Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 4;68(Pt 5):o1300–o1301. doi: 10.1107/S1600536812013906

4-(4-Chloro­phen­yl)-2,6-bis­(1H-indol-3-yl)-1,4-dihydro­pyridine-3,5-dicarbo­nitrile ethanol monosolvate

Song-Lei Zhu a, Jun-Nian Zheng a,*
PMCID: PMC3344446  PMID: 22590208

Abstract

In the title compound, C29H18ClN5·C2H6O, the dihydro­pyridine ring adopts a strongly flattened envelope conformation, with a maximum deviation of 0.139 (2) Å from its best plane for the Csp 3 atom. The dihedral angles between the dihydro­pyridine ring plane and the two indole rings in positions 2 and 6 are 34.28 (5) and 40.50 (6)°, respectively. In turn, the benzene ring and the dihydro­pyridine ring are oriented at a dihedral angle of 74.69 (6)°. An intra­molecular C—H⋯Cl hydrogen bond occurs. In the crystal, mol­ecules are linked by N—H⋯N, N—H⋯O and O—H⋯N hydrogen bonds into layers parallel to (001). There are short C—H⋯Cl contacts between mol­ecules in neighboring layers.

Related literature  

For the biological activity of indole and 1,4-dihydro­pyridine derivatives, see: da Silva et al. (2001); Joshi & Chand (1982); Janis & Triggle (1983). For the synthesis of a series of bis­indoles derivatives of 1,4-dihydro­pyridine, see: Zhu et al. (2008).graphic file with name e-68-o1300-scheme1.jpg

Experimental  

Crystal data  

  • C29H18ClN5·C2H6O

  • M r = 518.00

  • Triclinic, Inline graphic

  • a = 9.2133 (17) Å

  • b = 11.611 (2) Å

  • c = 12.473 (2) Å

  • α = 87.714 (7)°

  • β = 83.297 (6)°

  • γ = 89.576 (7)°

  • V = 1324.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 193 K

  • 0.55 × 0.36 × 0.15 mm

Data collection  

  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.787, T max = 0.974

  • 12971 measured reflections

  • 4803 independent reflections

  • 4095 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.119

  • S = 1.09

  • 4803 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013906/gk2473sup1.cif

e-68-o1300-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013906/gk2473Isup2.hkl

e-68-o1300-Isup2.hkl (235.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013906/gk2473Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31A⋯Cl1 0.99 2.83 3.571 (3) 132
C28—H28⋯Cl1i 0.95 2.79 3.520 (2) 135
N5—H5⋯O1ii 0.88 2.04 2.907 (2) 167
N2—H2⋯N4iii 0.88 2.18 2.989 (2) 153
N1—H1A⋯O1iv 0.88 2.04 2.834 (2) 150
O1—H1⋯N3v 0.84 1.96 2.791 (2) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was partially supported by the Open Foundation of the Key Laboratory of Cancer Biotherapy of Xuzhou Medical College (grant No. C0901), the Key Laboratory of Organic Synthesis of Jiangsu Province (grant No. KJS1010), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (grant No. 09KJB150012) and the Special Presidential Foundation of Xuzhou Medical College (grant Nos. 09KJZ19 and 2010KJZ20).

supplementary crystallographic information

Comment

Indole fragments are important moieties of a large number of natural products and medicinal agents (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). In addition, 1,4-dihydropyridine compounds are a well-known classe of calcium channel modulators for the treatment of cardiovascular diseases, for example Nifedipin, Felodipin are clinically useful as vasodilators and antihypertensive agents (Janis & Triggle, 1983). Due to the potent and diverse biological activities of indole and 1,4-dihydropyridine derivatives, we investigated a simple and efficient protocol for synthesis of a series of bisindoles derivatives containing 1,4-dihydropyridine units (Zhu et al., 2008). Herein, we report the crystal structure of the title compound.

In the title molecule (Fig. 1), atoms of the newly formed 1,4-dihydropyridine ring A (N1, C1-C5) are nearly planar, with the maximum deviation of 0.139 (2) Å. The dihedral angles between ring A with attached two indole rings B (N2, C6-C13) and C (N5, C22-C29) are 34.28 (5) and 40.50 (6)°, respectively. Ring A and the benzene ring D (C15-C20) are oriented at a dihedral angle of 74.69 (6)°.

In the crystal, intermolecular N-H···N, N-H···O and O-H···N hydrogen bonds link the molecules into layers parallel to (0 0 1) (Table 1, Fig. 2). There are short C-H···Cl contacts between the molecules from neighboring layers.

Experimental

The title compound was prepared by the reaction of 4-chlorobenzaldehyde (1 mmol), 3-cyanoacetyl indole (2 mmol), ammonium acetate (5 mmol) in glycol solvent (3 mL) under microwave irradiation condition. After irradiating for 8 mins at 413 K, the reaction mixture was cooled and washed with small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from ethanol solution by slow evaporation at room temperature (yield: 75%, m.p. > 573 K).

Refinement

H atoms were positioned geometrically, with N-H = 0.88 Å , O-H = 0.84 Å (for OH), and C-H =0.95, 0.98, 0.99, 1.00 Å for aromatic, methyl, methylene, and methyne H, respectively, and constrained to ride on their parent atoms with Uiso(H) = x Ueq(C,N,O), where x = 1.5 for methyl and hydroxyl H, x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The solvent ethanol is not shown for clarity.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C29H18ClN5·C2H6O Z = 2
Mr = 518.00 F(000) = 540
Triclinic, P1 Dx = 1.299 Mg m3
Hall symbol: -P 1 Melting point > 573 K
a = 9.2133 (17) Å Mo Kα radiation, λ = 0.71070 Å
b = 11.611 (2) Å Cell parameters from 4662 reflections
c = 12.473 (2) Å θ = 3.1–25.3°
α = 87.714 (7)° µ = 0.18 mm1
β = 83.297 (6)° T = 193 K
γ = 89.576 (7)° Block, colorless
V = 1324.1 (4) Å3 0.55 × 0.36 × 0.15 mm

Data collection

Rigaku Mercury diffractometer 4803 independent reflections
Radiation source: fine-focus sealed tube 4095 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 7.31 pixels mm-1 θmax = 25.4°, θmin = 3.1°
ω scans h = −11→10
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −13→13
Tmin = 0.787, Tmax = 0.974 l = −14→15
12971 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.8429P] where P = (Fo2 + 2Fc2)/3
4803 reflections (Δ/σ)max < 0.001
346 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.31431 (10) 0.42027 (6) 0.66333 (5) 0.0645 (3)
O1 0.16731 (15) 0.06664 (12) 0.79527 (12) 0.0305 (4)
H1 0.0989 0.0202 0.7909 0.046*
N1 0.59953 (18) 0.07570 (14) 0.14897 (14) 0.0249 (4)
H1A 0.6694 0.0235 0.1421 0.030*
N2 0.46514 (19) −0.27027 (14) 0.14306 (15) 0.0308 (4)
H2 0.4969 −0.3323 0.1092 0.037*
N3 0.0789 (2) 0.06862 (17) 0.21675 (19) 0.0442 (5)
N4 0.5715 (2) 0.48918 (15) 0.10560 (15) 0.0324 (4)
N5 0.98636 (19) 0.19122 (16) −0.04096 (15) 0.0325 (4)
H5 1.0473 0.1647 −0.0940 0.039*
C1 0.4581 (2) 0.03934 (17) 0.17981 (16) 0.0233 (4)
C2 0.3512 (2) 0.12010 (17) 0.20019 (16) 0.0240 (4)
C3 0.3834 (2) 0.24738 (16) 0.21036 (16) 0.0231 (4)
H3 0.3113 0.2925 0.1715 0.028*
C4 0.5345 (2) 0.27287 (16) 0.15183 (16) 0.0219 (4)
C5 0.6369 (2) 0.19035 (16) 0.12830 (16) 0.0223 (4)
C6 0.4366 (2) −0.08497 (17) 0.18466 (16) 0.0245 (4)
C7 0.5099 (2) −0.16103 (17) 0.11543 (18) 0.0281 (5)
H7 0.5813 −0.1400 0.0569 0.034*
C8 0.3627 (2) −0.26903 (18) 0.23208 (18) 0.0294 (5)
C9 0.2898 (3) −0.36089 (19) 0.2901 (2) 0.0384 (6)
H9 0.3053 −0.4381 0.2688 0.046*
C10 0.1950 (3) −0.3353 (2) 0.3789 (2) 0.0458 (6)
H10 0.1423 −0.3959 0.4191 0.055*
C11 0.1741 (3) −0.2218 (2) 0.4119 (2) 0.0439 (6)
H11 0.1090 −0.2072 0.4748 0.053*
C12 0.2463 (2) −0.13097 (19) 0.35472 (19) 0.0346 (5)
H12 0.2318 −0.0544 0.3779 0.041*
C13 0.3412 (2) −0.15357 (17) 0.26201 (17) 0.0269 (5)
C14 0.2016 (2) 0.08876 (17) 0.21017 (18) 0.0295 (5)
C15 0.3656 (2) 0.28430 (16) 0.32702 (16) 0.0243 (4)
C16 0.2305 (2) 0.32231 (19) 0.37341 (19) 0.0342 (5)
H16 0.1487 0.3211 0.3336 0.041*
C17 0.2140 (3) 0.3620 (2) 0.4777 (2) 0.0427 (6)
H17 0.1211 0.3875 0.5094 0.051*
C18 0.3327 (3) 0.3643 (2) 0.53466 (19) 0.0400 (6)
C19 0.4659 (3) 0.3244 (2) 0.4922 (2) 0.0463 (6)
H19 0.5465 0.3240 0.5332 0.056*
C20 0.4817 (2) 0.2842 (2) 0.38802 (19) 0.0372 (6)
H20 0.5741 0.2562 0.3581 0.045*
C21 0.5614 (2) 0.39169 (18) 0.12352 (16) 0.0247 (4)
C22 0.7857 (2) 0.20992 (17) 0.07727 (16) 0.0239 (4)
C23 0.8523 (2) 0.14721 (18) −0.00612 (18) 0.0302 (5)
H23 0.8105 0.0825 −0.0351 0.036*
C24 1.0120 (2) 0.28385 (17) 0.01974 (17) 0.0276 (5)
C25 1.1329 (2) 0.35680 (19) 0.01216 (19) 0.0339 (5)
H25 1.2139 0.3477 −0.0414 0.041*
C26 1.1297 (2) 0.4423 (2) 0.0853 (2) 0.0371 (6)
H26 1.2094 0.4943 0.0814 0.045*
C27 1.0116 (2) 0.45460 (19) 0.16554 (19) 0.0343 (5)
H27 1.0144 0.5130 0.2164 0.041*
C28 0.8913 (2) 0.38358 (18) 0.17213 (18) 0.0293 (5)
H28 0.8118 0.3927 0.2269 0.035*
C29 0.8885 (2) 0.29768 (17) 0.09657 (16) 0.0244 (4)
C30 0.2484 (5) 0.0453 (3) 0.6042 (3) 0.0876 (12)
H30A 0.3331 −0.0004 0.6213 0.131*
H30B 0.2738 0.0898 0.5363 0.131*
H30C 0.1667 −0.0063 0.5967 0.131*
C31 0.2053 (3) 0.1251 (2) 0.6923 (2) 0.0435 (6)
H31A 0.2872 0.1784 0.6978 0.052*
H31B 0.1207 0.1718 0.6739 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1068 (6) 0.0464 (4) 0.0364 (4) −0.0072 (4) 0.0148 (4) −0.0185 (3)
O1 0.0256 (8) 0.0288 (8) 0.0366 (9) −0.0044 (6) −0.0005 (7) −0.0018 (7)
N1 0.0224 (9) 0.0175 (9) 0.0338 (10) −0.0003 (7) 0.0010 (7) −0.0021 (7)
N2 0.0369 (10) 0.0176 (9) 0.0376 (11) −0.0010 (8) 0.0001 (9) −0.0083 (8)
N3 0.0285 (11) 0.0335 (11) 0.0708 (16) −0.0054 (9) −0.0083 (10) 0.0016 (10)
N4 0.0356 (10) 0.0219 (10) 0.0391 (11) −0.0013 (8) −0.0014 (8) −0.0011 (8)
N5 0.0287 (10) 0.0360 (11) 0.0306 (10) 0.0005 (8) 0.0078 (8) −0.0060 (8)
C1 0.0253 (10) 0.0214 (10) 0.0237 (10) −0.0029 (8) −0.0040 (8) −0.0024 (8)
C2 0.0240 (10) 0.0215 (10) 0.0267 (11) −0.0020 (8) −0.0025 (8) −0.0025 (8)
C3 0.0218 (10) 0.0193 (10) 0.0282 (11) −0.0003 (8) −0.0036 (8) −0.0001 (8)
C4 0.0247 (10) 0.0189 (10) 0.0220 (10) −0.0023 (8) −0.0014 (8) −0.0029 (8)
C5 0.0244 (10) 0.0199 (10) 0.0227 (10) −0.0029 (8) −0.0027 (8) −0.0027 (8)
C6 0.0268 (10) 0.0193 (10) 0.0277 (11) −0.0022 (8) −0.0045 (9) −0.0021 (8)
C7 0.0293 (11) 0.0233 (11) 0.0316 (12) −0.0028 (9) −0.0024 (9) −0.0026 (9)
C8 0.0276 (11) 0.0226 (11) 0.0381 (13) −0.0037 (9) −0.0041 (10) −0.0030 (9)
C9 0.0397 (13) 0.0215 (11) 0.0533 (16) −0.0061 (10) −0.0037 (12) 0.0010 (10)
C10 0.0396 (14) 0.0317 (13) 0.0630 (18) −0.0080 (11) 0.0043 (13) 0.0099 (12)
C11 0.0400 (14) 0.0406 (14) 0.0467 (15) −0.0004 (11) 0.0108 (12) 0.0053 (12)
C12 0.0372 (12) 0.0260 (12) 0.0390 (13) −0.0005 (10) 0.0027 (10) −0.0035 (10)
C13 0.0272 (11) 0.0217 (11) 0.0321 (12) −0.0019 (8) −0.0046 (9) −0.0016 (9)
C14 0.0303 (12) 0.0194 (11) 0.0391 (13) −0.0004 (9) −0.0044 (10) −0.0032 (9)
C15 0.0277 (11) 0.0155 (10) 0.0285 (11) −0.0008 (8) 0.0024 (9) −0.0019 (8)
C16 0.0304 (12) 0.0340 (13) 0.0360 (13) 0.0044 (10) 0.0045 (10) 0.0002 (10)
C17 0.0460 (15) 0.0339 (13) 0.0423 (15) 0.0102 (11) 0.0186 (12) 0.0003 (11)
C18 0.0579 (16) 0.0286 (12) 0.0306 (13) −0.0058 (11) 0.0100 (12) −0.0087 (10)
C19 0.0477 (15) 0.0599 (17) 0.0325 (14) −0.0078 (13) −0.0061 (12) −0.0122 (12)
C20 0.0297 (12) 0.0491 (15) 0.0331 (13) 0.0028 (10) −0.0023 (10) −0.0109 (11)
C21 0.0250 (11) 0.0252 (12) 0.0237 (11) −0.0005 (9) −0.0009 (9) −0.0037 (8)
C22 0.0256 (10) 0.0198 (10) 0.0253 (11) 0.0000 (8) 0.0011 (9) −0.0007 (8)
C23 0.0290 (11) 0.0269 (11) 0.0342 (12) −0.0029 (9) 0.0007 (10) −0.0055 (9)
C24 0.0270 (11) 0.0253 (11) 0.0295 (12) 0.0003 (9) −0.0018 (9) 0.0061 (9)
C25 0.0246 (11) 0.0359 (13) 0.0396 (13) −0.0017 (10) −0.0013 (10) 0.0118 (10)
C26 0.0295 (12) 0.0320 (13) 0.0513 (15) −0.0088 (10) −0.0139 (11) 0.0101 (11)
C27 0.0373 (13) 0.0265 (12) 0.0417 (14) −0.0033 (10) −0.0153 (11) −0.0006 (10)
C28 0.0298 (11) 0.0260 (11) 0.0329 (12) −0.0004 (9) −0.0063 (10) −0.0027 (9)
C29 0.0259 (11) 0.0210 (10) 0.0261 (11) 0.0006 (8) −0.0037 (9) 0.0033 (8)
C30 0.141 (4) 0.076 (2) 0.0404 (18) −0.016 (2) 0.015 (2) −0.0096 (16)
C31 0.0500 (15) 0.0415 (14) 0.0389 (14) −0.0043 (12) −0.0071 (12) 0.0063 (11)

Geometric parameters (Å, º)

Cl1—C18 1.745 (2) C11—C12 1.380 (3)
O1—C31 1.435 (3) C11—H11 0.9500
O1—H1 0.8400 C12—C13 1.398 (3)
N1—C1 1.379 (3) C12—H12 0.9500
N1—C5 1.384 (2) C15—C20 1.383 (3)
N1—H1A 0.8800 C15—C16 1.387 (3)
N2—C7 1.355 (3) C16—C17 1.388 (3)
N2—C8 1.371 (3) C16—H16 0.9500
N2—H2 0.8800 C17—C18 1.374 (4)
N3—C14 1.148 (3) C17—H17 0.9500
N4—C21 1.147 (3) C18—C19 1.364 (4)
N5—C23 1.357 (3) C19—C20 1.389 (3)
N5—C24 1.377 (3) C19—H19 0.9500
N5—H5 0.8800 C20—H20 0.9500
C1—C2 1.364 (3) C22—C23 1.376 (3)
C1—C6 1.456 (3) C22—C29 1.443 (3)
C2—C14 1.418 (3) C23—H23 0.9500
C2—C3 1.523 (3) C24—C25 1.396 (3)
C3—C4 1.520 (3) C24—C29 1.412 (3)
C3—C15 1.523 (3) C25—C26 1.373 (3)
C3—H3 1.0000 C25—H25 0.9500
C4—C5 1.356 (3) C26—C27 1.400 (3)
C4—C21 1.427 (3) C26—H26 0.9500
C5—C22 1.457 (3) C27—C28 1.379 (3)
C6—C7 1.377 (3) C27—H27 0.9500
C6—C13 1.445 (3) C28—C29 1.402 (3)
C7—H7 0.9500 C28—H28 0.9500
C8—C9 1.396 (3) C30—C31 1.483 (4)
C8—C13 1.412 (3) C30—H30A 0.9800
C9—C10 1.369 (4) C30—H30B 0.9800
C9—H9 0.9500 C30—H30C 0.9800
C10—C11 1.401 (4) C31—H31A 0.9900
C10—H10 0.9500 C31—H31B 0.9900
C31—O1—H1 109.5 C20—C15—C3 121.96 (18)
C1—N1—C5 123.19 (16) C16—C15—C3 119.59 (19)
C1—N1—H1A 118.4 C15—C16—C17 120.4 (2)
C5—N1—H1A 118.4 C15—C16—H16 119.8
C7—N2—C8 109.32 (17) C17—C16—H16 119.8
C7—N2—H2 125.3 C18—C17—C16 119.6 (2)
C8—N2—H2 125.3 C18—C17—H17 120.2
C23—N5—C24 109.29 (17) C16—C17—H17 120.2
C23—N5—H5 125.4 C19—C18—C17 121.2 (2)
C24—N5—H5 125.4 C19—C18—Cl1 119.1 (2)
C2—C1—N1 118.81 (18) C17—C18—Cl1 119.73 (19)
C2—C1—C6 125.68 (18) C18—C19—C20 119.0 (2)
N1—C1—C6 115.49 (17) C18—C19—H19 120.5
C1—C2—C14 120.68 (18) C20—C19—H19 120.5
C1—C2—C3 122.97 (17) C15—C20—C19 121.4 (2)
C14—C2—C3 116.33 (17) C15—C20—H20 119.3
C4—C3—C2 108.33 (16) C19—C20—H20 119.3
C4—C3—C15 113.00 (16) N4—C21—C4 174.1 (2)
C2—C3—C15 112.95 (16) C23—C22—C29 106.34 (17)
C4—C3—H3 107.4 C23—C22—C5 124.24 (18)
C2—C3—H3 107.4 C29—C22—C5 129.35 (18)
C15—C3—H3 107.4 N5—C23—C22 110.18 (18)
C5—C4—C21 122.03 (18) N5—C23—H23 124.9
C5—C4—C3 123.36 (17) C22—C23—H23 124.9
C21—C4—C3 114.61 (17) N5—C24—C25 129.8 (2)
C4—C5—N1 119.10 (17) N5—C24—C29 107.72 (18)
C4—C5—C22 125.91 (18) C25—C24—C29 122.5 (2)
N1—C5—C22 114.93 (17) C26—C25—C24 117.2 (2)
C7—C6—C13 106.43 (17) C26—C25—H25 121.4
C7—C6—C1 125.15 (19) C24—C25—H25 121.4
C13—C6—C1 128.39 (18) C25—C26—C27 121.5 (2)
N2—C7—C6 110.08 (19) C25—C26—H26 119.3
N2—C7—H7 125.0 C27—C26—H26 119.3
C6—C7—H7 125.0 C28—C27—C26 121.3 (2)
N2—C8—C9 129.4 (2) C28—C27—H27 119.3
N2—C8—C13 108.17 (18) C26—C27—H27 119.3
C9—C8—C13 122.4 (2) C27—C28—C29 118.8 (2)
C10—C9—C8 117.3 (2) C27—C28—H28 120.6
C10—C9—H9 121.3 C29—C28—H28 120.6
C8—C9—H9 121.3 C28—C29—C24 118.59 (19)
C9—C10—C11 121.5 (2) C28—C29—C22 134.93 (19)
C9—C10—H10 119.2 C24—C29—C22 106.45 (17)
C11—C10—H10 119.2 C31—C30—H30A 109.5
C12—C11—C10 121.1 (2) C31—C30—H30B 109.5
C12—C11—H11 119.4 H30A—C30—H30B 109.5
C10—C11—H11 119.4 C31—C30—H30C 109.5
C11—C12—C13 118.9 (2) H30A—C30—H30C 109.5
C11—C12—H12 120.6 H30B—C30—H30C 109.5
C13—C12—H12 120.6 O1—C31—C30 113.1 (2)
C12—C13—C8 118.70 (19) O1—C31—H31A 109.0
C12—C13—C6 135.23 (19) C30—C31—H31A 109.0
C8—C13—C6 105.99 (18) O1—C31—H31B 109.0
N3—C14—C2 176.8 (2) C30—C31—H31B 109.0
C20—C15—C16 118.4 (2) H31A—C31—H31B 107.8
C5—N1—C1—C2 −5.9 (3) C1—C6—C13—C12 −2.5 (4)
C5—N1—C1—C6 172.47 (17) C7—C6—C13—C8 −0.9 (2)
N1—C1—C2—C14 166.92 (19) C1—C6—C13—C8 −179.07 (19)
C6—C1—C2—C14 −11.3 (3) C4—C3—C15—C20 −30.7 (3)
N1—C1—C2—C3 −11.3 (3) C2—C3—C15—C20 92.7 (2)
C6—C1—C2—C3 170.48 (18) C4—C3—C15—C16 147.46 (19)
C1—C2—C3—C4 22.5 (3) C2—C3—C15—C16 −89.1 (2)
C14—C2—C3—C4 −155.86 (18) C20—C15—C16—C17 1.7 (3)
C1—C2—C3—C15 −103.5 (2) C3—C15—C16—C17 −176.58 (19)
C14—C2—C3—C15 78.2 (2) C15—C16—C17—C18 0.4 (3)
C2—C3—C4—C5 −19.9 (3) C16—C17—C18—C19 −2.4 (4)
C15—C3—C4—C5 106.0 (2) C16—C17—C18—Cl1 177.11 (18)
C2—C3—C4—C21 160.43 (17) C17—C18—C19—C20 2.1 (4)
C15—C3—C4—C21 −73.6 (2) Cl1—C18—C19—C20 −177.4 (2)
C21—C4—C5—N1 −174.08 (18) C16—C15—C20—C19 −1.9 (3)
C3—C4—C5—N1 6.3 (3) C3—C15—C20—C19 176.2 (2)
C21—C4—C5—C22 2.9 (3) C18—C19—C20—C15 0.1 (4)
C3—C4—C5—C22 −176.79 (18) C4—C5—C22—C23 −134.1 (2)
C1—N1—C5—C4 8.5 (3) N1—C5—C22—C23 43.0 (3)
C1—N1—C5—C22 −168.82 (18) C4—C5—C22—C29 42.3 (3)
C2—C1—C6—C7 142.7 (2) N1—C5—C22—C29 −140.6 (2)
N1—C1—C6—C7 −35.6 (3) C24—N5—C23—C22 0.6 (3)
C2—C1—C6—C13 −39.5 (3) C29—C22—C23—N5 −1.4 (2)
N1—C1—C6—C13 142.3 (2) C5—C22—C23—N5 175.73 (19)
C8—N2—C7—C6 −0.8 (2) C23—N5—C24—C25 −178.7 (2)
C13—C6—C7—N2 1.1 (2) C23—N5—C24—C29 0.4 (2)
C1—C6—C7—N2 179.30 (18) N5—C24—C25—C26 −179.1 (2)
C7—N2—C8—C9 −178.1 (2) C29—C24—C25—C26 1.9 (3)
C7—N2—C8—C13 0.2 (2) C24—C25—C26—C27 1.2 (3)
N2—C8—C9—C10 178.0 (2) C25—C26—C27—C28 −2.1 (3)
C13—C8—C9—C10 −0.2 (3) C26—C27—C28—C29 0.0 (3)
C8—C9—C10—C11 −1.3 (4) C27—C28—C29—C24 2.9 (3)
C9—C10—C11—C12 1.3 (4) C27—C28—C29—C22 −179.7 (2)
C10—C11—C12—C13 0.3 (4) N5—C24—C29—C28 176.82 (18)
C11—C12—C13—C8 −1.8 (3) C25—C24—C29—C28 −3.9 (3)
C11—C12—C13—C6 −177.9 (2) N5—C24—C29—C22 −1.2 (2)
N2—C8—C13—C12 −176.76 (19) C25—C24—C29—C22 177.99 (19)
C9—C8—C13—C12 1.7 (3) C23—C22—C29—C28 −176.0 (2)
N2—C8—C13—C6 0.5 (2) C5—C22—C29—C28 7.1 (4)
C9—C8—C13—C6 178.9 (2) C23—C22—C29—C24 1.6 (2)
C7—C6—C13—C12 175.6 (2) C5—C22—C29—C24 −175.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C31—H31A···Cl1 0.99 2.83 3.571 (3) 132
C28—H28···Cl1i 0.95 2.79 3.520 (2) 135
N5—H5···O1ii 0.88 2.04 2.907 (2) 167
N2—H2···N4iii 0.88 2.18 2.989 (2) 153
N1—H1A···O1iv 0.88 2.04 2.834 (2) 150
O1—H1···N3v 0.84 1.96 2.791 (2) 172

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z−1; (iii) x, y−1, z; (iv) −x+1, −y, −z+1; (v) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2473).

References

  1. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  2. Janis, R. A. & Triggle, D. J. (1983). J. Med. Chem 26, 775–785. [DOI] [PubMed]
  3. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  4. Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12. [DOI] [PubMed]
  5. Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  6. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Zhu, S. L., Ji, S. J., Su, X. M., Sun, C. & Liu, Y. (2008). Tetrahedron Lett. 49, 1777–1781.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013906/gk2473sup1.cif

e-68-o1300-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013906/gk2473Isup2.hkl

e-68-o1300-Isup2.hkl (235.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013906/gk2473Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES