Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 6;68(Pt 5):o1324. doi: 10.1107/S1600536812014262

4-[(4-Benzyl­oxybenzyl­idene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Grzegorz Dutkiewicz a, Divya N Shetty b, B Narayana b, H S Yathirajan c, Maciej Kubicki a,*
PMCID: PMC3344463  PMID: 22590225

Abstract

In the title mol­ecule, C25H23N3O2, two terminal phenyl rings are twisted by 50.20 (6) and 71.26 (5)° from the mean plane (r.m.s. deviation = 0.032 Å) of the central benzyl­idene–amino–pyrazolone fragment. The N atoms of the pyrazole ring have a pyramidal environment, the sums of the valence angles around them being 353.5 (2) and 347.3 (2)°. The crystal structure is stabilized by C—H⋯O interactions.

Related literature  

Related crystal structures have been described by Shi (2005), Jun (2005), Zhen et al. (2006), Liu et al. (2006), Diao & Chen (2006), Duan et al. (2006), Hu (2006) and Zhang et al. (2006).graphic file with name e-68-o1324-scheme1.jpg

Experimental  

Crystal data  

  • C25H23N3O2

  • M r = 397.46

  • Monoclinic, Inline graphic

  • a = 19.8137 (19) Å

  • b = 6.1588 (4) Å

  • c = 18.0784 (14) Å

  • β = 108.881 (9)°

  • V = 2087.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.5 × 0.4 × 0.2 mm

Data collection  

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.890, T max = 1.000

  • 8408 measured reflections

  • 4352 independent reflections

  • 3298 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.119

  • S = 1.04

  • 4352 reflections

  • 363 parameters

  • All H-atom parameters refined

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014262/cv5278sup1.cif

e-68-o1324-sup1.cif (29KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014262/cv5278Isup2.hkl

e-68-o1324-Isup2.hkl (208.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014262/cv5278Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O49i 0.990 (18) 2.486 (18) 3.470 (2) 172.6 (15)
C21—H21C⋯O5ii 0.97 (3) 2.58 (3) 3.352 (3) 137.3 (19)
C31—H31A⋯O5ii 0.97 (2) 2.65 (2) 3.517 (3) 149.1 (17)
C52—H52⋯O5iii 0.96 (3) 2.51 (3) 3.411 (3) 156 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

BN thanks the UGC SAP for financial assistance for the purchase of chemicals. DNS thanks Mangalore University for research facilities.

supplementary crystallographic information

Comment

Pyrazolone, as a prominent structural motif, is found in numerous pharmaceutically active compounds. Due to the easy preparation and rich biological activity, pyrazolone framework plays an essential role and represents an interesting template for combinatorial and medicinal chemistry. Indeed, pyrazolone based derivatives have shown several biological activities such as analgesic, anti-inflammatory, antipyretic, antiarrhythmic, antifungal, muscle relaxing, psychoanaleptic, anticonvulsant, enzyme inhibiting, antidiabetic and antibacterial activities. So, the chemistry of pyrazolone and its derivatives is particularly interesting because of their potential application in medicinal chemistry. Here we present the results of the X-ray structure determination of the title compound, 1.

Quite recently, the crystal structures of a series of similar compounds, with substituted rings C and D (cf. Fig. 1) have been reported, namely, 3-methoxy (C),2,4-dichloro (D) (Zhen et al., 2006); 2,4-dichloro (D) (Liu et al., 2006); 3-methoxy (C), 4-nitro (D) (Diao & Chen, 2006); 3-methoxy (C), 4-chloro (D) (Duan et al., 2006); 4-chloro (D) (Hu, 2006); 3-ethoxy (C),4-chloro (D) (Zhang et al., 2006); 3-methoxy (C) (Shi, 2005), and 3-ethoxy (C) (Jun, 2005).

Compound 1, without additional substituents on the phenyl rings, might be regarded as the reference molecule. It has almost perfectly coplanar central part, consisting of two rings B and C (pyrazolone and phenyl) and the linking C—N=C—C chain (maximum deviation from the least-squares plane is 0.070 (1) Å). The dihedral angle between the planes of the two rings B and C is only 1.42 (13)°, and is significantly smaller than in the other similar molecules (6.21 (10)° - 39.24 (5)°). The overall conformation of the molecule might be described either by the dihedral angle between the planes of terminal phenyl rings (62.71 (6)°) or by the dihedral angles between the central plane and terminal ring planes (50.20 (6)° with ring A, 71.26 (5)° with ring D). These last values are generally consistent with those referred for similar compounds (48.05 (6)° - 72.97 (8)° for A, 39.49 (14)° - 86.16 (7)° for D).

In the pyrazolone ring, the N atoms of the pyrazole ring have pyramidal environment, sums of the valence angles around them are 353.5° for N1 and 347.3° for N2. The bond lengths pattern within this ring suggests significant delocalization and is also typical for these compounds, in contrast, the bond N41—C42 (1.276 (2) Å) has an obvious double-bond character.

In the crystal structure relatively short and linear C16—H16···O49i hydrogen bonds join molecules into centrosymmetric dimers; these dimers, in turn, by means of other, still weaker C—H···O contacts expand in two dimensions (Table 1, Fig. 2).

Experimental

The mixture of 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (2.03 g, 0.01 mol) and 4-benzyloxybenzaldehyde (2.12 g, 0.01 mol) was refluxed in 30 ml e thanol with two drops of sulfuric acid for 3 h. The crude product obtained was filtered and recrystallized from ethanol. Good quality crystals were obtained by the evaporation of the solution in DMF (m.p: 438 K).

Refinement

Hydrogen atoms were found in difference Fourier maps and isotropically refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of 1 showing the atom labelling scheme and ring labels (cf. Comment). Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.

Fig. 2.

Fig. 2.

A portion of the crystal packing viewed along [010] direction; C—H···O hydrogen bonds (cf. Table 1) are shown as dashed lines.

Crystal data

C25H23N3O2 F(000) = 840
Mr = 397.46 Dx = 1.265 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 19.8137 (19) Å Cell parameters from 2304 reflections
b = 6.1588 (4) Å θ = 3.1–28.2°
c = 18.0784 (14) Å µ = 0.08 mm1
β = 108.881 (9)° T = 295 K
V = 2087.4 (3) Å3 Block, yellow
Z = 4 0.5 × 0.4 × 0.2 mm

Data collection

Agilent Xcalibur Eos diffractometer 4352 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3298 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
Detector resolution: 16.1544 pixels mm-1 θmax = 28.3°, θmin = 3.3°
ω–scan h = −25→26
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −8→8
Tmin = 0.890, Tmax = 1.000 l = −19→24
8408 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0411P)2 + 1.0652P] where P = (Fo2 + 2Fc2)/3
4352 reflections (Δ/σ)max = 0.001
363 parameters Δρmax = 0.68 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.77141 (7) 1.0983 (2) 1.10006 (8) 0.0236 (3)
C11 0.83244 (8) 1.0018 (3) 1.15422 (9) 0.0213 (4)
C12 0.88429 (10) 0.9158 (3) 1.12682 (11) 0.0278 (4)
H12 0.8798 (9) 0.924 (3) 1.0744 (11) 0.027 (5)*
C13 0.94283 (10) 0.8168 (3) 1.17855 (12) 0.0334 (5)
H13 0.9787 (11) 0.760 (3) 1.1597 (11) 0.037 (6)*
C14 0.95142 (10) 0.8101 (3) 1.25755 (12) 0.0354 (5)
H14 0.9920 (11) 0.744 (3) 1.2934 (11) 0.035 (5)*
C15 0.90004 (10) 0.8993 (3) 1.28475 (11) 0.0310 (4)
H15 0.9032 (10) 0.893 (3) 1.3398 (12) 0.039 (6)*
C16 0.83978 (9) 0.9942 (3) 1.23326 (10) 0.0253 (4)
H16 0.8016 (9) 1.053 (3) 1.2519 (10) 0.024 (5)*
N2 0.73781 (8) 1.2714 (2) 1.12442 (8) 0.0253 (3)
C21 0.78145 (11) 1.4594 (3) 1.15796 (13) 0.0324 (5)
H21A 0.7554 (12) 1.554 (4) 1.1837 (13) 0.052 (7)*
H21B 0.8227 (12) 1.412 (4) 1.1980 (13) 0.049 (6)*
H21C 0.7936 (13) 1.536 (4) 1.1174 (16) 0.070 (8)*
C3 0.67109 (9) 1.2867 (3) 1.07207 (10) 0.0261 (4)
C31 0.62346 (11) 1.4701 (4) 1.07381 (14) 0.0364 (5)
H31A 0.6409 (11) 1.606 (4) 1.0604 (12) 0.045 (6)*
H31B 0.6190 (12) 1.488 (4) 1.1266 (15) 0.059 (7)*
H31C 0.5748 (13) 1.442 (4) 1.0366 (14) 0.061 (7)*
C4 0.65791 (9) 1.1164 (3) 1.02127 (10) 0.0258 (4)
C5 0.72166 (9) 0.9880 (3) 1.03848 (9) 0.0242 (4)
O5 0.73457 (7) 0.8174 (2) 1.01041 (7) 0.0324 (3)
N41 0.59094 (8) 1.0843 (3) 0.96662 (8) 0.0289 (4)
C42 0.57671 (10) 0.9211 (4) 0.92063 (10) 0.0306 (4)
H42 0.6106 (11) 0.804 (3) 0.9202 (11) 0.038 (6)*
C43 0.50516 (9) 0.8971 (4) 0.86385 (10) 0.0311 (5)
C44 0.48958 (11) 0.7305 (4) 0.80983 (11) 0.0407 (5)
H44 0.5249 (11) 0.619 (4) 0.8114 (12) 0.042 (6)*
C45 0.42241 (11) 0.7081 (4) 0.75510 (12) 0.0443 (6)
H45 0.4146 (11) 0.584 (4) 0.7209 (13) 0.047 (6)*
C46 0.36996 (9) 0.8553 (4) 0.75447 (10) 0.0372 (5)
C47 0.38462 (10) 1.0237 (4) 0.80834 (11) 0.0363 (5)
H47 0.3460 (11) 1.129 (3) 0.8060 (11) 0.039 (6)*
C48 0.45139 (10) 1.0441 (4) 0.86208 (11) 0.0343 (5)
H48 0.4620 (10) 1.163 (3) 0.8994 (12) 0.036 (6)*
O49 0.30121 (7) 0.8475 (3) 0.70470 (7) 0.0454 (4)
C50 0.28438 (11) 0.6850 (5) 0.64450 (13) 0.0495 (7)
H50A 0.3121 (13) 0.719 (4) 0.6121 (14) 0.059 (7)*
H50B 0.2951 (15) 0.526 (5) 0.6720 (16) 0.087 (10)*
C51 0.20732 (10) 0.7172 (4) 0.59813 (10) 0.0356 (5)
C52 0.18548 (12) 0.8875 (4) 0.54645 (12) 0.0459 (6)
H52 0.2206 (13) 0.984 (4) 0.5387 (14) 0.069 (8)*
C53 0.11413 (13) 0.9177 (4) 0.50569 (13) 0.0480 (6)
H53 0.0951 (13) 1.038 (5) 0.4697 (15) 0.073 (8)*
C54 0.06391 (11) 0.7793 (4) 0.51715 (13) 0.0403 (5)
H54 0.0139 (12) 0.805 (4) 0.4887 (13) 0.045 (6)*
C55 0.08516 (11) 0.6104 (4) 0.56866 (12) 0.0368 (5)
H55 0.0505 (11) 0.512 (4) 0.5780 (12) 0.047 (6)*
C56 0.15672 (11) 0.5793 (4) 0.60880 (11) 0.0360 (5)
H56 0.1712 (11) 0.459 (4) 0.6452 (13) 0.045 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0250 (8) 0.0217 (8) 0.0205 (7) −0.0004 (6) 0.0022 (6) −0.0013 (6)
C11 0.0207 (8) 0.0171 (8) 0.0230 (8) −0.0054 (7) 0.0027 (7) −0.0011 (7)
C12 0.0282 (10) 0.0270 (10) 0.0288 (10) −0.0068 (8) 0.0099 (8) −0.0026 (8)
C13 0.0263 (10) 0.0276 (11) 0.0466 (12) −0.0013 (9) 0.0121 (9) −0.0051 (9)
C14 0.0260 (10) 0.0271 (11) 0.0423 (11) 0.0014 (9) −0.0040 (9) 0.0022 (9)
C15 0.0354 (10) 0.0262 (10) 0.0248 (9) −0.0038 (9) 0.0007 (8) 0.0010 (8)
C16 0.0273 (9) 0.0235 (9) 0.0230 (9) −0.0036 (8) 0.0055 (7) −0.0024 (8)
N2 0.0257 (8) 0.0187 (8) 0.0274 (8) −0.0009 (6) 0.0028 (6) −0.0006 (6)
C21 0.0316 (11) 0.0235 (10) 0.0345 (11) −0.0049 (9) 0.0000 (9) −0.0040 (9)
C3 0.0232 (9) 0.0269 (10) 0.0257 (9) −0.0030 (8) 0.0045 (7) 0.0087 (8)
C31 0.0297 (11) 0.0307 (12) 0.0442 (13) 0.0013 (9) 0.0059 (9) 0.0048 (10)
C4 0.0241 (9) 0.0312 (10) 0.0200 (8) −0.0064 (8) 0.0045 (7) 0.0041 (8)
C5 0.0277 (9) 0.0252 (10) 0.0184 (8) −0.0062 (8) 0.0058 (7) 0.0022 (8)
O5 0.0351 (7) 0.0317 (8) 0.0270 (7) −0.0036 (6) 0.0053 (6) −0.0081 (6)
N41 0.0250 (8) 0.0400 (10) 0.0193 (7) −0.0085 (7) 0.0040 (6) 0.0046 (7)
C42 0.0276 (10) 0.0412 (12) 0.0221 (9) −0.0072 (9) 0.0070 (8) 0.0005 (9)
C43 0.0239 (9) 0.0498 (13) 0.0199 (8) −0.0091 (9) 0.0073 (7) −0.0022 (9)
C44 0.0275 (10) 0.0617 (15) 0.0317 (11) −0.0018 (11) 0.0077 (9) −0.0130 (11)
C45 0.0269 (10) 0.0733 (17) 0.0316 (11) −0.0055 (11) 0.0079 (9) −0.0244 (12)
C46 0.0208 (9) 0.0693 (15) 0.0210 (9) −0.0081 (10) 0.0062 (7) −0.0108 (10)
C47 0.0241 (10) 0.0583 (15) 0.0260 (9) −0.0020 (10) 0.0075 (8) −0.0067 (10)
C48 0.0290 (10) 0.0492 (14) 0.0243 (9) −0.0082 (9) 0.0079 (8) −0.0082 (9)
O49 0.0205 (7) 0.0846 (12) 0.0287 (7) −0.0030 (7) 0.0046 (6) −0.0241 (8)
C50 0.0243 (10) 0.089 (2) 0.0322 (11) −0.0042 (12) 0.0047 (9) −0.0266 (13)
C51 0.0268 (10) 0.0596 (14) 0.0192 (9) −0.0038 (10) 0.0059 (8) −0.0132 (10)
C52 0.0427 (13) 0.0631 (16) 0.0343 (11) −0.0225 (12) 0.0159 (10) −0.0083 (11)
C53 0.0551 (15) 0.0474 (14) 0.0331 (11) −0.0063 (12) 0.0027 (10) 0.0021 (11)
C54 0.0274 (11) 0.0427 (13) 0.0414 (12) −0.0007 (10) −0.0018 (9) −0.0124 (10)
C55 0.0294 (10) 0.0384 (12) 0.0412 (11) −0.0091 (10) 0.0097 (9) −0.0098 (10)
C56 0.0347 (11) 0.0425 (13) 0.0278 (10) −0.0020 (10) 0.0059 (8) −0.0056 (10)

Geometric parameters (Å, º)

N1—C5 1.401 (2) C42—C43 1.464 (2)
N1—N2 1.401 (2) C42—H42 0.99 (2)
N1—C11 1.417 (2) C43—C44 1.381 (3)
C11—C12 1.382 (2) C43—C48 1.390 (3)
C11—C16 1.389 (2) C44—C45 1.385 (3)
C12—C13 1.375 (3) C44—H44 0.98 (2)
C12—H12 0.924 (18) C45—C46 1.376 (3)
C13—C14 1.383 (3) C45—H45 0.96 (2)
C13—H13 0.95 (2) C46—O49 1.369 (2)
C14—C15 1.380 (3) C46—C47 1.387 (3)
C14—H14 0.95 (2) C47—C48 1.370 (3)
C15—C16 1.384 (3) C47—H47 0.99 (2)
C15—H15 0.98 (2) C48—H48 0.97 (2)
C16—H16 0.990 (18) O49—C50 1.436 (3)
N2—C3 1.357 (2) C50—C51 1.498 (3)
N2—C21 1.455 (2) C50—H50A 0.95 (2)
C21—H21A 0.99 (2) C50—H50B 1.09 (3)
C21—H21B 0.94 (2) C51—C56 1.375 (3)
C21—H21C 0.97 (3) C51—C52 1.378 (3)
C3—C4 1.363 (3) C52—C53 1.379 (3)
C3—C31 1.479 (3) C52—H52 0.96 (3)
C31—H31A 0.97 (2) C53—C54 1.376 (3)
C31—H31B 0.99 (2) C53—H53 0.98 (3)
C31—H31C 1.00 (3) C54—C55 1.369 (3)
C4—N41 1.388 (2) C54—H54 0.97 (2)
C4—C5 1.436 (3) C55—C56 1.381 (3)
C5—O5 1.229 (2) C55—H55 0.97 (2)
N41—C42 1.276 (2) C56—H56 0.97 (2)
C5—N1—N2 109.57 (13) N41—C42—C43 119.73 (19)
C5—N1—C11 124.71 (15) N41—C42—H42 125.0 (12)
N2—N1—C11 119.21 (13) C43—C42—H42 115.3 (12)
C12—C11—C16 120.85 (16) C44—C43—C48 118.24 (18)
C12—C11—N1 118.70 (15) C44—C43—C42 121.00 (19)
C16—C11—N1 120.45 (15) C48—C43—C42 120.75 (18)
C13—C12—C11 119.18 (18) C43—C44—C45 121.5 (2)
C13—C12—H12 120.2 (11) C43—C44—H44 120.7 (13)
C11—C12—H12 120.6 (11) C45—C44—H44 117.7 (13)
C12—C13—C14 120.70 (19) C46—C45—C44 119.3 (2)
C12—C13—H13 119.1 (12) C46—C45—H45 123.6 (13)
C14—C13—H13 120.2 (12) C44—C45—H45 117.1 (13)
C15—C14—C13 119.85 (18) O49—C46—C45 124.78 (19)
C15—C14—H14 119.2 (12) O49—C46—C47 115.17 (18)
C13—C14—H14 120.9 (12) C45—C46—C47 120.03 (18)
C14—C15—C16 120.26 (18) C48—C47—C46 120.1 (2)
C14—C15—H15 122.5 (12) C48—C47—H47 121.6 (12)
C16—C15—H15 117.2 (12) C46—C47—H47 118.3 (12)
C15—C16—C11 119.12 (17) C47—C48—C43 120.9 (2)
C15—C16—H16 120.9 (10) C47—C48—H48 120.2 (12)
C11—C16—H16 120.0 (10) C43—C48—H48 118.9 (12)
C3—N2—N1 106.76 (14) C46—O49—C50 117.40 (16)
C3—N2—C21 123.27 (16) O49—C50—C51 106.06 (18)
N1—N2—C21 117.24 (15) O49—C50—H50A 106.2 (16)
N2—C21—H21A 109.6 (13) C51—C50—H50A 108.4 (15)
N2—C21—H21B 108.9 (14) O49—C50—H50B 108.6 (15)
H21A—C21—H21B 106.0 (18) C51—C50—H50B 112.8 (15)
N2—C21—H21C 109.5 (16) H50A—C50—H50B 114 (2)
H21A—C21—H21C 111 (2) C56—C51—C52 118.83 (19)
H21B—C21—H21C 111 (2) C56—C51—C50 119.8 (2)
N2—C3—C4 110.33 (16) C52—C51—C50 121.3 (2)
N2—C3—C31 121.50 (17) C51—C52—C53 120.5 (2)
C4—C3—C31 128.17 (17) C51—C52—H52 119.2 (15)
C3—C31—H31A 111.9 (13) C53—C52—H52 120.3 (15)
C3—C31—H31B 111.1 (14) C54—C53—C52 120.1 (2)
H31A—C31—H31B 107.3 (19) C54—C53—H53 115.4 (15)
C3—C31—H31C 109.6 (14) C52—C53—H53 124.4 (16)
H31A—C31—H31C 109.3 (19) C55—C54—C53 119.7 (2)
H31B—C31—H31C 107.5 (18) C55—C54—H54 121.5 (13)
C3—C4—N41 121.31 (17) C53—C54—H54 118.8 (13)
C3—C4—C5 108.33 (15) C54—C55—C56 120.0 (2)
N41—C4—C5 130.32 (17) C54—C55—H55 121.0 (13)
O5—C5—N1 123.76 (16) C56—C55—H55 119.0 (13)
O5—C5—C4 131.83 (16) C51—C56—C55 120.8 (2)
N1—C5—C4 104.39 (15) C51—C56—H56 119.8 (13)
C42—N41—C4 122.30 (17) C55—C56—H56 119.4 (13)
C5—N1—C11—C12 62.7 (2) C3—C4—C5—N1 −1.39 (18)
N2—N1—C11—C12 −148.63 (16) N41—C4—C5—N1 −178.76 (17)
C5—N1—C11—C16 −117.28 (19) C3—C4—N41—C42 −177.14 (17)
N2—N1—C11—C16 31.4 (2) C5—C4—N41—C42 −0.1 (3)
C16—C11—C12—C13 1.7 (3) C4—N41—C42—C43 −179.59 (16)
N1—C11—C12—C13 −178.33 (17) N41—C42—C43—C44 175.54 (18)
C11—C12—C13—C14 −2.5 (3) N41—C42—C43—C48 −3.3 (3)
C12—C13—C14—C15 1.5 (3) C48—C43—C44—C45 −0.1 (3)
C13—C14—C15—C16 0.4 (3) C42—C43—C44—C45 −179.0 (2)
C14—C15—C16—C11 −1.2 (3) C43—C44—C45—C46 0.0 (3)
C12—C11—C16—C15 0.1 (3) C44—C45—C46—O49 −178.3 (2)
N1—C11—C16—C15 −179.87 (16) C44—C45—C46—C47 −0.1 (3)
C5—N1—N2—C3 −8.15 (18) O49—C46—C47—C48 178.61 (18)
C11—N1—N2—C3 −161.16 (15) C45—C46—C47—C48 0.2 (3)
C5—N1—N2—C21 −151.23 (16) C46—C47—C48—C43 −0.3 (3)
C11—N1—N2—C21 55.8 (2) C44—C43—C48—C47 0.2 (3)
N1—N2—C3—C4 7.24 (19) C42—C43—C48—C47 179.14 (18)
C21—N2—C3—C4 147.53 (18) C45—C46—O49—C50 −5.7 (3)
N1—N2—C3—C31 −172.05 (16) C47—C46—O49—C50 176.0 (2)
C21—N2—C3—C31 −31.8 (3) C46—O49—C50—C51 −178.53 (18)
N2—C3—C4—N41 173.97 (15) O49—C50—C51—C56 −103.0 (3)
C31—C3—C4—N41 −6.8 (3) O49—C50—C51—C52 74.8 (3)
N2—C3—C4—C5 −3.7 (2) C56—C51—C52—C53 −0.6 (3)
C31—C3—C4—C5 175.55 (18) C50—C51—C52—C53 −178.4 (2)
N2—N1—C5—O5 −172.94 (15) C51—C52—C53—C54 0.9 (3)
C11—N1—C5—O5 −21.7 (3) C52—C53—C54—C55 −0.6 (3)
N2—N1—C5—C4 5.81 (17) C53—C54—C55—C56 −0.1 (3)
C11—N1—C5—C4 157.01 (15) C52—C51—C56—C55 −0.1 (3)
C3—C4—C5—O5 177.22 (18) C50—C51—C56—C55 177.76 (19)
N41—C4—C5—O5 −0.2 (3) C54—C55—C56—C51 0.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C16—H16···O49i 0.990 (18) 2.486 (18) 3.470 (2) 172.6 (15)
C21—H21C···O5ii 0.97 (3) 2.58 (3) 3.352 (3) 137.3 (19)
C31—H31A···O5ii 0.97 (2) 2.65 (2) 3.517 (3) 149.1 (17)
C52—H52···O5iii 0.96 (3) 2.51 (3) 3.411 (3) 156 (2)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x, y+1, z; (iii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5278).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Diao, C.-H. & Chen, X. (2006). Acta Cryst. E62, o5211–o5212.
  4. Duan, Z.-Y., Li, G., Zhang, W.-J., Han, E.-S. & Du, F.-Y. (2006). Acta Cryst. E62, o3103–o3104.
  5. Hu, T.-P. (2006). Acta Cryst. E62, o2270–o2271.
  6. Jun, S. (2005). Acta Cryst. E61, o3893–o3894.
  7. Liu, S.-X., Han, J.-R., Zhen, X.-L. & Tian, X. (2006). Acta Cryst. E62, o5765–o6766.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shi, J. (2005). Acta Cryst. E61, o4023–o4024.
  10. Zhang, W.-J., Duan, Z.-Y. & Zhao, X. (2006). Acta Cryst. E62, o2834–o2835.
  11. Zhen, X.-L., Han, J.-R., Tian, X., Li, Z.-C. & Liu, S.-X. (2006). Acta Cryst. E62, o5641–o5642.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014262/cv5278sup1.cif

e-68-o1324-sup1.cif (29KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014262/cv5278Isup2.hkl

e-68-o1324-Isup2.hkl (208.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014262/cv5278Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES