Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 4;68(Pt 5):o1294–o1295. doi: 10.1107/S1600536812013517

6-Chloro-N 4,N 4-dimethyl­pyrimidine-2,4-diamine

Yuan-Yuan Pang a, Kai Yu a, Bin Sun a, Dian-Shun Guo a,*
PMCID: PMC3344442  PMID: 22590204

Abstract

The asymmetric unit of the title compound, C6H9ClN4, contains four independent mol­ecules (A, B, C and D). Their main difference is the torsion angles, ranging from 1.6 (5) to 5.9 (5)°, between the methyl group and the pyrimidine plane. A pair of inter­molecular N—H⋯N hydrogen bonds link mol­ecules A and C into a twisted dimer with a dihedral angle of 32.9 (1)° between the two pyrimidine rings, creating an R 2 2(8) motif. In the packing, each two mol­ecules of B, C and D form centrosymmetric dimers through two inter­molecular N—H⋯N hydrogen bonds, locally creating R 2 2(8) motifs. The dimers of C and D are alternately bridged by A into an infinite zigzag strip, locally creating two different R 2 2(8) motifs with dihedral angles of 32.9 (1) and 63.4 (1)° between the pyrimidine rings. Finally, these strips together with the dimers of B associate into a complicated three-dimensional framework.

Related literature  

For background to pyrimidine derivatives, see: Ligthart et al. (2005); Rabie et al. (2007); Goswami et al.(2008); Sherrington & Taskinen (2001). For similar structures, see: Cetina et al. (2005); Fun et al. (2006); Li et al. (2008); Ebenezer & Muthiah (2010); Cheng et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1294-scheme1.jpg

Experimental  

Crystal data  

  • C6H9ClN4

  • M r = 172.62

  • Triclinic, Inline graphic

  • a = 7.9438 (19) Å

  • b = 14.225 (3) Å

  • c = 14.895 (3) Å

  • α = 100.114 (3)°

  • β = 94.421 (4)°

  • γ = 100.524 (4)°

  • V = 1618.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.21 × 0.18 × 0.16 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.919, T max = 0.937

  • 8239 measured reflections

  • 5619 independent reflections

  • 3769 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.136

  • S = 0.97

  • 5619 reflections

  • 405 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013517/zq2159sup1.cif

e-68-o1294-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013517/zq2159Isup2.hkl

e-68-o1294-Isup2.hkl (275.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013517/zq2159Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11B⋯N1 0.87 2.48 3.310 (4) 161
N3—H3A⋯N9 0.86 2.41 3.264 (4) 168
N16—H16B⋯N15i 0.87 2.17 3.038 (4) 174
N11—H11A⋯N10ii 0.87 2.21 3.086 (4) 174
N7—H7B⋯N5iii 0.88 2.19 3.064 (3) 178
N3—H3B⋯N6iv 0.89 2.35 3.230 (4) 169
N7—H7A⋯N2iv 0.87 2.33 3.136 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

supplementary crystallographic information

Comment

Functionalized pyrimidines play a major role in molecular recognition and supramolecular chemistry because of their potential ability to form stable hydrogen-bonded chains via their stereochemically associated amino groups and annular N atoms (Sherrington et al., 2001; Ligthart et al., 2005; Rabie et al., 2007; Goswami et al., 2008; Cheng et al., 2011). Lots of substituted 2-aminopyrimidine compounds have been elucidated (Fun et al., 2006; Li et al., 2008; Ebenezer et al., 2010; Cheng et al., 2011). We report here the crystal structure of a related organic compound, 6-chloro-N4,N4-dimethylpyrimidine-2,4-diamine.

The title compound, C6H9ClN4, contains four crystallographically independent molecules (Fig. 1), A, B, C and D, in the asymmetric unit, among which A and C are connected into a twisted dimer by two intermolecular N3—H3A···N9 and N11—H11B···N1 hydrogen bonds (Table 1), with a dihedral angle of 32.9 (1)° between the two pyrimidine rings. The bond lengths and angles of all molecules are similar except for the torsion angles between the methyl groups and the pyrimidine rings, ranging from 1.6 (5) to 5.9 (5)°.

In the packing of the title compound, each inversion-related two molecules of B, C and D form a centrosymmetric dimer through two intermolecular N—H···N hydrogen bonds (Table 1), locally creating an R22(8) motif (Bernstein et al., 1995). For example, in the dimer of D (Fig. 2), hydrogen bonds arise from atoms N7—H7B at (x, y, z) and (-x + 1, -y + 1, -z), which act as hydrogen-bond donors, respectively, to atoms N5 at (-x + 1, -y + 1, -z) and (x, y, z). The dimers of C and D are alternately arranged and bridged by the molecule A, creating an infinite zigzag strip (Cetina et al., 2005) (Fig. 3). In such a strip, the amino group of each molecule acts as a dual donor in N—H···N hydrogen bonds, while the pyrimidine ring serves as a dual acceptor. Interestingly, two different R22(8) motifs are formed with dihedral angles of 32.9 (1) and 63.4 (1)° between two adjacent pyrimidine rings. Finally, these strips together with the dimers of B are packed into a complicated three dimensional framework.

Experimental

2-Amino-4,6-dichloropyrimidine (0.082 g, 0.5 mmol) and K2CO3 (0.276 g, 2 mmol) were dissolved in DMF (2 ml) and H2O (2 ml), the mixture was heated at 343 K for 0.5 h and then cooled to room temperature. The resulting mixture was extracted with ethyl acetate. The organic layer was separated and washed with brine, then dried over anhydrous MgSO4. Removal of the solvent under reduced pressure gave the title compound as a yellow solid (yield 85%). Single crystals suitable for X-ray diffraction analysis were obtained by liquid–liquid diffusion from hexane and CH2Cl2 at 298 K.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) (aromatic); C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) (methyl); N—H = 0.87–0.88 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

A centrosymmetric dimer of the D molecule, viewed along the crystallographic b axis, showing the R22(8) motif. For the sake of clarity, H atoms not involved in the motif have been omitted [symmetry code: (i) -x + 1, -y + 1, -z].

Fig. 3.

Fig. 3.

An infinite zigzag strip formed by a combination of A, C and D through hydrogen bonds, showing different R22(8) motifs. For the sake of clarity, H atoms not involved in the motifs have been omitted [symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y, -z + 1].

Crystal data

C6H9ClN4 Z = 8
Mr = 172.62 F(000) = 720
Triclinic, P1 Dx = 1.417 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9438 (19) Å Cell parameters from 2311 reflections
b = 14.225 (3) Å θ = 2.6–27.7°
c = 14.895 (3) Å µ = 0.41 mm1
α = 100.114 (3)° T = 298 K
β = 94.421 (4)° Block, colourless
γ = 100.524 (4)° 0.21 × 0.18 × 0.16 mm
V = 1618.7 (7) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 5619 independent reflections
Radiation source: fine-focus sealed tube 3769 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
phi and ω scans θmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −9→8
Tmin = 0.919, Tmax = 0.937 k = −16→16
8239 measured reflections l = −17→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0681P)2] where P = (Fo2 + 2Fc2)/3
5619 reflections (Δ/σ)max = 0.001
405 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3407 (3) 0.34115 (18) 0.54662 (16) 0.0383 (6)
N2 0.4648 (3) 0.47960 (18) 0.66542 (16) 0.0369 (6)
N3 0.5150 (4) 0.32771 (19) 0.67110 (18) 0.0534 (8)
N4 0.1803 (4) 0.3573 (2) 0.41724 (17) 0.0498 (8)
N5 0.3131 (3) 0.56029 (17) 0.00737 (15) 0.0377 (6)
N6 0.2031 (3) 0.57494 (17) 0.15383 (16) 0.0356 (6)
N7 0.4281 (4) 0.49791 (19) 0.12364 (16) 0.0469 (8)
N8 −0.0361 (4) 0.64285 (19) 0.18002 (18) 0.0451 (7)
N9 0.4193 (3) 0.08990 (18) 0.62696 (16) 0.0379 (6)
N10 0.1931 (3) −0.03793 (18) 0.54295 (16) 0.0390 (7)
N11 0.1596 (4) 0.12009 (19) 0.5723 (2) 0.0542 (8)
N12 0.6743 (4) 0.0572 (2) 0.68555 (18) 0.0478 (7)
N13 0.3235 (4) 0.9764 (2) 0.83692 (19) 0.0511 (8)
N14 0.5994 (4) 1.03959 (18) 0.90517 (17) 0.0405 (7)
N15 0.8008 (3) 0.93718 (19) 0.93227 (17) 0.0412 (7)
N16 0.8765 (4) 1.10315 (19) 0.9711 (2) 0.0567 (8)
C1 0.2689 (4) 0.3996 (2) 0.4992 (2) 0.0387 (8)
C2 0.2883 (4) 0.4998 (2) 0.5353 (2) 0.0405 (8)
H2 0.2382 0.5412 0.5047 0.049*
C3 0.3852 (4) 0.5320 (2) 0.6179 (2) 0.0370 (8)
C4 0.4379 (4) 0.3849 (2) 0.6250 (2) 0.0399 (8)
C5 0.1705 (5) 0.2558 (3) 0.3791 (2) 0.0619 (11)
H5A 0.2531 0.2309 0.4139 0.093*
H5B 0.1951 0.2490 0.3164 0.093*
H5C 0.0568 0.2198 0.3815 0.093*
C6 0.1034 (5) 0.4146 (3) 0.3586 (2) 0.0667 (11)
H6A 0.0397 0.4559 0.3942 0.100*
H6B 0.0272 0.3715 0.3092 0.100*
H6C 0.1929 0.4541 0.3340 0.100*
C7 0.0773 (4) 0.6171 (2) 0.1222 (2) 0.0362 (8)
C8 −0.1760 (5) 0.6879 (3) 0.1505 (3) 0.0643 (11)
H8A −0.1297 0.7441 0.1262 0.096*
H8B −0.2361 0.7072 0.2020 0.096*
H8C −0.2544 0.6420 0.1039 0.096*
C9 −0.0343 (5) 0.6179 (3) 0.2706 (2) 0.0570 (10)
H9A −0.1284 0.5649 0.2705 0.086*
H9B −0.0458 0.6735 0.3150 0.086*
H9C 0.0725 0.5990 0.2861 0.086*
C10 0.0687 (4) 0.6347 (2) 0.0317 (2) 0.0376 (8)
H10 −0.0150 0.6648 0.0084 0.045*
C11 0.1901 (4) 0.6050 (2) −0.01859 (19) 0.0363 (8)
C12 0.3096 (4) 0.5455 (2) 0.09442 (19) 0.0348 (7)
C13 0.7969 (5) −0.0067 (3) 0.6925 (2) 0.0623 (11)
H13A 0.7474 −0.0597 0.7204 0.093*
H13B 0.9006 0.0295 0.7293 0.093*
H13C 0.8232 −0.0321 0.6322 0.093*
C14 0.7279 (5) 0.1570 (2) 0.7337 (3) 0.0610 (11)
H14A 0.7736 0.1970 0.6921 0.092*
H14B 0.8149 0.1607 0.7833 0.092*
H14C 0.6306 0.1797 0.7577 0.092*
C15 0.5186 (4) 0.0239 (2) 0.63617 (19) 0.0375 (8)
C16 0.4614 (4) −0.0744 (2) 0.5956 (2) 0.0418 (8)
H16 0.5303 −0.1203 0.5987 0.050*
C17 0.2997 (4) −0.0987 (2) 0.55161 (19) 0.0367 (8)
C18 0.2619 (4) 0.0556 (2) 0.5810 (2) 0.0380 (8)
C19 0.1863 (5) 0.8969 (3) 0.7904 (3) 0.0694 (12)
H19A 0.2290 0.8584 0.7410 0.104*
H19B 0.0928 0.9228 0.7663 0.104*
H19C 0.1462 0.8569 0.8330 0.104*
C20 0.2873 (5) 1.0738 (3) 0.8461 (2) 0.0594 (11)
H20A 0.3797 1.1194 0.8848 0.089*
H20B 0.1816 1.0755 0.8730 0.089*
H20C 0.2765 1.0909 0.7867 0.089*
C21 0.4788 (4) 0.9608 (2) 0.8677 (2) 0.0394 (8)
C22 0.5135 (4) 0.8663 (2) 0.8614 (2) 0.0447 (9)
H22 0.4315 0.8106 0.8359 0.054*
C23 0.6750 (5) 0.8624 (2) 0.8952 (2) 0.0419 (8)
C24 0.7528 (4) 1.0241 (2) 0.9355 (2) 0.0396 (8)
Cl1 0.41068 (13) 0.65460 (6) 0.66924 (6) 0.0559 (3)
Cl2 0.72990 (15) 0.74846 (7) 0.89197 (7) 0.0725 (3)
Cl3 0.21621 (13) −0.21962 (6) 0.49962 (6) 0.0594 (3)
Cl4 0.19291 (13) 0.62621 (7) −0.13080 (5) 0.0581 (3)
H7A 0.4312 0.4882 0.1794 0.070*
H11B 0.2061 0.1818 0.5803 0.070*
H16A 0.8516 1.1614 0.9822 0.070*
H3A 0.4991 0.2653 0.6522 0.070*
H7B 0.5017 0.4822 0.0852 0.070*
H16B 0.9661 1.0935 1.0027 0.070*
H3B 0.5805 0.3546 0.7235 0.070*
H11A 0.0579 0.1009 0.5408 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0343 (17) 0.0405 (16) 0.0382 (14) 0.0061 (13) −0.0005 (12) 0.0055 (12)
N2 0.0337 (17) 0.0400 (16) 0.0369 (14) 0.0079 (13) 0.0031 (12) 0.0067 (12)
N3 0.066 (2) 0.0450 (17) 0.0496 (17) 0.0224 (16) −0.0095 (15) 0.0045 (13)
N4 0.047 (2) 0.060 (2) 0.0405 (16) 0.0082 (15) −0.0063 (14) 0.0101 (14)
N5 0.0362 (17) 0.0406 (16) 0.0368 (15) 0.0086 (13) 0.0070 (12) 0.0070 (11)
N6 0.0336 (17) 0.0365 (15) 0.0388 (14) 0.0103 (13) 0.0078 (12) 0.0078 (11)
N7 0.050 (2) 0.0593 (19) 0.0398 (15) 0.0284 (16) 0.0106 (13) 0.0122 (13)
N8 0.0385 (18) 0.0476 (17) 0.0540 (17) 0.0158 (14) 0.0164 (14) 0.0101 (13)
N9 0.0298 (16) 0.0432 (16) 0.0411 (15) 0.0069 (13) −0.0009 (12) 0.0115 (12)
N10 0.0314 (17) 0.0422 (17) 0.0415 (15) 0.0040 (14) −0.0016 (12) 0.0093 (12)
N11 0.0368 (19) 0.0418 (17) 0.081 (2) 0.0086 (14) −0.0111 (16) 0.0110 (14)
N12 0.0370 (18) 0.0517 (19) 0.0523 (17) 0.0066 (15) −0.0087 (14) 0.0122 (14)
N13 0.0315 (18) 0.059 (2) 0.0599 (18) 0.0097 (15) −0.0050 (14) 0.0063 (14)
N14 0.0359 (18) 0.0409 (16) 0.0439 (15) 0.0071 (14) 0.0011 (13) 0.0086 (12)
N15 0.0354 (17) 0.0395 (17) 0.0452 (15) 0.0040 (14) −0.0049 (13) 0.0062 (12)
N16 0.048 (2) 0.0376 (17) 0.077 (2) 0.0010 (15) −0.0156 (16) 0.0083 (14)
C1 0.0256 (19) 0.049 (2) 0.0412 (18) 0.0038 (16) 0.0070 (15) 0.0107 (15)
C2 0.033 (2) 0.050 (2) 0.0437 (19) 0.0134 (16) 0.0066 (15) 0.0154 (15)
C3 0.032 (2) 0.0403 (19) 0.0410 (18) 0.0072 (16) 0.0159 (15) 0.0094 (14)
C4 0.033 (2) 0.046 (2) 0.0418 (18) 0.0081 (16) 0.0063 (15) 0.0116 (16)
C5 0.061 (3) 0.060 (3) 0.050 (2) −0.008 (2) −0.0051 (19) −0.0023 (17)
C6 0.054 (3) 0.095 (3) 0.051 (2) 0.019 (2) −0.0105 (19) 0.017 (2)
C7 0.034 (2) 0.0230 (17) 0.0479 (18) 0.0003 (15) 0.0042 (15) 0.0028 (13)
C8 0.047 (3) 0.069 (3) 0.086 (3) 0.029 (2) 0.020 (2) 0.015 (2)
C9 0.057 (3) 0.059 (2) 0.058 (2) 0.010 (2) 0.0266 (19) 0.0089 (17)
C10 0.035 (2) 0.0297 (18) 0.0488 (19) 0.0062 (15) 0.0008 (16) 0.0107 (14)
C11 0.039 (2) 0.0290 (17) 0.0374 (17) −0.0008 (15) 0.0005 (15) 0.0074 (13)
C12 0.033 (2) 0.0321 (18) 0.0383 (17) 0.0067 (15) 0.0053 (15) 0.0040 (13)
C13 0.041 (2) 0.076 (3) 0.071 (3) 0.018 (2) −0.009 (2) 0.017 (2)
C14 0.050 (3) 0.053 (2) 0.073 (3) −0.0062 (19) −0.019 (2) 0.0236 (19)
C15 0.031 (2) 0.047 (2) 0.0357 (17) 0.0060 (16) 0.0044 (15) 0.0143 (14)
C16 0.033 (2) 0.048 (2) 0.0485 (19) 0.0157 (17) 0.0056 (16) 0.0128 (16)
C17 0.034 (2) 0.0422 (19) 0.0354 (17) 0.0076 (16) 0.0033 (15) 0.0108 (14)
C18 0.030 (2) 0.046 (2) 0.0405 (17) 0.0097 (17) 0.0055 (15) 0.0134 (15)
C19 0.038 (2) 0.088 (3) 0.076 (3) 0.006 (2) −0.010 (2) 0.014 (2)
C20 0.052 (3) 0.074 (3) 0.061 (2) 0.032 (2) 0.0055 (19) 0.0148 (19)
C21 0.035 (2) 0.043 (2) 0.0380 (17) 0.0033 (17) 0.0050 (15) 0.0064 (14)
C22 0.039 (2) 0.042 (2) 0.0471 (19) −0.0002 (17) −0.0058 (16) 0.0035 (15)
C23 0.046 (2) 0.037 (2) 0.0430 (18) 0.0104 (17) −0.0022 (17) 0.0085 (14)
C24 0.038 (2) 0.039 (2) 0.0386 (17) 0.0002 (17) 0.0019 (15) 0.0080 (14)
Cl1 0.0686 (7) 0.0406 (5) 0.0582 (5) 0.0122 (5) 0.0097 (5) 0.0062 (4)
Cl2 0.0785 (8) 0.0406 (6) 0.0913 (7) 0.0163 (5) −0.0270 (6) 0.0051 (5)
Cl3 0.0610 (7) 0.0407 (5) 0.0700 (6) 0.0063 (5) −0.0074 (5) 0.0037 (4)
Cl4 0.0674 (7) 0.0670 (6) 0.0436 (5) 0.0108 (5) 0.0059 (4) 0.0233 (4)

Geometric parameters (Å, º)

N1—C4 1.333 (4) C1—C2 1.409 (4)
N1—C1 1.353 (4) C2—C3 1.357 (4)
N2—C3 1.321 (4) C2—H2 0.9300
N2—C4 1.347 (4) C3—Cl1 1.746 (3)
N3—C4 1.350 (4) C5—H5A 0.9600
N3—H3A 0.8649 C5—H5B 0.9600
N3—H3B 0.8870 C5—H5C 0.9600
N4—C1 1.343 (4) C6—H6A 0.9600
N4—C5 1.441 (4) C6—H6B 0.9600
N4—C6 1.467 (4) C6—H6C 0.9600
N5—C11 1.329 (4) C7—C10 1.411 (4)
N5—C12 1.351 (3) C8—H8A 0.9600
N6—C12 1.338 (4) C8—H8B 0.9600
N6—C7 1.351 (4) C8—H8C 0.9600
N7—C12 1.344 (4) C9—H9A 0.9600
N7—H7A 0.8654 C9—H9B 0.9600
N7—H7B 0.8789 C9—H9C 0.9600
N8—C7 1.348 (4) C10—C11 1.349 (4)
N8—C9 1.453 (4) C10—H10 0.9300
N8—C8 1.456 (4) C11—Cl4 1.751 (3)
N9—C18 1.341 (4) C13—H13A 0.9600
N9—C15 1.350 (4) C13—H13B 0.9600
N10—C17 1.330 (4) C13—H13C 0.9600
N10—C18 1.346 (4) C14—H14A 0.9600
N11—C18 1.348 (4) C14—H14B 0.9600
N11—H11B 0.8716 C14—H14C 0.9600
N11—H11A 0.8741 C15—C16 1.399 (4)
N12—C15 1.349 (4) C16—C17 1.352 (4)
N12—C14 1.444 (4) C16—H16 0.9300
N12—C13 1.458 (4) C17—Cl3 1.742 (3)
N13—C21 1.353 (4) C19—H19A 0.9600
N13—C20 1.450 (4) C19—H19B 0.9600
N13—C19 1.452 (5) C19—H19C 0.9600
N14—C24 1.337 (4) C20—H20A 0.9600
N14—C21 1.338 (4) C20—H20B 0.9600
N15—C23 1.325 (4) C20—H20C 0.9600
N15—C24 1.353 (4) C21—C22 1.409 (4)
N16—C24 1.348 (4) C22—C23 1.356 (4)
N16—H16A 0.8773 C22—H22 0.9300
N16—H16B 0.8682 C23—Cl2 1.747 (3)
C4—N1—C1 116.3 (3) H8B—C8—H8C 109.5
C3—N2—C4 113.1 (3) N8—C9—H9A 109.5
C4—N3—H3A 122.0 N8—C9—H9B 109.5
C4—N3—H3B 118.9 H9A—C9—H9B 109.5
H3A—N3—H3B 119.1 N8—C9—H9C 109.5
C1—N4—C5 121.6 (3) H9A—C9—H9C 109.5
C1—N4—C6 121.2 (3) H9B—C9—H9C 109.5
C5—N4—C6 116.9 (3) C11—C10—C7 115.4 (3)
C11—N5—C12 113.1 (3) C11—C10—H10 122.3
C12—N6—C7 117.2 (2) C7—C10—H10 122.3
C12—N7—H7A 118.4 N5—C11—C10 127.1 (3)
C12—N7—H7B 116.9 N5—C11—Cl4 114.1 (2)
H7A—N7—H7B 124.6 C10—C11—Cl4 118.8 (2)
C7—N8—C9 121.4 (3) N6—C12—N7 117.7 (3)
C7—N8—C8 121.0 (3) N6—C12—N5 126.5 (3)
C9—N8—C8 117.3 (3) N7—C12—N5 115.8 (3)
C18—N9—C15 116.7 (3) N12—C13—H13A 109.5
C17—N10—C18 113.7 (3) N12—C13—H13B 109.5
C18—N11—H11B 119.1 H13A—C13—H13B 109.5
C18—N11—H11A 120.3 N12—C13—H13C 109.5
H11B—N11—H11A 117.1 H13A—C13—H13C 109.5
C15—N12—C14 122.1 (3) H13B—C13—H13C 109.5
C15—N12—C13 121.0 (3) N12—C14—H14A 109.5
C14—N12—C13 116.9 (3) N12—C14—H14B 109.5
C21—N13—C20 121.8 (3) H14A—C14—H14B 109.5
C21—N13—C19 121.7 (3) N12—C14—H14C 109.5
C20—N13—C19 116.5 (3) H14A—C14—H14C 109.5
C24—N14—C21 116.9 (3) H14B—C14—H14C 109.5
C23—N15—C24 112.7 (3) N12—C15—N9 117.0 (3)
C24—N16—H16A 120.6 N12—C15—C16 122.0 (3)
C24—N16—H16B 116.8 N9—C15—C16 120.9 (3)
H16A—N16—H16B 117.8 C17—C16—C15 115.9 (3)
N4—C1—N1 116.8 (3) C17—C16—H16 122.1
N4—C1—C2 122.5 (3) C15—C16—H16 122.1
N1—C1—C2 120.7 (3) N10—C17—C16 126.1 (3)
C3—C2—C1 115.4 (3) N10—C17—Cl3 114.6 (2)
C3—C2—H2 122.3 C16—C17—Cl3 119.3 (2)
C1—C2—H2 122.3 N9—C18—N10 126.6 (3)
N2—C3—C2 126.7 (3) N9—C18—N11 117.6 (3)
N2—C3—Cl1 114.8 (2) N10—C18—N11 115.8 (3)
C2—C3—Cl1 118.5 (2) N13—C19—H19A 109.5
N1—C4—N2 127.6 (3) N13—C19—H19B 109.5
N1—C4—N3 116.7 (3) H19A—C19—H19B 109.5
N2—C4—N3 115.7 (3) N13—C19—H19C 109.5
N4—C5—H5A 109.5 H19A—C19—H19C 109.5
N4—C5—H5B 109.5 H19B—C19—H19C 109.5
H5A—C5—H5B 109.5 N13—C20—H20A 109.5
N4—C5—H5C 109.5 N13—C20—H20B 109.5
H5A—C5—H5C 109.5 H20A—C20—H20B 109.5
H5B—C5—H5C 109.5 N13—C20—H20C 109.5
N4—C6—H6A 109.5 H20A—C20—H20C 109.5
N4—C6—H6B 109.5 H20B—C20—H20C 109.5
H6A—C6—H6B 109.5 N14—C21—N13 116.9 (3)
N4—C6—H6C 109.5 N14—C21—C22 121.0 (3)
H6A—C6—H6C 109.5 N13—C21—C22 122.1 (3)
H6B—C6—H6C 109.5 C23—C22—C21 115.3 (3)
N8—C7—N6 117.9 (3) C23—C22—H22 122.4
N8—C7—C10 121.8 (3) C21—C22—H22 122.4
N6—C7—C10 120.4 (3) N15—C23—C22 126.9 (3)
N8—C8—H8A 109.5 N15—C23—Cl2 114.3 (2)
N8—C8—H8B 109.5 C22—C23—Cl2 118.8 (3)
H8A—C8—H8B 109.5 N14—C24—N16 117.3 (3)
N8—C8—H8C 109.5 N14—C24—N15 127.2 (3)
H8A—C8—H8C 109.5 N16—C24—N15 115.5 (3)
C5—N4—C1—N1 −3.6 (5) C14—N12—C15—N9 5.5 (5)
C6—N4—C1—N1 −177.5 (3) C13—N12—C15—N9 −174.5 (3)
C5—N4—C1—C2 176.3 (3) C14—N12—C15—C16 −174.8 (3)
C6—N4—C1—C2 2.4 (5) C13—N12—C15—C16 5.3 (5)
C4—N1—C1—N4 175.7 (3) C18—N9—C15—N12 −177.3 (3)
C4—N1—C1—C2 −4.2 (4) C18—N9—C15—C16 2.9 (4)
N4—C1—C2—C3 −178.4 (3) N12—C15—C16—C17 177.1 (3)
N1—C1—C2—C3 1.4 (5) N9—C15—C16—C17 −3.2 (5)
C4—N2—C3—C2 −1.8 (5) C18—N10—C17—C16 1.8 (5)
C4—N2—C3—Cl1 178.1 (2) C18—N10—C17—Cl3 −178.0 (2)
C1—C2—C3—N2 1.8 (5) C15—C16—C17—N10 0.8 (5)
C1—C2—C3—Cl1 −178.2 (2) C15—C16—C17—Cl3 −179.5 (2)
C1—N1—C4—N2 4.4 (5) C15—N9—C18—N10 −0.2 (5)
C1—N1—C4—N3 −177.7 (3) C15—N9—C18—N11 179.0 (3)
C3—N2—C4—N1 −1.5 (5) C17—N10—C18—N9 −2.1 (5)
C3—N2—C4—N3 −179.4 (3) C17—N10—C18—N11 178.7 (3)
C9—N8—C7—N6 −5.8 (5) C24—N14—C21—N13 −180.0 (3)
C8—N8—C7—N6 −179.5 (3) C24—N14—C21—C22 0.4 (4)
C9—N8—C7—C10 175.3 (3) C20—N13—C21—N14 −1.5 (5)
C8—N8—C7—C10 1.6 (5) C19—N13—C21—N14 176.5 (3)
C12—N6—C7—N8 176.8 (3) C20—N13—C21—C22 178.1 (3)
C12—N6—C7—C10 −4.3 (4) C19—N13—C21—C22 −3.9 (5)
N8—C7—C10—C11 −179.9 (3) N14—C21—C22—C23 −0.3 (4)
N6—C7—C10—C11 1.2 (4) N13—C21—C22—C23 −179.9 (3)
C12—N5—C11—C10 −0.3 (5) C24—N15—C23—C22 1.0 (5)
C12—N5—C11—Cl4 179.4 (2) C24—N15—C23—Cl2 −178.6 (2)
C7—C10—C11—N5 1.2 (5) C21—C22—C23—N15 −0.4 (5)
C7—C10—C11—Cl4 −178.6 (2) C21—C22—C23—Cl2 179.2 (2)
C7—N6—C12—N7 −175.9 (3) C21—N14—C24—N16 178.2 (3)
C7—N6—C12—N5 5.5 (5) C21—N14—C24—N15 0.3 (5)
C11—N5—C12—N6 −3.2 (5) C23—N15—C24—N14 −1.0 (5)
C11—N5—C12—N7 178.2 (3) C23—N15—C24—N16 −178.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11B···N1 0.87 2.48 3.310 (4) 161
N3—H3A···N9 0.86 2.41 3.264 (4) 168
N16—H16B···N15i 0.87 2.17 3.038 (4) 174
N11—H11A···N10ii 0.87 2.21 3.086 (4) 174
N7—H7B···N5iii 0.88 2.19 3.064 (3) 178
N3—H3B···N6iv 0.89 2.35 3.230 (4) 169
N7—H7A···N2iv 0.87 2.33 3.136 (3) 155

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2159).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cetina, M., Nagl, A., Prekupec, S., Raić-Malić, S. & Mintas, M. (2005). Acta Cryst. C61, o158–o160. [DOI] [PubMed]
  4. Cheng, Y., Chen, L.-S., Liu, Q.-K., Wu, J. & Guo, D.-S. (2011). Acta Cryst. C67, o244–o248. [DOI] [PubMed]
  5. Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334.
  7. Goswami, S., Jana, S., Hazra, A., Fun, H.-K. & Chantrapromma, S. (2008). Supramol. Chem. 20, 495–500.
  8. Li, Z.-J., Huang, J.-E. & Meng, A.-L. (2008). Acta Cryst. E64, o759. [DOI] [PMC free article] [PubMed]
  9. Ligthart, G. B. W. L., Ohkawa, H., Sijbesma, R. P. & Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 810–811. [DOI] [PubMed]
  10. Rabie, U. M., Abou-El-Wafa, M. H. & Mohamed, R. A. (2007). J. Mol. Struct. 871, 6–13.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013517/zq2159sup1.cif

e-68-o1294-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013517/zq2159Isup2.hkl

e-68-o1294-Isup2.hkl (275.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013517/zq2159Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES