Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 6;68(Pt 5):o1312–o1313. doi: 10.1107/S1600536812013840

2,2-Diphenyl-N-(1,3-thia­zol-2-yl)acetamide

Hoong-Kun Fun a,*,, Chin Wei Ooi a, Prakash S Nayak b, B Narayana b, B K Sarojini c
PMCID: PMC3344455  PMID: 22590217

Abstract

In the title mol­ecule, C17H14N2OS, the mean plane of the acetamide group forms dihedral angles of 75.79 (5), 81.85 (6) and 12.32 (5)° with the two phenyl rings and the thia­zole ring, respectively. In the crystal, N—H⋯N hydrogen bonds link pairs of mol­ecules into inversion dimers with R 2 2(8) ring motifs. The crystal packing is further stabilized by C—H⋯π inter­actions and by π–π inter­actions with a centroid–centroid distance of 3.6977 (5) Å.

Related literature  

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008,2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Praveen et al. (2011a ,b ,c ); Fun et al. (2011a ,b ). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1312-scheme1.jpg

Experimental  

Crystal data  

  • C17H14N2OS

  • M r = 294.36

  • Monoclinic, Inline graphic

  • a = 5.6915 (1) Å

  • b = 15.1889 (2) Å

  • c = 16.5967 (2) Å

  • β = 97.845 (1)°

  • V = 1421.32 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.41 × 0.22 × 0.15 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.912, T max = 0.967

  • 23915 measured reflections

  • 6275 independent reflections

  • 5255 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.106

  • S = 1.05

  • 6275 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013840/lh5446sup1.cif

e-68-o1312-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013840/lh5446Isup2.hkl

e-68-o1312-Isup2.hkl (307.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013840/lh5446Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.848 (17) 2.116 (17) 2.9600 (12) 173.0 (17)
C1—H1ACg2ii 0.95 2.88 3.6647 (11) 141
C12—H12ACg1iii 0.95 2.92 3.6143 (13) 131
C17—H17ACg1iv 0.95 2.61 3.4381 (11) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under the Research University Grant No. 1001/PFIZIK/811160. BN thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS–Phase 1 programme.

supplementary crystallographic information

Comment

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006;2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008;2010). Crystal structures of some acetamide derivatives viz., N-(4-Chloro-1,3-benzothiazol-2-yl)-2-(3-methylphenyl) acetamide monohydrate, N-(3-Chloro-4-fluorophenyl)-2,2-diphenylacetamide and N-(3-Chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011a,b,c) have been reported. In continuation of our work on synthesis of amides (Fun et al., 2011 a, b), we report herein the crystal structure of the title compound (I).

In the title compound (Fig. 1), the mean plane of acetamide (O1/N1/C7/C14) group makes dihedral angles of 75.79 (5)°, 81.85 (6)° and 12.32 (5)° with the two terminal phenyl rings (C1–C6 & C8–C13) and thiazole (S1/N2/C15–C17) ring, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structure (Praveen et al., 2011a,b,c; Fun et al., 2011a,b).

In the crystal (Fig. 2), intermolecular N1—H1N1···N26i hydrogen bonds (Table 1) link molecules to form R22 (8) ring motifs (Bernstein et al., 1995), leading to the formation of dimers. The crystal packing is further stabilized by C—H···π interactions, involving the C1–C6 ring (centroid Cg1) and C8–C13 ring (centroid Cg2). Weak π–π interactions are observed with Cg3···Cg3 = 3.6977 (5) Å [symmetry code: 2-x, 1-y, 1-z], where Cg3 is the centroid of thiazole ring (S1/N2/C15–C17).

Experimental

Diphenylacetic acid (0.212 g, 1 mmol), 2-amino thiazole (0.1 g, 1 mmol), and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring. The resultant mixture was then extracted three times with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methylene chloride and methanol (1:1) mixture by the slow evaporation method. (M.P.: 409–411 K).

Refinement

Atom H1N1 was located from the difference map and refined freely [N–H = 0.847 (17) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) (C—H = 0.95 and 1.00Å). In the final refinement, 7 outliers (-2 21 6), (-2 23 7), (-1 21 7), (0 23 9), (3 19 10), (1 21 9) and (8 0 6) were omitted.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C17H14N2OS F(000) = 616
Mr = 294.36 Dx = 1.376 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9903 reflections
a = 5.6915 (1) Å θ = 2.5–35.1°
b = 15.1889 (2) Å µ = 0.23 mm1
c = 16.5967 (2) Å T = 100 K
β = 97.845 (1)° Block, colourless
V = 1421.32 (4) Å3 0.41 × 0.22 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6275 independent reflections
Radiation source: fine-focus sealed tube 5255 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scans θmax = 35.2°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.912, Tmax = 0.967 k = −16→24
23915 measured reflections l = −20→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.6018P] where P = (Fo2 + 2Fc2)/3
6275 reflections (Δ/σ)max = 0.002
194 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.07647 (4) 0.542027 (16) 0.646585 (15) 0.01478 (6)
O1 0.87987 (13) 0.70144 (5) 0.63542 (5) 0.01719 (14)
N1 0.66503 (15) 0.60037 (5) 0.55657 (5) 0.01345 (15)
N2 0.75899 (15) 0.44947 (5) 0.55803 (5) 0.01470 (15)
C1 0.91770 (17) 0.83556 (6) 0.48940 (6) 0.01471 (17)
H1A 0.9756 0.8479 0.5447 0.018*
C2 1.04707 (18) 0.86252 (7) 0.42827 (6) 0.01756 (18)
H2A 1.1911 0.8941 0.4420 0.021*
C3 0.96610 (19) 0.84336 (7) 0.34702 (6) 0.01904 (19)
H3A 1.0555 0.8612 0.3055 0.023*
C4 0.75423 (19) 0.79806 (7) 0.32711 (6) 0.01852 (19)
H4A 0.6989 0.7845 0.2719 0.022*
C5 0.62220 (18) 0.77229 (7) 0.38820 (6) 0.01557 (17)
H5A 0.4761 0.7421 0.3741 0.019*
C6 0.70288 (16) 0.79043 (6) 0.46986 (6) 0.01264 (16)
C7 0.56466 (16) 0.75681 (6) 0.53608 (6) 0.01255 (16)
H7A 0.4160 0.7287 0.5087 0.015*
C8 0.49405 (16) 0.82524 (6) 0.59564 (6) 0.01339 (16)
C9 0.36637 (18) 0.79582 (7) 0.65657 (6) 0.01725 (18)
H9A 0.3371 0.7346 0.6617 0.021*
C10 0.2815 (2) 0.85479 (8) 0.70978 (7) 0.0214 (2)
H10A 0.1937 0.8339 0.7506 0.026*
C11 0.3251 (2) 0.94425 (8) 0.70328 (7) 0.0244 (2)
H11A 0.2682 0.9847 0.7398 0.029*
C12 0.4528 (2) 0.97440 (8) 0.64302 (8) 0.0251 (2)
H12A 0.4833 1.0356 0.6384 0.030*
C13 0.5361 (2) 0.91505 (7) 0.58931 (7) 0.01917 (19)
H13A 0.6222 0.9361 0.5481 0.023*
C14 0.71613 (16) 0.68473 (6) 0.58191 (6) 0.01301 (16)
C15 0.81095 (16) 0.53022 (6) 0.58261 (6) 0.01279 (16)
C16 1.12260 (18) 0.43055 (7) 0.63849 (6) 0.01723 (18)
H16A 1.2576 0.3998 0.6643 0.021*
C17 0.93884 (18) 0.39295 (7) 0.59006 (6) 0.01634 (17)
H17A 0.9337 0.3316 0.5788 0.020*
H1N1 0.548 (3) 0.5890 (11) 0.5207 (10) 0.030 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01364 (10) 0.01391 (11) 0.01602 (11) 0.00093 (7) −0.00075 (8) −0.00122 (8)
O1 0.0178 (3) 0.0141 (3) 0.0181 (3) 0.0002 (2) −0.0030 (3) −0.0008 (3)
N1 0.0134 (3) 0.0112 (3) 0.0150 (4) 0.0011 (3) −0.0009 (3) −0.0007 (3)
N2 0.0149 (3) 0.0119 (3) 0.0168 (4) 0.0012 (3) 0.0004 (3) −0.0009 (3)
C1 0.0146 (4) 0.0153 (4) 0.0138 (4) 0.0009 (3) 0.0005 (3) 0.0003 (3)
C2 0.0151 (4) 0.0185 (4) 0.0192 (4) 0.0009 (3) 0.0031 (3) 0.0023 (4)
C3 0.0205 (4) 0.0208 (5) 0.0166 (4) 0.0049 (4) 0.0054 (3) 0.0046 (4)
C4 0.0225 (5) 0.0201 (5) 0.0128 (4) 0.0045 (4) 0.0014 (3) 0.0000 (3)
C5 0.0161 (4) 0.0156 (4) 0.0142 (4) 0.0026 (3) −0.0007 (3) −0.0015 (3)
C6 0.0134 (4) 0.0118 (4) 0.0127 (4) 0.0024 (3) 0.0014 (3) 0.0003 (3)
C7 0.0126 (4) 0.0114 (4) 0.0133 (4) 0.0008 (3) 0.0008 (3) −0.0002 (3)
C8 0.0126 (4) 0.0139 (4) 0.0135 (4) 0.0021 (3) 0.0009 (3) −0.0009 (3)
C9 0.0156 (4) 0.0192 (4) 0.0172 (4) 0.0015 (3) 0.0032 (3) 0.0018 (3)
C10 0.0201 (5) 0.0283 (5) 0.0166 (4) 0.0051 (4) 0.0057 (4) 0.0008 (4)
C11 0.0271 (5) 0.0261 (5) 0.0207 (5) 0.0083 (4) 0.0061 (4) −0.0047 (4)
C12 0.0321 (6) 0.0159 (5) 0.0289 (6) 0.0043 (4) 0.0101 (5) −0.0039 (4)
C13 0.0236 (5) 0.0137 (4) 0.0216 (5) 0.0023 (3) 0.0081 (4) −0.0003 (4)
C14 0.0142 (4) 0.0119 (4) 0.0131 (4) 0.0000 (3) 0.0024 (3) 0.0000 (3)
C15 0.0126 (4) 0.0133 (4) 0.0125 (4) 0.0003 (3) 0.0019 (3) 0.0002 (3)
C16 0.0167 (4) 0.0152 (4) 0.0192 (4) 0.0036 (3) 0.0003 (3) −0.0002 (3)
C17 0.0166 (4) 0.0129 (4) 0.0193 (4) 0.0031 (3) 0.0013 (3) −0.0006 (3)

Geometric parameters (Å, º)

S1—C16 1.7215 (10) C6—C7 1.5243 (13)
S1—C15 1.7336 (10) C7—C8 1.5257 (13)
O1—C14 1.2230 (12) C7—C14 1.5302 (13)
N1—C14 1.3675 (12) C7—H7A 1.0000
N1—C15 1.3833 (12) C8—C13 1.3914 (14)
N1—H1N1 0.847 (17) C8—C9 1.3967 (14)
N2—C15 1.3135 (12) C9—C10 1.3899 (15)
N2—C17 1.3853 (13) C9—H9A 0.9500
C1—C2 1.3939 (14) C10—C11 1.3881 (17)
C1—C6 1.4006 (13) C10—H10A 0.9500
C1—H1A 0.9500 C11—C12 1.3914 (18)
C2—C3 1.3950 (15) C11—H11A 0.9500
C2—H2A 0.9500 C12—C13 1.3954 (15)
C3—C4 1.3885 (16) C12—H12A 0.9500
C3—H3A 0.9500 C13—H13A 0.9500
C4—C5 1.3978 (15) C16—C17 1.3552 (14)
C4—H4A 0.9500 C16—H16A 0.9500
C5—C6 1.3977 (13) C17—H17A 0.9500
C5—H5A 0.9500
C16—S1—C15 88.85 (5) C13—C8—C7 123.77 (9)
C14—N1—C15 122.15 (8) C9—C8—C7 117.40 (9)
C14—N1—H1N1 121.4 (11) C10—C9—C8 120.93 (10)
C15—N1—H1N1 116.2 (11) C10—C9—H9A 119.5
C15—N2—C17 109.65 (8) C8—C9—H9A 119.5
C2—C1—C6 120.42 (9) C11—C10—C9 120.01 (10)
C2—C1—H1A 119.8 C11—C10—H10A 120.0
C6—C1—H1A 119.8 C9—C10—H10A 120.0
C1—C2—C3 120.32 (10) C10—C11—C12 119.63 (10)
C1—C2—H2A 119.8 C10—C11—H11A 120.2
C3—C2—H2A 119.8 C12—C11—H11A 120.2
C4—C3—C2 119.67 (10) C11—C12—C13 120.18 (11)
C4—C3—H3A 120.2 C11—C12—H12A 119.9
C2—C3—H3A 120.2 C13—C12—H12A 119.9
C3—C4—C5 120.10 (9) C8—C13—C12 120.55 (10)
C3—C4—H4A 120.0 C8—C13—H13A 119.7
C5—C4—H4A 120.0 C12—C13—H13A 119.7
C6—C5—C4 120.68 (9) O1—C14—N1 121.79 (9)
C6—C5—H5A 119.7 O1—C14—C7 122.29 (9)
C4—C5—H5A 119.7 N1—C14—C7 115.83 (8)
C5—C6—C1 118.81 (9) N2—C15—N1 121.47 (9)
C5—C6—C7 119.96 (9) N2—C15—S1 115.30 (7)
C1—C6—C7 121.14 (8) N1—C15—S1 123.21 (7)
C6—C7—C8 116.51 (8) C17—C16—S1 110.32 (7)
C6—C7—C14 106.68 (7) C17—C16—H16A 124.8
C8—C7—C14 110.22 (8) S1—C16—H16A 124.8
C6—C7—H7A 107.7 C16—C17—N2 115.87 (9)
C8—C7—H7A 107.7 C16—C17—H17A 122.1
C14—C7—H7A 107.7 N2—C17—H17A 122.1
C13—C8—C9 118.70 (9)
C6—C1—C2—C3 −1.20 (15) C10—C11—C12—C13 0.13 (19)
C1—C2—C3—C4 0.70 (16) C9—C8—C13—C12 0.21 (16)
C2—C3—C4—C5 0.39 (16) C7—C8—C13—C12 175.82 (10)
C3—C4—C5—C6 −1.01 (15) C11—C12—C13—C8 −0.42 (18)
C4—C5—C6—C1 0.51 (14) C15—N1—C14—O1 −7.86 (15)
C4—C5—C6—C7 −176.13 (9) C15—N1—C14—C7 168.96 (8)
C2—C1—C6—C5 0.59 (14) C6—C7—C14—O1 81.74 (11)
C2—C1—C6—C7 177.19 (9) C8—C7—C14—O1 −45.64 (12)
C5—C6—C7—C8 −126.30 (9) C6—C7—C14—N1 −95.07 (9)
C1—C6—C7—C8 57.14 (12) C8—C7—C14—N1 137.56 (9)
C5—C6—C7—C14 110.15 (9) C17—N2—C15—N1 177.26 (9)
C1—C6—C7—C14 −66.41 (11) C17—N2—C15—S1 −0.88 (11)
C6—C7—C8—C13 4.06 (13) C14—N1—C15—N2 179.68 (9)
C14—C7—C8—C13 125.77 (10) C14—N1—C15—S1 −2.33 (13)
C6—C7—C8—C9 179.72 (8) C16—S1—C15—N2 0.84 (8)
C14—C7—C8—C9 −58.57 (11) C16—S1—C15—N1 −177.26 (9)
C13—C8—C9—C10 0.29 (15) C15—S1—C16—C17 −0.54 (8)
C7—C8—C9—C10 −175.60 (9) S1—C16—C17—N2 0.17 (12)
C8—C9—C10—C11 −0.59 (16) C15—N2—C17—C16 0.44 (13)
C9—C10—C11—C12 0.37 (18)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1N1···N2i 0.848 (17) 2.116 (17) 2.9600 (12) 173.0 (17)
C1—H1A···Cg2ii 0.95 2.88 3.6647 (11) 141
C12—H12A···Cg1iii 0.95 2.92 3.6143 (13) 131
C17—H17A···Cg1iv 0.95 2.61 3.4381 (11) 146

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5446).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2941–o2942. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2926–o2927. [DOI] [PMC free article] [PubMed]
  7. Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.
  8. Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.
  9. Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2602–o2603. [DOI] [PMC free article] [PubMed]
  10. Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o2604. [DOI] [PMC free article] [PubMed]
  11. Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o1826. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
  15. Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013840/lh5446sup1.cif

e-68-o1312-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013840/lh5446Isup2.hkl

e-68-o1312-Isup2.hkl (307.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013840/lh5446Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES