Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 6;68(Pt 5):o1328. doi: 10.1107/S1600536812014158

3,4-Bis(4-meth­oxy­phen­yl)-2,5-dihydro-1H-pyrrole-2,5-dione

Liangzhu Huang a, Youqiang Li a, Dongmei Gao a, Zhenting Du a,*
PMCID: PMC3344467  PMID: 22590229

Abstract

In the title compound, C18H15NO4, the benzene rings form quite different dihedral angles [16.07 (1) and 59.50 (1)°] with the central pyrrole ring, indicating a twisted mol­ecule. Conjugation is indicated between the five- and six-membered rings by the lengths of the C—C bonds which link them [1.462 (3) and 1.477 (3) Å]. The most prominent feature of the crystal packing is the formation of inversion dimers via eight-membered {⋯HNCO}2 synthons.

Related literature  

For the use of 3,4-diaryl-substituted maleic imide derivatives as photochromic materials, see: Irie (2000); Liu et al. (2003). For the synthesis, see: Faul et al. (1999).graphic file with name e-68-o1328-scheme1.jpg

Experimental  

Crystal data  

  • C18H15NO4

  • M r = 309.31

  • Triclinic, Inline graphic

  • a = 6.030 (3) Å

  • b = 8.971 (5) Å

  • c = 14.023 (8) Å

  • α = 90.945 (6)°

  • β = 95.205 (5)°

  • γ = 97.862 (5)°

  • V = 748.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.69 × 0.23 × 0.19 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.233, T max = 0.982

  • 3943 measured reflections

  • 2607 independent reflections

  • 1751 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.148

  • S = 1.03

  • 2607 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014158/tk5079sup1.cif

e-68-o1328-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014158/tk5079Isup2.hkl

e-68-o1328-Isup2.hkl (128KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014158/tk5079Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812014158/tk5079Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.03 2.882 (3) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Program for Excellent Young Talents in Northwest A&F University (No. 2111020712) and the opening project of the Xinjiang Production Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin (BRTD1004) is greatly appreciated.

supplementary crystallographic information

Comment

3,4-Diaryl substituted maleic imide is a conjugated unit which has interesting optical and electronic properties. A number of 3,4-diaryl substituted maleic imide derivatives have been designed and synthesized to be used as photo-chromic materials (Irie, 2000; Liu et al., 2003). In the course of exploring new photo-chromic compounds, we obtained an intermediate compound, 3,4-bis(4'-methoxyphenyl)maleic imide, (I). Herein, we report its structure.

The molecule was designed to feature two terminal methoxy group to enhance its solubility and to, later, enable fictionalization. The inter-planar angles between the two benzene rings connected with the maleic imide five-membered ring are different. The inter-planar angle between the benzene plane defined by C5–C10 and maleic imide plane is 16.07 (1) °. However, the inter-planar angle between the other benzene plane defined by C12–C17 and maleic imide plane is 59.50 (1) °. The lengths of the two single bonds connecting benzene groups and maleic imide are respectively 1.462 (3) Å (C2—C5) and 1.477 (3) Å (C3—C12), which are obviously shorter than typical Csp3—Csp3 single bond. This means that the bonding between the six-membered ring and the five-membered ring is quite conjugated.

Experimental

For synthesis of imide (I), an improved procedure (Faul et al., 1999) was followed using 4-methoxyphenylethylglyoxalate (2.1 g, 10 mmol), 4-methoxyphenylacetamide (1.65 g, 10 mmol) and freshly prepared NaOEt (40 mmol) in absolute ethanol (20 ml). The mixture was refluxed for 4 h and poured into diluted HCl. After conventional workup, purification was achieved by column chromatography (ethyl acetate/hexanes 1:1) to yield (I) (2.0 g, 65%) as a yellow solid. Crystals of (I) precipitated at 298 K from its methanol solution by slow evaporation.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93–0.96 Å and N—H = 0.86 Å and with Uiso(H) = 1.2–1.5Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C18H15NO4 Z = 2
Mr = 309.31 F(000) = 324
Triclinic, P1 Dx = 1.373 Mg m3
Hall symbol: -P 1 Melting point: 517 K
a = 6.030 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.971 (5) Å Cell parameters from 1101 reflections
c = 14.023 (8) Å θ = 2.7–23.6°
α = 90.945 (6)° µ = 0.10 mm1
β = 95.205 (5)° T = 296 K
γ = 97.862 (5)° Block, yellow
V = 748.0 (7) Å3 0.69 × 0.23 × 0.19 mm

Data collection

Bruker APEXII CCD diffractometer 2607 independent reflections
Radiation source: fine-focus sealed tube 1751 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
φ and ω scans θmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→7
Tmin = 0.233, Tmax = 0.982 k = −10→8
3943 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0769P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2607 reflections Δρmax = 0.16 e Å3
211 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.114 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3834 (4) 0.3007 (3) 0.96603 (16) 0.0422 (6)
C2 0.4781 (4) 0.3299 (2) 0.87029 (14) 0.0359 (6)
C3 0.3710 (4) 0.4394 (2) 0.82907 (15) 0.0351 (5)
C4 0.2055 (4) 0.4800 (3) 0.89376 (15) 0.0385 (6)
C5 0.6460 (4) 0.2446 (2) 0.83558 (15) 0.0374 (6)
C6 0.6830 (4) 0.2411 (3) 0.73879 (16) 0.0453 (6)
H6 0.6022 0.2964 0.6961 0.054*
C7 0.8349 (4) 0.1582 (3) 0.70524 (16) 0.0504 (7)
H7 0.8558 0.1583 0.6403 0.060*
C8 0.9589 (4) 0.0736 (2) 0.76676 (16) 0.0427 (6)
C9 0.9229 (4) 0.0735 (3) 0.86255 (17) 0.0497 (7)
H9 1.0021 0.0164 0.9047 0.060*
C10 0.7698 (4) 0.1579 (3) 0.89605 (16) 0.0462 (6)
H10 0.7486 0.1571 0.9609 0.055*
C11 1.2389 (5) −0.0910 (3) 0.7865 (2) 0.0646 (8)
H11A 1.3177 −0.0288 0.8385 0.097*
H11B 1.3454 −0.1313 0.7500 0.097*
H11C 1.1421 −0.1721 0.8114 0.097*
C12 0.4059 (4) 0.5231 (2) 0.74060 (14) 0.0347 (5)
C13 0.6128 (4) 0.6031 (3) 0.72713 (16) 0.0449 (6)
H13 0.7322 0.6006 0.7737 0.054*
C14 0.6481 (4) 0.6866 (3) 0.64669 (16) 0.0465 (6)
H14 0.7886 0.7405 0.6399 0.056*
C15 0.4738 (4) 0.6893 (3) 0.57684 (16) 0.0441 (6)
C16 0.2652 (4) 0.6106 (3) 0.58874 (17) 0.0537 (7)
H16 0.1469 0.6125 0.5416 0.064*
C17 0.2309 (4) 0.5294 (3) 0.66974 (16) 0.0458 (6)
H17 0.0889 0.4782 0.6772 0.055*
C18 0.6974 (5) 0.8516 (4) 0.4787 (2) 0.0779 (9)
H18A 0.7448 0.9232 0.5307 0.117*
H18B 0.6827 0.9037 0.4198 0.117*
H18C 0.8070 0.7840 0.4750 0.117*
N1 0.2275 (3) 0.3981 (2) 0.97460 (12) 0.0434 (5)
H1 0.1543 0.4062 1.0239 0.052*
O1 0.0729 (3) 0.57097 (18) 0.88000 (11) 0.0482 (5)
O2 0.4269 (3) 0.2105 (2) 1.02547 (12) 0.0629 (6)
O3 1.1072 (3) −0.00307 (19) 0.72612 (12) 0.0586 (5)
O4 0.4878 (3) 0.7688 (2) 0.49458 (12) 0.0668 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0439 (14) 0.0460 (14) 0.0379 (13) 0.0089 (12) 0.0043 (11) 0.0091 (11)
C2 0.0362 (13) 0.0366 (12) 0.0347 (12) 0.0050 (10) 0.0019 (10) 0.0052 (10)
C3 0.0356 (13) 0.0361 (12) 0.0340 (12) 0.0072 (10) 0.0024 (10) 0.0059 (9)
C4 0.0360 (13) 0.0406 (13) 0.0399 (13) 0.0072 (11) 0.0052 (10) 0.0066 (10)
C5 0.0385 (13) 0.0367 (12) 0.0380 (12) 0.0077 (11) 0.0041 (10) 0.0076 (10)
C6 0.0568 (16) 0.0453 (14) 0.0373 (13) 0.0193 (12) 0.0045 (11) 0.0088 (11)
C7 0.0687 (18) 0.0513 (15) 0.0371 (13) 0.0240 (14) 0.0124 (12) 0.0089 (11)
C8 0.0464 (15) 0.0342 (12) 0.0499 (14) 0.0103 (11) 0.0101 (11) 0.0052 (11)
C9 0.0565 (17) 0.0496 (15) 0.0465 (14) 0.0182 (13) 0.0045 (12) 0.0147 (12)
C10 0.0524 (15) 0.0535 (15) 0.0373 (13) 0.0196 (13) 0.0084 (11) 0.0111 (11)
C11 0.071 (2) 0.0505 (16) 0.081 (2) 0.0338 (15) 0.0144 (16) 0.0137 (14)
C12 0.0351 (13) 0.0382 (13) 0.0331 (11) 0.0121 (10) 0.0041 (10) 0.0071 (9)
C13 0.0369 (14) 0.0571 (15) 0.0410 (13) 0.0097 (12) −0.0013 (11) 0.0134 (11)
C14 0.0400 (14) 0.0529 (15) 0.0466 (14) 0.0039 (12) 0.0062 (11) 0.0142 (12)
C15 0.0542 (16) 0.0460 (14) 0.0346 (12) 0.0132 (12) 0.0062 (11) 0.0115 (10)
C16 0.0490 (16) 0.0707 (18) 0.0397 (14) 0.0086 (14) −0.0083 (12) 0.0152 (12)
C17 0.0390 (14) 0.0530 (15) 0.0436 (14) 0.0015 (12) −0.0001 (11) 0.0105 (11)
C18 0.090 (2) 0.079 (2) 0.0653 (19) 0.0022 (19) 0.0234 (17) 0.0333 (16)
N1 0.0472 (12) 0.0525 (12) 0.0352 (10) 0.0163 (10) 0.0135 (9) 0.0107 (9)
O1 0.0461 (10) 0.0555 (10) 0.0485 (10) 0.0206 (9) 0.0112 (8) 0.0133 (8)
O2 0.0737 (13) 0.0724 (13) 0.0524 (10) 0.0323 (11) 0.0196 (9) 0.0322 (10)
O3 0.0685 (12) 0.0565 (11) 0.0605 (11) 0.0324 (10) 0.0198 (9) 0.0118 (9)
O4 0.0743 (14) 0.0783 (13) 0.0479 (11) 0.0073 (11) 0.0062 (10) 0.0328 (10)

Geometric parameters (Å, º)

C1—O2 1.208 (2) C11—O3 1.429 (3)
C1—N1 1.380 (3) C11—H11A 0.9600
C1—C2 1.519 (3) C11—H11B 0.9600
C2—C3 1.357 (3) C11—H11C 0.9600
C2—C5 1.462 (3) C12—C13 1.382 (3)
C3—C12 1.477 (3) C12—C17 1.390 (3)
C3—C4 1.485 (3) C13—C14 1.381 (3)
C4—O1 1.224 (3) C13—H13 0.9300
C4—N1 1.367 (3) C14—C15 1.373 (3)
C5—C10 1.395 (3) C14—H14 0.9300
C5—C6 1.396 (3) C15—O4 1.369 (3)
C6—C7 1.366 (3) C15—C16 1.381 (3)
C6—H6 0.9300 C16—C17 1.375 (3)
C7—C8 1.393 (3) C16—H16 0.9300
C7—H7 0.9300 C17—H17 0.9300
C8—O3 1.358 (3) C18—O4 1.413 (3)
C8—C9 1.380 (3) C18—H18A 0.9600
C9—C10 1.380 (3) C18—H18B 0.9600
C9—H9 0.9300 C18—H18C 0.9600
C10—H10 0.9300 N1—H1 0.8600
O2—C1—N1 124.0 (2) O3—C11—H11C 109.5
O2—C1—C2 129.2 (2) H11A—C11—H11C 109.5
N1—C1—C2 106.80 (19) H11B—C11—H11C 109.5
C3—C2—C5 131.08 (19) C13—C12—C17 117.5 (2)
C3—C2—C1 106.54 (19) C13—C12—C3 120.88 (19)
C5—C2—C1 122.34 (19) C17—C12—C3 121.5 (2)
C2—C3—C12 131.28 (19) C14—C13—C12 122.1 (2)
C2—C3—C4 108.34 (18) C14—C13—H13 118.9
C12—C3—C4 120.22 (18) C12—C13—H13 118.9
O1—C4—N1 124.7 (2) C15—C14—C13 119.4 (2)
O1—C4—C3 127.6 (2) C15—C14—H14 120.3
N1—C4—C3 107.73 (19) C13—C14—H14 120.3
C10—C5—C6 116.7 (2) O4—C15—C14 124.7 (2)
C10—C5—C2 122.1 (2) O4—C15—C16 115.7 (2)
C6—C5—C2 121.1 (2) C14—C15—C16 119.6 (2)
C7—C6—C5 121.6 (2) C17—C16—C15 120.6 (2)
C7—C6—H6 119.2 C17—C16—H16 119.7
C5—C6—H6 119.2 C15—C16—H16 119.7
C6—C7—C8 121.0 (2) C16—C17—C12 120.8 (2)
C6—C7—H7 119.5 C16—C17—H17 119.6
C8—C7—H7 119.5 C12—C17—H17 119.6
O3—C8—C9 125.3 (2) O4—C18—H18A 109.5
O3—C8—C7 116.1 (2) O4—C18—H18B 109.5
C9—C8—C7 118.5 (2) H18A—C18—H18B 109.5
C8—C9—C10 120.2 (2) O4—C18—H18C 109.5
C8—C9—H9 119.9 H18A—C18—H18C 109.5
C10—C9—H9 119.9 H18B—C18—H18C 109.5
C9—C10—C5 122.0 (2) C4—N1—C1 110.48 (18)
C9—C10—H10 119.0 C4—N1—H1 124.8
C5—C10—H10 119.0 C1—N1—H1 124.8
O3—C11—H11A 109.5 C8—O3—C11 118.18 (19)
O3—C11—H11B 109.5 C15—O4—C18 118.1 (2)
H11A—C11—H11B 109.5
O2—C1—C2—C3 178.3 (2) C6—C5—C10—C9 0.5 (3)
N1—C1—C2—C3 −0.8 (2) C2—C5—C10—C9 177.8 (2)
O2—C1—C2—C5 0.4 (4) C2—C3—C12—C13 −56.6 (3)
N1—C1—C2—C5 −178.69 (19) C4—C3—C12—C13 118.2 (2)
C5—C2—C3—C12 −8.5 (4) C2—C3—C12—C17 126.1 (3)
C1—C2—C3—C12 173.9 (2) C4—C3—C12—C17 −59.2 (3)
C5—C2—C3—C4 176.3 (2) C17—C12—C13—C14 −0.2 (3)
C1—C2—C3—C4 −1.4 (2) C3—C12—C13—C14 −177.7 (2)
C2—C3—C4—O1 −177.7 (2) C12—C13—C14—C15 −0.9 (4)
C12—C3—C4—O1 6.5 (3) C13—C14—C15—O4 179.4 (2)
C2—C3—C4—N1 3.1 (2) C13—C14—C15—C16 1.0 (4)
C12—C3—C4—N1 −172.74 (19) O4—C15—C16—C17 −178.6 (2)
C3—C2—C5—C10 166.7 (2) C14—C15—C16—C17 −0.1 (4)
C1—C2—C5—C10 −16.0 (3) C15—C16—C17—C12 −1.0 (4)
C3—C2—C5—C6 −16.1 (4) C13—C12—C17—C16 1.1 (4)
C1—C2—C5—C6 161.3 (2) C3—C12—C17—C16 178.6 (2)
C10—C5—C6—C7 −0.7 (4) O1—C4—N1—C1 177.1 (2)
C2—C5—C6—C7 −178.1 (2) C3—C4—N1—C1 −3.6 (3)
C5—C6—C7—C8 0.1 (4) O2—C1—N1—C4 −176.4 (2)
C6—C7—C8—O3 −179.2 (2) C2—C1—N1—C4 2.8 (2)
C6—C7—C8—C9 0.9 (4) C9—C8—O3—C11 −0.3 (3)
O3—C8—C9—C10 179.0 (2) C7—C8—O3—C11 179.8 (2)
C7—C8—C9—C10 −1.1 (4) C14—C15—O4—C18 1.5 (4)
C8—C9—C10—C5 0.4 (4) C16—C15—O4—C18 179.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.03 2.882 (3) 168

Symmetry code: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5079).

References

  1. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Faul, M. M., Winneroski, L. L. & Krumrich, C. A. (1999). Tetrahedron Lett. 40, 1109–1112.
  3. Irie, M. (2000). Chem. Rev 100, 1683–1684. [DOI] [PubMed]
  4. Liu, Y., Wang, Q., Liu, Y. & Yang, X. (2003). Chem. Phys. Lett. 373, 338–343.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014158/tk5079sup1.cif

e-68-o1328-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014158/tk5079Isup2.hkl

e-68-o1328-Isup2.hkl (128KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014158/tk5079Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812014158/tk5079Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES