Abstract
The title compound {systematic name: 4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,3-diol dihydrate}, C14H12O4·2H2O, a derivative of resveratrol, was isolated from mulberry. The linking C=C double bond has a trans conformation and allows the formation of a conjugated system throughout the molecule. The dihedral angle between the benzene rings is 9.39 (9)°. In the crystal, molecules are connected into a three-dimensional architecture through O—H⋯O hydrogen bonds between hydroxy groups of oxyresveratrol and solvent water molecules.
Related literature
For medicinal properties and the biological activity of oxyresveratrol, see: Mongolsuk et al. (1957 ▶); Charoenlarp et al. (1981 ▶, 1989 ▶); Zheng et al. (2010 ▶, 2011 ▶); Kim et al. (2002 ▶, 2004 ▶); Shin et al. (1998 ▶); Lipipun et al. (2011 ▶); Galindo et al. (2011 ▶); Sasivimolphan et al. (2009 ▶); Chuanasa et al. (2008 ▶); Likhitwitayawuid (2008 ▶); Likhitwitayawuid et al. (2005 ▶, 2006 ▶); Liu et al. (2009 ▶); Breuer et al. (2006 ▶); Chung et al. (2003 ▶); Chao et al. (2008 ▶); Ban et al. (2006 ▶, 2008 ▶); Breuer et al. (2006 ▶); Andrabi et al. (2004 ▶). For related structures, see: Piao et al. (2009 ▶); Qiu et al.(1996 ▶); Hano et al. (1986 ▶).
Experimental
Crystal data
C14H12O4·2H2O
M r = 280.27
Triclinic,
a = 6.6523 (5) Å
b = 9.2005 (9) Å
c = 11.5294 (8) Å
α = 72.533 (7)°
β = 78.686 (6)°
γ = 79.651 (7)°
V = 654.51 (9) Å3
Z = 2
Cu Kα radiation
μ = 0.95 mm−1
T = 293 K
0.40 × 0.30 × 0.20 mm
Data collection
Agilent Xcalibur Onyx Nova diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010 ▶) T min = 0.704, T max = 0.834
4145 measured reflections
2297 independent reflections
2002 reflections with I > 2σ(I)
R int = 0.022
Refinement
R[F 2 > 2σ(F 2)] = 0.042
wR(F 2) = 0.141
S = 1.13
2297 reflections
197 parameters
5 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.50 e Å−3
Δρmin = −0.44 e Å−3
Data collection: CrysAlis PRO (Agilent, 2010 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014018/tk5080sup1.cif
Supplementary material file. DOI: 10.1107/S1600536812014018/tk5080Isup2.mol
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014018/tk5080Isup3.hkl
Supplementary material file. DOI: 10.1107/S1600536812014018/tk5080Isup4.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯O4i | 0.84 | 1.90 | 2.7329 (18) | 173 |
| O2—H2⋯O6ii | 0.84 | 1.89 | 2.720 (2) | 171 |
| O3—H3A⋯O6iii | 0.84 | 1.97 | 2.8045 (19) | 169 |
| O4—H4⋯O5iv | 0.84 | 1.89 | 2.7259 (19) | 170 |
| O5—H5A⋯O1i | 0.89 (2) | 1.90 (2) | 2.7879 (19) | 172 (2) |
| O5—H5B⋯O2v | 0.89 (2) | 1.88 (2) | 2.7449 (19) | 161 (2) |
| O6—H6B⋯O2ii | 0.90 (3) | 1.95 (3) | 2.720 (2) | 143 (4) |
| O6—H6C⋯O6vi | 0.90 (4) | 1.87 (4) | 2.7583 (19) | 172 (5) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
Acknowledgments
The authors gratefully thank the Scientific Research Foundation for Returned Overseas Chinese Scholars (X. He), the State Education Ministry, the National Natural Science Foundation of China, (30800169, X. Hu) and the Research Fund for the Doctoral Program of Higher Education of China (200805581146, X. Hu).
supplementary crystallographic information
Comment
Oxyresveratrol was firstly isolated from the heartwood of Artocarpus lakoocha Roxb as a abundant trans-tetrahydroxystilbene (Mongolsuk et al., 1957). Oxyresveratrol is responsible for the anthelmintic activity of the traditional Thailand anthelmintic drug "Puag-Haad" prepared from A. lakoocha (Charoenlarp et al., 1989; Charoenlarp et al., 1981). Recent investigations have revealed several interesting bioactivities of oxyresveratrol, such as tyrosinase inhibitory activity (Zheng et al., 2011; Zheng et al., 2010; Kim et al., 2004; Kim et al., 2002; Shin et al., 1998), in vitro anti-viral activity (Lipipun et al., 2011; Galindo et al., 2011; Sasivimolphan et al., 2009; Chuanasa et al., 2008; Likhitwitayawuid et al., 2006; Likhitwitayawuid et al., 2005), strong anti-oxidative and anti-inflammatory (Liu et al., 2009; Breuer et al., 2006; Chung et al., 2003), and neuroprotective properties (Chao et al., 2008; Ban et al., 2008; Ban et al., 2006; Breuer et al., 2006; Andrabi et al., 2004). These medicinal properties indicate several areas of therapeutic potential for oxyresveratrol and the compound has been recommended as a drug candidate for the treatment of neurodegenerative disorders (Breuer et al., 2006; Andrabi et al., 2004) and a skin-whitening agent in cosmetic preparations (Likhitwitayawuid, 2008). Mulberry (Morus alba L.) is a medicinal plant in east Asia. Its branch, leaf, ripe fruit and root bark are well known traditional Chinese drugs and contain a large amounts of trans-hydroxystilbenes such as mulberroside A, phaponticin, phapontigenin, resveratrol, pterostilbene, piceatannol, piceid, astringin, kuwanon Y, kuwanon Z, oxyresveratrol and its derivatives (Qiu et al., 1996; Hano et al., 1986; Piao et al., 2009). In this paper, we isolated oxyresveratrol from mulberry (Morus alba L.) and report the structure of oxyresveratrol dihydrate.
In the title compound (Fig. 1), the benzene rings form a dihedral angle of 9.39 (9)°. The presence of the trans C═C double bond allows the formation of a conjugated system, strongly stabilized through π-electron delocalization. The trans-double bond is the same as found in similar structures (Piao et al., 2009; Qiu et al., 1996; Hano et al., 1986). The molecules of the oxyresveratrol are connected into a three-dimensional architecture through O—H—O hydrogen bonds formed between its hydroxyl group and the solvent water molecules (Fig. 2 and Table 1).
Experimental
The dried root bark of Morus alba L. (1 kg) was powdered and extracted with 95% ethanol at room temperature for 48 h. After removal of the solvent under reduced pressure, a brown extract was suspended with water, and sequentially partitioned with petroleum ether, acetyl acetate and n-butanol. The acetyl acetate extract (9 g) was subjected to column chromatography on silica gel (200–300 mesh) with increasing concentrations of ethyl acetate in petroleum ether. Oxyresveratrol was afforded from the fraction (petroleum ether-ethyl acetate 6/4, v/v). The title compound was colourless to light-yellow crystal with M.pt: 474–476 K,. Crystals suitable for X-ray analysis were obtained by slow evaporation from its chloroform–methanol (4/1, v/v) solution. 1H NMR (400 MHz, MeOD) δ 7.33 (d, J = 9.2 Hz, 1H), 7.27 (d, J = 16.5 Hz, 1H), 6.82 (d, J = 16.4 Hz,1H), 6.46 (d, J = 2.1 Hz, 2H), 6.34 – 6.32 (m, 1H), 6.31 (s, 1H), 6.15 (t, J = 2.2 Hz, 1H); O—H not observed.
Refinement
The hydroxy- and C-bound H-atoms were placed in calculated positions [O—H = 0.84 Å, Uiso(H) = 1.5Ueq(O); C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The water-H atoms were refined with O—H = 0.90±0.01 Å, and with Uiso(H) = 1.5Ueq(O). The O6-water molecule was found to be disordered over three positions, one with full weight, the others with 0.5 site occupancy factors.
Figures
Fig. 1.
A view of the molecular structure of compound (I). The displacement ellipsoids are at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Crystal data
| C14H12O4·2H2O | Z = 2 |
| Mr = 280.27 | F(000) = 296 |
| Triclinic, P1 | Dx = 1.422 Mg m−3 |
| Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
| a = 6.6523 (5) Å | Cell parameters from 2627 reflections |
| b = 9.2005 (9) Å | θ = 4.1–71.3° |
| c = 11.5294 (8) Å | µ = 0.95 mm−1 |
| α = 72.533 (7)° | T = 293 K |
| β = 78.686 (6)° | Block, colourless |
| γ = 79.651 (7)° | 0.40 × 0.30 × 0.20 mm |
| V = 654.51 (9) Å3 |
Data collection
| Agilent Xcalibur Onyx Nova diffractometer | 2297 independent reflections |
| Radiation source: Nova (Cu) X-ray Source | 2002 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.022 |
| Detector resolution: 8.2417 pixels mm-1 | θmax = 66.6°, θmin = 4.1° |
| ω scans | h = −7→8 |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −10→8 |
| Tmin = 0.704, Tmax = 0.834 | l = −13→13 |
| 4145 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.13 | w = 1/[σ2(Fo2) + (0.081P)2 + 0.176P] where P = (Fo2 + 2Fc2)/3 |
| 2297 reflections | (Δ/σ)max < 0.001 |
| 197 parameters | Δρmax = 0.50 e Å−3 |
| 5 restraints | Δρmin = −0.44 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| C1 | −0.1126 (3) | 0.9054 (2) | 0.76812 (16) | 0.0253 (4) | |
| C2 | −0.2896 (3) | 0.8772 (2) | 0.85658 (16) | 0.0251 (4) | |
| C3 | −0.4773 (3) | 0.9699 (2) | 0.84350 (16) | 0.0260 (4) | |
| H3 | −0.5945 | 0.9490 | 0.9051 | 0.031* | |
| C4 | −0.4925 (3) | 1.0933 (2) | 0.73988 (17) | 0.0270 (4) | |
| C5 | −0.3191 (3) | 1.1277 (2) | 0.65217 (18) | 0.0304 (4) | |
| H5 | −0.3286 | 1.2143 | 0.5825 | 0.036* | |
| C6 | −0.1329 (3) | 1.0347 (2) | 0.66730 (17) | 0.0291 (4) | |
| H6 | −0.0149 | 1.0594 | 0.6073 | 0.035* | |
| C7 | 0.0785 (3) | 0.7976 (2) | 0.78124 (16) | 0.0265 (4) | |
| H7 | 0.0724 | 0.7073 | 0.8482 | 0.032* | |
| C8 | 0.2599 (3) | 0.8143 (2) | 0.70802 (17) | 0.0266 (4) | |
| H8 | 0.2682 | 0.9072 | 0.6438 | 0.032* | |
| C9 | 0.4478 (3) | 0.7025 (2) | 0.71754 (16) | 0.0241 (4) | |
| C10 | 0.6184 (3) | 0.7319 (2) | 0.62552 (16) | 0.0258 (4) | |
| H10 | 0.6122 | 0.8242 | 0.5605 | 0.031* | |
| C11 | 0.7979 (3) | 0.6264 (2) | 0.62855 (16) | 0.0257 (4) | |
| C12 | 0.8084 (3) | 0.4895 (2) | 0.72244 (17) | 0.0273 (4) | |
| H12 | 0.9292 | 0.4163 | 0.7238 | 0.033* | |
| C13 | 0.6385 (3) | 0.4623 (2) | 0.81404 (16) | 0.0260 (4) | |
| C14 | 0.4594 (3) | 0.5662 (2) | 0.81327 (16) | 0.0257 (4) | |
| H14 | 0.3454 | 0.5451 | 0.8771 | 0.031* | |
| O1 | −0.27079 (18) | 0.75380 (14) | 0.95877 (12) | 0.0298 (3) | |
| H1 | −0.3888 | 0.7321 | 0.9944 | 0.045* | |
| O2 | −0.68101 (19) | 1.17941 (15) | 0.72308 (13) | 0.0352 (4) | |
| H2 | −0.6634 | 1.2691 | 0.6802 | 0.053* | |
| O3 | 0.95691 (19) | 0.66150 (15) | 0.53537 (12) | 0.0316 (3) | |
| H3A | 1.0617 | 0.5971 | 0.5509 | 0.047* | |
| O4 | 0.64072 (19) | 0.32934 (15) | 0.90904 (12) | 0.0330 (4) | |
| H4 | 0.7589 | 0.2786 | 0.9044 | 0.049* | |
| O5 | 0.01297 (19) | 0.14910 (15) | 0.92354 (12) | 0.0318 (3) | |
| H5A | 0.085 (3) | 0.187 (3) | 0.963 (2) | 0.048* | |
| H5B | 0.095 (3) | 0.148 (3) | 0.8524 (14) | 0.048* | |
| O6 | 0.67051 (19) | 0.52209 (15) | 0.40983 (12) | 0.0300 (3) | |
| H6A | 0.637 (4) | 0.490 (3) | 0.3506 (17) | 0.045* | |
| H6B | 0.701 (7) | 0.618 (2) | 0.394 (4) | 0.045* | 0.50 |
| H6C | 0.565 (6) | 0.513 (6) | 0.472 (3) | 0.045* | 0.50 |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0192 (9) | 0.0256 (9) | 0.0278 (9) | −0.0011 (7) | −0.0025 (7) | −0.0043 (7) |
| C2 | 0.0202 (8) | 0.0243 (9) | 0.0270 (9) | −0.0018 (6) | −0.0028 (7) | −0.0025 (7) |
| C3 | 0.0182 (8) | 0.0268 (9) | 0.0285 (9) | −0.0011 (7) | 0.0012 (7) | −0.0051 (7) |
| C4 | 0.0187 (8) | 0.0261 (9) | 0.0322 (9) | 0.0029 (7) | −0.0031 (7) | −0.0057 (7) |
| C5 | 0.0249 (9) | 0.0280 (9) | 0.0300 (9) | 0.0003 (7) | −0.0011 (7) | 0.0003 (7) |
| C6 | 0.0190 (8) | 0.0307 (10) | 0.0301 (9) | −0.0006 (7) | 0.0017 (7) | −0.0023 (8) |
| C7 | 0.0220 (9) | 0.0234 (9) | 0.0295 (9) | 0.0010 (7) | −0.0047 (7) | −0.0023 (7) |
| C8 | 0.0217 (9) | 0.0224 (9) | 0.0314 (9) | 0.0006 (7) | −0.0037 (7) | −0.0034 (7) |
| C9 | 0.0204 (8) | 0.0234 (9) | 0.0280 (9) | −0.0009 (6) | −0.0029 (7) | −0.0080 (7) |
| C10 | 0.0211 (9) | 0.0239 (9) | 0.0290 (9) | −0.0010 (7) | −0.0025 (7) | −0.0042 (7) |
| C11 | 0.0195 (8) | 0.0280 (9) | 0.0273 (9) | −0.0042 (7) | −0.0002 (7) | −0.0056 (7) |
| C12 | 0.0182 (8) | 0.0271 (9) | 0.0318 (10) | 0.0018 (7) | −0.0029 (7) | −0.0043 (7) |
| C13 | 0.0205 (8) | 0.0266 (9) | 0.0269 (9) | −0.0025 (7) | −0.0021 (7) | −0.0029 (7) |
| C14 | 0.0175 (8) | 0.0303 (9) | 0.0261 (9) | −0.0009 (7) | 0.0003 (7) | −0.0066 (7) |
| O1 | 0.0184 (6) | 0.0289 (7) | 0.0309 (7) | −0.0003 (5) | −0.0007 (5) | 0.0049 (5) |
| O2 | 0.0210 (7) | 0.0280 (7) | 0.0427 (8) | 0.0060 (5) | −0.0017 (6) | 0.0036 (6) |
| O3 | 0.0180 (6) | 0.0314 (7) | 0.0341 (7) | 0.0013 (5) | 0.0036 (5) | 0.0003 (5) |
| O4 | 0.0189 (6) | 0.0316 (7) | 0.0333 (7) | 0.0035 (5) | 0.0022 (5) | 0.0059 (6) |
| O5 | 0.0238 (7) | 0.0339 (7) | 0.0329 (7) | 0.0019 (5) | −0.0046 (5) | −0.0050 (6) |
| O6 | 0.0239 (7) | 0.0299 (7) | 0.0343 (8) | −0.0026 (5) | −0.0023 (5) | −0.0078 (6) |
Geometric parameters (Å, º)
| C1—C6 | 1.399 (3) | C10—C11 | 1.396 (2) |
| C1—C2 | 1.405 (2) | C10—H10 | 0.9500 |
| C1—C7 | 1.468 (2) | C11—O3 | 1.359 (2) |
| C2—O1 | 1.377 (2) | C11—C12 | 1.394 (3) |
| C2—C3 | 1.387 (2) | C12—C13 | 1.389 (2) |
| C3—C4 | 1.385 (3) | C12—H12 | 0.9500 |
| C3—H3 | 0.9500 | C13—O4 | 1.376 (2) |
| C4—O2 | 1.373 (2) | C13—C14 | 1.387 (2) |
| C4—C5 | 1.391 (3) | C14—H14 | 0.9500 |
| C5—C6 | 1.382 (3) | O1—H1 | 0.8400 |
| C5—H5 | 0.9500 | O2—H2 | 0.8400 |
| C6—H6 | 0.9500 | O3—H3A | 0.8400 |
| C7—C8 | 1.335 (3) | O4—H4 | 0.8400 |
| C7—H7 | 0.9500 | O5—H5A | 0.890 (10) |
| C8—C9 | 1.469 (2) | O5—H5B | 0.893 (10) |
| C8—H8 | 0.9500 | O6—H6A | 0.897 (10) |
| C9—C10 | 1.397 (2) | O6—H6B | 0.894 (10) |
| C9—C14 | 1.402 (2) | O6—H6C | 0.896 (10) |
| C6—C1—C2 | 116.74 (16) | C10—C9—C8 | 118.39 (16) |
| C6—C1—C7 | 123.22 (15) | C14—C9—C8 | 122.38 (15) |
| C2—C1—C7 | 119.97 (16) | C11—C10—C9 | 120.38 (16) |
| O1—C2—C3 | 120.45 (15) | C11—C10—H10 | 119.8 |
| O1—C2—C1 | 117.62 (15) | C9—C10—H10 | 119.8 |
| C3—C2—C1 | 121.93 (16) | O3—C11—C12 | 122.21 (15) |
| C4—C3—C2 | 119.39 (16) | O3—C11—C10 | 117.25 (16) |
| C4—C3—H3 | 120.3 | C12—C11—C10 | 120.51 (16) |
| C2—C3—H3 | 120.3 | C13—C12—C11 | 118.52 (16) |
| O2—C4—C3 | 119.43 (15) | C13—C12—H12 | 120.7 |
| O2—C4—C5 | 120.23 (16) | C11—C12—H12 | 120.7 |
| C3—C4—C5 | 120.32 (16) | O4—C13—C14 | 117.15 (15) |
| C6—C5—C4 | 119.44 (17) | O4—C13—C12 | 120.98 (15) |
| C6—C5—H5 | 120.3 | C14—C13—C12 | 121.86 (16) |
| C4—C5—H5 | 120.3 | C13—C14—C9 | 119.49 (15) |
| C5—C6—C1 | 122.11 (16) | C13—C14—H14 | 120.3 |
| C5—C6—H6 | 118.9 | C9—C14—H14 | 120.3 |
| C1—C6—H6 | 118.9 | C2—O1—H1 | 109.5 |
| C8—C7—C1 | 126.20 (16) | C4—O2—H2 | 109.5 |
| C8—C7—H7 | 116.9 | C11—O3—H3A | 109.5 |
| C1—C7—H7 | 116.9 | C13—O4—H4 | 109.5 |
| C7—C8—C9 | 126.05 (17) | H5A—O5—H5B | 104 (2) |
| C7—C8—H8 | 117.0 | H6A—O6—H6B | 119 (4) |
| C9—C8—H8 | 117.0 | H6A—O6—H6C | 109 (4) |
| C10—C9—C14 | 119.21 (15) | H6B—O6—H6C | 106 (5) |
| C6—C1—C2—O1 | −177.63 (15) | C1—C7—C8—C9 | −176.59 (16) |
| C7—C1—C2—O1 | 5.2 (3) | C7—C8—C9—C10 | 173.61 (18) |
| C6—C1—C2—C3 | 1.8 (3) | C7—C8—C9—C14 | −4.5 (3) |
| C7—C1—C2—C3 | −175.39 (16) | C14—C9—C10—C11 | 0.3 (3) |
| O1—C2—C3—C4 | −179.97 (16) | C8—C9—C10—C11 | −177.84 (16) |
| C1—C2—C3—C4 | 0.7 (3) | C9—C10—C11—O3 | 179.27 (15) |
| C2—C3—C4—O2 | 175.96 (16) | C9—C10—C11—C12 | 0.9 (3) |
| C2—C3—C4—C5 | −2.6 (3) | O3—C11—C12—C13 | −179.80 (16) |
| O2—C4—C5—C6 | −176.49 (17) | C10—C11—C12—C13 | −1.5 (3) |
| C3—C4—C5—C6 | 2.1 (3) | C11—C12—C13—O4 | −179.83 (16) |
| C4—C5—C6—C1 | 0.5 (3) | C11—C12—C13—C14 | 1.0 (3) |
| C2—C1—C6—C5 | −2.3 (3) | O4—C13—C14—C9 | −179.06 (15) |
| C7—C1—C6—C5 | 174.73 (18) | C12—C13—C14—C9 | 0.2 (3) |
| C6—C1—C7—C8 | 6.8 (3) | C10—C9—C14—C13 | −0.8 (3) |
| C2—C1—C7—C8 | −176.28 (18) | C8—C9—C14—C13 | 177.25 (16) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···O4i | 0.84 | 1.90 | 2.7329 (18) | 173 |
| O2—H2···O6ii | 0.84 | 1.89 | 2.720 (2) | 171 |
| O3—H3A···O6iii | 0.84 | 1.97 | 2.8045 (19) | 169 |
| O4—H4···O5iv | 0.84 | 1.89 | 2.7259 (19) | 170 |
| O5—H5A···O1i | 0.89 (2) | 1.90 (2) | 2.7879 (19) | 172 (2) |
| O5—H5B···O2v | 0.89 (2) | 1.88 (2) | 2.7449 (19) | 161 (2) |
| O6—H6B···O2ii | 0.90 (3) | 1.95 (3) | 2.720 (2) | 143 (4) |
| O6—H6C···O6vi | 0.90 (4) | 1.87 (4) | 2.7583 (19) | 172 (5) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y+2, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x+1, y, z; (v) x+1, y−1, z; (vi) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5080).
References
- Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
- Andrabi, S. A., Spina, M. G., Lorenz, P., Ebmeyer, U., Wolf, G. & Horn, T. F. (2004). Brain Res. 1017, 98–107. [DOI] [PubMed]
- Ban, J. Y., Cho, S. O., Choi, S. H., Ju, H. S., Kim, J. Y., Bae, K., Song, K. S. & Seong, Y. H. (2008). J. Pharmacol. Sci. 106, 68–77. [DOI] [PubMed]
- Ban, J. Y., Jeon, S. Y., Nguyen, T. T., Bae, K., Song, K. S. & Seong, Y. H. (2006). Biol. Pharm. Bull. 29, 2419–2424. [DOI] [PubMed]
- Breuer, C., Wolf, G., Andrabi, S. A., Lorenz, P. & Horn, T. F. (2006). Neurosci. Lett. 393, 113–118. [DOI] [PubMed]
- Chao, J., Yu, M. S., Ho, Y. S., Wang, M. & Chang, R. C. (2008). Free Radical Biol. Med. 45, 1019–1026. [DOI] [PubMed]
- Charoenlarp, P., Radomyos, P. & Bunnag, D. (1989). J. Med. Assoc. Thai. 72, 71–73. [PubMed]
- Charoenlarp, P., Radomyos, P. & Harinasuta, T. (1981). Southeast Asian J. Trop. Med. Public Health, 12, 568–570. [PubMed]
- Chuanasa, T., Phromjai, J., Lipipun, V., Likhitwitayawuid, K., Suzuki, M., Pramyothin, P., Hattori, M. & Shiraki, K. (2008). Antiviral Res. 80, 62–70. [DOI] [PubMed]
- Chung, K. O., Kim, B. Y., Lee, M. H., Kim, Y. R., Chung, H. Y., Park, J. H. & Moon, J. O. (2003). J. Pharm. Pharmacol. 55, 1695–1700. [DOI] [PubMed]
- Galindo, I., Hernaez, B., Berna, J., Fenoll, J., Cenis, J. L., Escribano, J. M. & Alonso, C. (2011). Antiviral Res. 91, 57–63. [DOI] [PubMed]
- Hano, Y., Tsubura, H. & Nomura, T. (1986). Heterocycles, 24, 2603–2610.
- Kim, D. H., Kim, J. H., Baek, S. H., Seo, J. H., Kho, Y. H., Oh, T. K. & Lee, C. H. (2004). Biotechnol. Bioeng. 87, 849–854. [DOI] [PubMed]
- Kim, Y. M., Yun, J., Lee, C. K., Lee, H., Min, K. R. & Kim, Y. (2002). J. Biol. Chem. 277, 16340–16344. [DOI] [PubMed]
- Likhitwitayawuid, K. (2008). Curr. Sci 94, 44–52.
- Likhitwitayawuid, K., Chaiwiriya, S., Sritularak, B. & Lipipun, V. (2006). Chem. Biodivers. 3, 1138–1143. [DOI] [PubMed]
- Likhitwitayawuid, K., Sritularak, B., Benchanak, K., Lipipun, V., Mathew, J. & Schinazi, R. F. (2005). Nat. Prod. Res. 19, 177–182. [DOI] [PubMed]
- Lipipun, V., Sasivimolphan, P., Yoshida, Y., Daikoku, T., Sritularak, B., Ritthidej, G., Likhitwitayawuid, K., Pramyothin, P., Hattori, M. & Shiraki, K. (2011). Antiviral Res. 91, 154–160. [DOI] [PubMed]
- Liu, D., Kim, D. H., Park, J. M., Na, H. K. & Surh, Y. J. (2009). Nutr. Cancer, 61, 855–863. [DOI] [PubMed]
- Mongolsuk, S., Robertson, A. & Towers, R. (1957). J. Chem. Soc. pp. 2231–2233.
- Piao, S.-J., Qiu, F., Chen, L.-X., Pan, Y. & Dou, D.-Q. (2009). Helv. Chim. Acta, 92, 579–587.
- Qiu, F., Komatsu, K., Kawasaki, K., Saito, K., Yao, X. & Kano, Y. (1996). Planta Med 62, 559–561. [DOI] [PubMed]
- Sasivimolphan, P., Lipipun, V., Likhitwitayawuid, K., Takemoto, M., Pramyothin, P., Hattori, M. & Shiraki, K. (2009). Antiviral Res. 84, 95–97. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shin, N. H., Ryu, S. Y., Choi, E. J., Kang, S. H., Chang, I. M., Min, K. R. & Kim, Y. (1998). Biochem. Biophys. Res. Commun. 243, 801–803. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zheng, Z. P., Cheng, K. W., Zhu, Q., Wang, X. C., Lin, Z. X. & Wang, M. (2010). J. Agric. Food Chem. 58, 5368–5373. [DOI] [PubMed]
- Zheng, Z. P., Zhu, Q., Fan, C. L., Tan, H. Y. & Wang, M. (2011). Food Funct. 2, 259–264. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014018/tk5080sup1.cif
Supplementary material file. DOI: 10.1107/S1600536812014018/tk5080Isup2.mol
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014018/tk5080Isup3.hkl
Supplementary material file. DOI: 10.1107/S1600536812014018/tk5080Isup4.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

