Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 4;68(Pt 5):o1298. doi: 10.1107/S160053681201389X

5-Bromo-2-methyl-3-(4-methyl­phenyl­sulfin­yl)-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3344444  PMID: 22590206

Abstract

In the title compound, C16H13BrO2S, the 4-methyl­phenyl ring makes a dihedral angle of 87.83 (6)° with the mean plane [mean deviation = 0.007 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds and Br⋯O contacts [3.099 (2) Å]. The crystal structure also exhibits π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.637 (2) Å, inter­planar distance = 3.317 (2) Å and slippage = 1.492 (2) Å].

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2010a,b ). For a review of halogen bonding, see: Politzer et al. (2007).graphic file with name e-68-o1298-scheme1.jpg

Experimental  

Crystal data  

  • C16H13BrO2S

  • M r = 349.23

  • Monoclinic, Inline graphic

  • a = 14.3470 (2) Å

  • b = 11.2122 (1) Å

  • c = 9.6852 (1) Å

  • β = 107.556 (1)°

  • V = 1485.41 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 173 K

  • 0.31 × 0.28 × 0.21 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.466, T max = 0.579

  • 14207 measured reflections

  • 3671 independent reflections

  • 2844 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.086

  • S = 1.03

  • 3671 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201389X/xu5502sup1.cif

e-68-o1298-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201389X/xu5502Isup2.hkl

e-68-o1298-Isup2.hkl (180KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201389X/xu5502Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.49 3.420 (3) 165
C9—H9C⋯O2ii 0.98 2.48 3.294 (3) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

As a part of our ongoing study of 5-bromo-2-methyl-1-benzofuran derivatives containing 3-(4-fluorophenylsulfinyl) (Choi et al., 2010a) and 3-(4-chlorophenylsulfinyl) (Choi et al., 2010b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran fragment is 87.83 (6)°. In the crystal structure (Fig. 2), molecules are linked by weak C–H···O hydrogen bonds (Table 1) and Br···O halogen-bondings between the bromine atom and the O atom of the S=O unit [Br1···O2i = 3.099 (2) Å, C4—Br1···O2i = 163.52 (8)°] (Politzer et al., 2007). The crystal packing (Fig. 3) also exhibits weak π···π interactions between the furan and benzene rings of neighbouring molecules, with a Cg1···Cg2vii distance of 3.637 (2) Å and an interplanar distance of 3.317 (2) Å resulting in a slippage of 1.492 (2) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and C2–C7 benzene ring, respectively).

Experimental

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-bromo-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran (300 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane/ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 424–425 K; Rf = 0.45 (hexane/ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogen atoms were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O and Br···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x,- y + 1/2,z + 1/2; (ii) - x + 2,y - 1/2,- z + 3/2; (iii) x,- y + 3/2 ,z + 1/2; (iv) x,- y + 1/2,z - 1/2.] (v) - x + 2,y + 1/2,- z + 3/2; (vi) x,- y + 3/2,z - 1/2;

Fig. 3.

Fig. 3.

A view of the π···π interactions (dotted lines) in the crystal structure of the title compound. H atoms were omitted for clarity. [Symmetry codes: (vii) - x + 2,- y + 1,- z + 1.]

Crystal data

C16H13BrO2S F(000) = 704
Mr = 349.23 Dx = 1.562 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5020 reflections
a = 14.3470 (2) Å θ = 2.4–28.1°
b = 11.2122 (1) Å µ = 2.91 mm1
c = 9.6852 (1) Å T = 173 K
β = 107.556 (1)° Block, colourless
V = 1485.41 (3) Å3 0.31 × 0.28 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3671 independent reflections
Radiation source: rotating anode 2844 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.032
Detector resolution: 10.0 pixels mm-1 θmax = 28.3°, θmin = 1.5°
φ and ω scans h = −18→19
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −14→14
Tmin = 0.466, Tmax = 0.579 l = −12→12
14207 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: difference Fourier map
wR(F2) = 0.086 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.8792P] where P = (Fo2 + 2Fc2)/3
3671 reflections (Δ/σ)max = 0.001
183 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.77 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.79550 (2) 0.16838 (2) 0.52417 (3) 0.04775 (11)
S1 0.73033 (4) 0.67240 (5) 0.20895 (5) 0.02775 (13)
O1 0.94299 (11) 0.66889 (13) 0.57489 (16) 0.0296 (3)
O2 0.73660 (12) 0.58439 (15) 0.09690 (16) 0.0386 (4)
C1 0.81812 (15) 0.63651 (19) 0.3736 (2) 0.0253 (4)
C2 0.83871 (14) 0.52469 (18) 0.4514 (2) 0.0244 (4)
C3 0.80193 (15) 0.40884 (19) 0.4307 (2) 0.0282 (4)
H3 0.7502 0.3872 0.3471 0.034*
C4 0.84473 (17) 0.32647 (19) 0.5384 (2) 0.0312 (5)
C5 0.92198 (17) 0.3549 (2) 0.6600 (2) 0.0339 (5)
H5 0.9485 0.2953 0.7306 0.041*
C6 0.96063 (16) 0.4685 (2) 0.6796 (2) 0.0320 (5)
H6 1.0146 0.4889 0.7608 0.038*
C7 0.91637 (15) 0.55073 (19) 0.5743 (2) 0.0258 (4)
C8 0.88224 (15) 0.7186 (2) 0.4515 (2) 0.0267 (4)
C9 0.89826 (18) 0.84651 (19) 0.4301 (3) 0.0356 (5)
H9A 0.8605 0.8699 0.3316 0.053*
H9B 0.9679 0.8607 0.4442 0.053*
H9C 0.8770 0.8937 0.5002 0.053*
C10 0.62293 (15) 0.63534 (19) 0.2582 (2) 0.0263 (4)
C11 0.59828 (17) 0.7053 (2) 0.3594 (2) 0.0350 (5)
H11 0.6393 0.7691 0.4059 0.042*
C12 0.51270 (19) 0.6806 (2) 0.3919 (3) 0.0444 (6)
H12 0.4960 0.7275 0.4627 0.053*
C13 0.45106 (17) 0.5896 (2) 0.3241 (3) 0.0438 (6)
C14 0.47699 (19) 0.5233 (3) 0.2218 (3) 0.0516 (7)
H14 0.4349 0.4611 0.1728 0.062*
C15 0.56315 (18) 0.5448 (2) 0.1883 (3) 0.0422 (6)
H15 0.5802 0.4976 0.1181 0.051*
C16 0.3583 (2) 0.5640 (3) 0.3611 (4) 0.0680 (9)
H16A 0.3730 0.5576 0.4665 0.102*
H16B 0.3299 0.4889 0.3157 0.102*
H16C 0.3115 0.6290 0.3253 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.05663 (18) 0.02626 (14) 0.05713 (18) 0.00091 (11) 0.01230 (13) 0.00537 (11)
S1 0.0306 (3) 0.0274 (3) 0.0236 (2) 0.0031 (2) 0.0058 (2) 0.00431 (19)
O1 0.0262 (7) 0.0322 (8) 0.0285 (7) −0.0028 (6) 0.0055 (6) −0.0021 (6)
O2 0.0464 (10) 0.0442 (10) 0.0271 (8) 0.0076 (8) 0.0138 (7) −0.0025 (7)
C1 0.0230 (10) 0.0281 (10) 0.0249 (10) 0.0010 (8) 0.0074 (8) 0.0031 (8)
C2 0.0211 (9) 0.0297 (10) 0.0231 (9) 0.0033 (8) 0.0077 (8) 0.0017 (8)
C3 0.0251 (10) 0.0289 (11) 0.0289 (10) 0.0016 (9) 0.0055 (8) 0.0001 (8)
C4 0.0342 (12) 0.0247 (10) 0.0364 (12) 0.0039 (9) 0.0130 (9) 0.0016 (9)
C5 0.0366 (12) 0.0357 (12) 0.0288 (11) 0.0144 (10) 0.0090 (9) 0.0058 (9)
C6 0.0286 (11) 0.0414 (13) 0.0239 (10) 0.0092 (10) 0.0048 (8) −0.0005 (9)
C7 0.0230 (10) 0.0303 (11) 0.0254 (10) 0.0018 (8) 0.0092 (8) −0.0019 (8)
C8 0.0243 (10) 0.0314 (11) 0.0267 (10) 0.0008 (9) 0.0108 (8) 0.0010 (8)
C9 0.0413 (13) 0.0290 (12) 0.0384 (12) −0.0070 (10) 0.0152 (10) −0.0013 (9)
C10 0.0237 (10) 0.0273 (10) 0.0241 (10) 0.0040 (8) 0.0015 (8) 0.0021 (8)
C11 0.0341 (12) 0.0352 (12) 0.0333 (12) 0.0022 (10) 0.0063 (10) −0.0069 (9)
C12 0.0373 (13) 0.0571 (17) 0.0396 (14) 0.0115 (12) 0.0127 (11) −0.0027 (12)
C13 0.0282 (12) 0.0504 (15) 0.0513 (15) 0.0074 (11) 0.0099 (11) 0.0130 (12)
C14 0.0347 (14) 0.0459 (16) 0.0705 (19) −0.0131 (12) 0.0103 (13) −0.0137 (14)
C15 0.0379 (13) 0.0411 (14) 0.0459 (14) −0.0026 (11) 0.0099 (11) −0.0151 (11)
C16 0.0352 (15) 0.089 (3) 0.082 (2) 0.0073 (16) 0.0223 (15) 0.025 (2)

Geometric parameters (Å, º)

Br1—C4 1.898 (2) C8—C9 1.477 (3)
Br1—O2i 3.0986 (16) C9—H9A 0.9800
S1—O2 1.4895 (16) C9—H9B 0.9800
S1—C1 1.755 (2) C9—H9C 0.9800
S1—C10 1.794 (2) C10—C15 1.369 (3)
O1—C8 1.368 (2) C10—C11 1.382 (3)
O1—C7 1.378 (3) C11—C12 1.384 (4)
C1—C8 1.357 (3) C11—H11 0.9500
C1—C2 1.446 (3) C12—C13 1.379 (4)
C2—C3 1.394 (3) C12—H12 0.9500
C2—C7 1.394 (3) C13—C14 1.377 (4)
C3—C4 1.390 (3) C13—C16 1.507 (4)
C3—H3 0.9500 C14—C15 1.391 (4)
C4—C5 1.389 (3) C14—H14 0.9500
C5—C6 1.379 (3) C15—H15 0.9500
C5—H5 0.9500 C16—H16A 0.9800
C6—C7 1.379 (3) C16—H16B 0.9800
C6—H6 0.9500 C16—H16C 0.9800
C4—Br1—O2i 163.52 (8) C8—C9—H9B 109.5
O2—S1—C1 109.01 (10) H9A—C9—H9B 109.5
O2—S1—C10 106.61 (10) C8—C9—H9C 109.5
C1—S1—C10 98.26 (9) H9A—C9—H9C 109.5
C8—O1—C7 106.57 (16) H9B—C9—H9C 109.5
C8—C1—C2 107.50 (18) C15—C10—C11 121.0 (2)
C8—C1—S1 121.98 (16) C15—C10—S1 120.02 (17)
C2—C1—S1 130.52 (16) C11—C10—S1 118.78 (17)
C3—C2—C7 119.24 (19) C10—C11—C12 118.8 (2)
C3—C2—C1 136.39 (19) C10—C11—H11 120.6
C7—C2—C1 104.36 (18) C12—C11—H11 120.6
C4—C3—C2 116.68 (19) C13—C12—C11 121.7 (2)
C4—C3—H3 121.7 C13—C12—H12 119.2
C2—C3—H3 121.7 C11—C12—H12 119.2
C5—C4—C3 122.9 (2) C14—C13—C12 117.9 (2)
C5—C4—Br1 117.37 (17) C14—C13—C16 121.2 (3)
C3—C4—Br1 119.72 (17) C12—C13—C16 120.9 (3)
C6—C5—C4 120.9 (2) C13—C14—C15 121.8 (2)
C6—C5—H5 119.6 C13—C14—H14 119.1
C4—C5—H5 119.6 C15—C14—H14 119.1
C7—C6—C5 116.1 (2) C10—C15—C14 118.8 (2)
C7—C6—H6 122.0 C10—C15—H15 120.6
C5—C6—H6 122.0 C14—C15—H15 120.6
O1—C7—C6 125.05 (19) C13—C16—H16A 109.5
O1—C7—C2 110.73 (18) C13—C16—H16B 109.5
C6—C7—C2 124.2 (2) H16A—C16—H16B 109.5
C1—C8—O1 110.84 (18) C13—C16—H16C 109.5
C1—C8—C9 133.5 (2) H16A—C16—H16C 109.5
O1—C8—C9 115.66 (18) H16B—C16—H16C 109.5
C8—C9—H9A 109.5
O2—S1—C1—C8 128.69 (18) C1—C2—C7—C6 −179.4 (2)
C10—S1—C1—C8 −120.49 (18) C2—C1—C8—O1 −0.3 (2)
O2—S1—C1—C2 −50.8 (2) S1—C1—C8—O1 −179.90 (14)
C10—S1—C1—C2 60.1 (2) C2—C1—C8—C9 −179.9 (2)
C8—C1—C2—C3 −179.0 (2) S1—C1—C8—C9 0.5 (4)
S1—C1—C2—C3 0.5 (4) C7—O1—C8—C1 0.3 (2)
C8—C1—C2—C7 0.2 (2) C7—O1—C8—C9 −179.99 (18)
S1—C1—C2—C7 179.73 (17) O2—S1—C10—C15 −3.5 (2)
C7—C2—C3—C4 1.6 (3) C1—S1—C10—C15 −116.2 (2)
C1—C2—C3—C4 −179.3 (2) O2—S1—C10—C11 −178.65 (17)
C2—C3—C4—C5 −1.5 (3) C1—S1—C10—C11 68.59 (19)
C2—C3—C4—Br1 177.05 (15) C15—C10—C11—C12 1.5 (3)
C3—C4—C5—C6 −0.2 (4) S1—C10—C11—C12 176.65 (18)
Br1—C4—C5—C6 −178.77 (17) C10—C11—C12—C13 −1.1 (4)
C4—C5—C6—C7 1.7 (3) C11—C12—C13—C14 −0.1 (4)
C8—O1—C7—C6 179.2 (2) C11—C12—C13—C16 179.9 (2)
C8—O1—C7—C2 −0.2 (2) C12—C13—C14—C15 1.0 (4)
C5—C6—C7—O1 179.0 (2) C16—C13—C14—C15 −179.0 (3)
C5—C6—C7—C2 −1.7 (3) C11—C10—C15—C14 −0.6 (4)
C3—C2—C7—O1 179.38 (18) S1—C10—C15—C14 −175.7 (2)
C1—C2—C7—O1 0.0 (2) C13—C14—C15—C10 −0.7 (4)
C3—C2—C7—C6 0.0 (3)

Symmetry code: (i) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O1ii 0.95 2.49 3.420 (3) 165
C9—H9C···O2iii 0.98 2.48 3.294 (3) 141

Symmetry codes: (ii) −x+2, y−1/2, −z+3/2; (iii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5502).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1297. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2721. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201389X/xu5502sup1.cif

e-68-o1298-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201389X/xu5502Isup2.hkl

e-68-o1298-Isup2.hkl (180KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201389X/xu5502Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES