—N11 0.6 (14)
O2—C2—C3—O4 −63.9 (9) O3—C4—C21—C22 8.2 (13)
C3—O4—C4—O3 3.4 (12) O4—C4—C21—C22 −171.7 (7)
C3—O4—C4—C21 −176.7 (7) O3—C4—C21—C26 −170.4 (9)
N23i—Ag1—N11—C12 −177.4 (12) O4—C4—C21—C26 9.7 (12)
N23i—Ag1—N11—C16 −3.2 (18) C26—C21—C22—N23 1.0 (13)
C16—N11—C12—C13 −2.5 (12) C4—C21—C22—N23 −177.7 (8)
Ag1—N11—C12—C13 171.6 (6) C21—C22—N23—C24 0.2 (12)
N11—C12—C13—C14 0.9 (13) C21—C22—N23—Ag1iv −170.8 (6)
N11—C12—C13—C1 179.9 (8) C22—N23—C24—C25 −0.3 (13)
O1—C1—C13—C12 −14.4 (12) Ag1iv—N23—C24—C25 171.3 (7)
O2—C1—C13—C12 164.9 (7) N23—C24—C25—C26 −1.0 (14)
O1—C1—C13—C14 164.7 (8) C24—C25—C26—C21 2.1 (14)
O2—C1—C13—C14 −16.1 (11) C22—C21—C26—C25 −2.2 (13)
C12—C13—C14—C15 1.4 (12) C4—C21—C26—C25 176.4 (8)
C1—C13—C14—C15 −177.6 (8)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1/2, y−1/2, z; (iii) −x+1/2, y+1/2, z; (iv) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2064).

References

  1. Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Brito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897–901.
  4. Brito, I., Vallejos, J., López-Rodríguez, M. & Cárdenas, A. (2010). Acta Cryst. E66, o114. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018399/ff2064sup1.cif

e-68-0m705-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018399/ff2064Isup2.hkl

e-68-0m705-Isup2.hkl (136.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES