Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):o1342. doi: 10.1107/S1600536812013992

2-(Ethyl­sulfin­yl)imidazo[1,2-a]pyridine-3-sulfonamide

Yaling Gong a, Haixia Ma b, Jing Li b,*
PMCID: PMC3344477  PMID: 22590239

Abstract

The supra­molecular structure of the title compound, C9H11N3O3S2, is defined by two inter­molecular hydrogen bonds. Pairs of N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers and N—H⋯O hydrogen bonds link the dimers into a tubular chain structure running parallel to the a axis.

Related literature  

The title compound is a derivative of sulfosulfuron [systematic name: 1-(4,6-dimeth­oxy­pyrimidin-2-yl)-3-(2-ethyl­sulfonyl­imid­azo[1,2-a]pyridin-3-ylsulfon­yl)urea], a high-performance sulfonyl­urea herbicide used to control several grassy weeds in wheat, see: Maxwell et al. (2005).graphic file with name e-68-o1342-scheme1.jpg

Experimental  

Crystal data  

  • C9H11N3O3S2

  • M r = 273.33

  • Triclinic, Inline graphic

  • a = 8.3761 (9) Å

  • b = 8.5438 (9) Å

  • c = 9.1083 (10) Å

  • α = 88.832 (2)°

  • β = 75.376 (1)°

  • γ = 65.170 (1)°

  • V = 569.67 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.873, T max = 0.912

  • 6015 measured reflections

  • 2001 independent reflections

  • 1793 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.068

  • S = 1.06

  • 2001 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013992/go2050sup1.cif

e-68-o1342-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013992/go2050Isup2.hkl

e-68-o1342-Isup2.hkl (98.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013992/go2050Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.83 2.07 2.888 (2) 171
N3—H3B⋯N1ii 0.82 2.24 3.026 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the National Science Foundation (YG, No. 81001364) for support of this work.

supplementary crystallographic information

Comment

Sulfosulfuron,1-(4,6-dimethoxypyrimidin-2-yl)-3-(2-ethylsulfonylimidazo [1,2-a]pyridin-3-ylsulfonyl)urea, is high-performance sulfonylurea herbicide, and can effectively control several grassy weeds in wheat (Maxwell, et al.2005). In the course of exploring its derivatives, we obtained the compound C9H11N3O3S2, Figure, 1.

The supramolecular structure is defined by the N3—H3B···N1 hydrogen bond which links the molecules into centrosymmetric dimers lying across the centre-of-symmetry at (0.5,0.5,0.5) and the N3–H3B···O1 hydrogen bond which links the dimers into tubular chains which run parallel to the a-axis, Table 1 and Figure 2.

Experimental

m-chloroperoxybenzoic acid (1.88 g, 8.22 mmol) in 100 ml CH2Cl2 was added dropwise to a solution of 2-ethylthioimidazo[1,2-a]pyridine-3-sulfonamide (2.2 g, 8.22 mmol) in 200 ml CH2Cl2 in an ice water bath. The suspension was stirred at 0–5°C for more than 3 h, and filtered. After removing the solvent, and the crude product was recrystallized in MeOH to give white crystalline product (1.24 g, 55% yield)). The melting point of the product was 203–205°C.

Refinement

H atoms were treated as riding atoms with C—H(aromatic), 0.93 Å, and C—H(CH2), 0.97\$A with Uiso = 1.2Ueq(C) and CH(methyl), 0.96 Å, with Uiso =1.5Ueq(C).

The hydrogen atoms attached to N3 were located on a difference Fourier map and allowed to ride at these positions. These positions were confirmed in a final difference Fourier map.

Figures

Fig. 1.

Fig. 1.

A view of (1) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A stereoview of part of the crystal structure of compound, showing the tubular chain structure which runs parallel to the a-axis. Hydrogen atoms not involved in the motifs are not included.

Crystal data

C9H11N3O3S2 Z = 2
Mr = 273.33 F(000) = 284
Triclinic, P1 Dx = 1.593 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3761 (9) Å Cell parameters from 3732 reflections
b = 8.5438 (9) Å θ = 2.6–30.8°
c = 9.1083 (10) Å µ = 0.47 mm1
α = 88.832 (2)° T = 296 K
β = 75.376 (1)° Block, colourless
γ = 65.170 (1)° 0.30 × 0.20 × 0.20 mm
V = 569.67 (11) Å3

Data collection

Bruker SMART APEX CCD diffractometer 2001 independent reflections
Radiation source: fine-focus sealed tube 1793 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
phi and ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.873, Tmax = 0.912 k = −10→10
6015 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.3093P] where P = (Fo2 + 2Fc2)/3
2001 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.85430 (6) 0.27576 (6) 0.34364 (5) 0.02656 (13)
S2 0.45246 (6) 0.23968 (6) 0.29742 (5) 0.02731 (13)
O1 0.96772 (17) 0.30562 (18) 0.43380 (16) 0.0388 (3)
O2 0.59485 (18) 0.2537 (2) 0.18084 (15) 0.0431 (4)
O3 0.4246 (2) 0.08604 (17) 0.29993 (17) 0.0435 (4)
N1 0.64659 (19) 0.30840 (18) 0.63394 (16) 0.0267 (3)
N2 0.39592 (19) 0.28563 (17) 0.61067 (15) 0.0235 (3)
N3 0.2631 (2) 0.39803 (19) 0.29715 (17) 0.0303 (3)
H3A 0.1735 0.3815 0.3436 0.036*
H3B 0.2634 0.4922 0.3130 0.036*
C1 0.4861 (2) 0.3112 (2) 0.7099 (2) 0.0255 (4)
C2 0.4020 (3) 0.3362 (2) 0.8674 (2) 0.0335 (4)
H2B 0.4593 0.3540 0.9364 0.040*
C3 0.2362 (3) 0.3342 (3) 0.9171 (2) 0.0373 (4)
H3D 0.1791 0.3512 1.0210 0.045*
C4 0.1494 (3) 0.3065 (3) 0.8128 (2) 0.0355 (4)
H4A 0.0354 0.3060 0.8490 0.043*
C5 0.2291 (2) 0.2807 (2) 0.6613 (2) 0.0292 (4)
H5A 0.1726 0.2601 0.5930 0.035*
C6 0.5075 (2) 0.2671 (2) 0.46454 (19) 0.0240 (4)
C7 0.6586 (2) 0.2806 (2) 0.48511 (19) 0.0241 (4)
C8 0.9606 (2) 0.0468 (2) 0.2813 (2) 0.0322 (4)
H8A 0.9966 −0.0194 0.3646 0.039*
H8B 0.8738 0.0151 0.2517 0.039*
C9 1.1260 (3) 0.0039 (3) 0.1481 (2) 0.0439 (5)
H9A 1.1791 −0.1173 0.1144 0.066*
H9B 1.2138 0.0309 0.1787 0.066*
H9C 1.0904 0.0707 0.0663 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0231 (2) 0.0276 (2) 0.0309 (2) −0.01298 (18) −0.00662 (17) 0.00240 (17)
S2 0.0250 (2) 0.0318 (2) 0.0257 (2) −0.01139 (19) −0.00860 (17) −0.00373 (17)
O1 0.0293 (7) 0.0504 (8) 0.0445 (8) −0.0243 (6) −0.0095 (6) −0.0045 (6)
O2 0.0311 (7) 0.0691 (10) 0.0259 (7) −0.0202 (7) −0.0042 (6) −0.0020 (6)
O3 0.0475 (8) 0.0297 (7) 0.0593 (9) −0.0152 (6) −0.0261 (7) −0.0046 (6)
N1 0.0272 (8) 0.0276 (8) 0.0286 (8) −0.0128 (6) −0.0113 (6) 0.0025 (6)
N2 0.0234 (7) 0.0236 (7) 0.0245 (7) −0.0107 (6) −0.0071 (6) 0.0021 (6)
N3 0.0278 (8) 0.0316 (8) 0.0358 (9) −0.0140 (7) −0.0134 (7) 0.0019 (6)
C1 0.0273 (9) 0.0232 (8) 0.0282 (9) −0.0106 (7) −0.0118 (7) 0.0031 (7)
C2 0.0408 (11) 0.0353 (10) 0.0262 (9) −0.0162 (9) −0.0121 (8) 0.0028 (8)
C3 0.0425 (11) 0.0388 (11) 0.0262 (10) −0.0176 (9) −0.0019 (8) 0.0022 (8)
C4 0.0298 (10) 0.0388 (11) 0.0366 (11) −0.0174 (8) −0.0023 (8) 0.0050 (8)
C5 0.0259 (9) 0.0302 (9) 0.0343 (10) −0.0145 (8) −0.0087 (7) 0.0044 (7)
C6 0.0233 (8) 0.0267 (9) 0.0234 (9) −0.0116 (7) −0.0066 (7) 0.0012 (7)
C7 0.0231 (8) 0.0228 (8) 0.0269 (9) −0.0095 (7) −0.0082 (7) 0.0016 (7)
C8 0.0314 (10) 0.0276 (9) 0.0356 (10) −0.0109 (8) −0.0084 (8) 0.0000 (8)
C9 0.0352 (11) 0.0488 (13) 0.0414 (12) −0.0154 (10) −0.0033 (9) −0.0085 (9)

Geometric parameters (Å, º)

S1—O1 1.4993 (13) C2—C3 1.355 (3)
S1—C7 1.7965 (17) C2—H2B 0.9300
S1—C8 1.8082 (18) C3—C4 1.410 (3)
S2—O3 1.4255 (14) C3—H3D 0.9300
S2—O2 1.4281 (14) C4—C5 1.349 (3)
S2—N3 1.5954 (15) C4—H4A 0.9300
S2—C6 1.7448 (17) C5—H5A 0.9300
N1—C1 1.338 (2) C6—C7 1.376 (2)
N1—C7 1.352 (2) C8—C9 1.506 (3)
N2—C5 1.375 (2) C8—H8A 0.9700
N2—C1 1.388 (2) C8—H8B 0.9700
N2—C6 1.388 (2) C9—H9A 0.9600
N3—H3A 0.83 C9—H9B 0.9600
N3—H3B 0.82 C9—H9C 0.9600
C1—C2 1.406 (2)
O1—S1—C7 104.42 (8) C5—C4—C3 121.08 (17)
O1—S1—C8 106.98 (8) C5—C4—H4A 119.5
C7—S1—C8 97.74 (8) C3—C4—H4A 119.5
O3—S2—O2 120.44 (9) C4—C5—N2 118.26 (17)
O3—S2—N3 107.20 (8) C4—C5—H5A 120.9
O2—S2—N3 108.79 (9) N2—C5—H5A 120.9
O3—S2—C6 108.41 (8) C7—C6—N2 104.92 (14)
O2—S2—C6 103.09 (8) C7—C6—S2 130.38 (13)
N3—S2—C6 108.43 (8) N2—C6—S2 124.68 (12)
C1—N1—C7 105.05 (14) N1—C7—C6 112.36 (15)
C5—N2—C1 122.26 (14) N1—C7—S1 118.80 (12)
C5—N2—C6 131.29 (15) C6—C7—S1 128.78 (13)
C1—N2—C6 106.45 (13) C9—C8—S1 110.33 (14)
S2—N3—H3A 112.6 C9—C8—H8A 109.6
S2—N3—H3B 112.2 S1—C8—H8A 109.6
H3A—N3—H3B 118.8 C9—C8—H8B 109.6
N1—C1—N2 111.22 (14) S1—C8—H8B 109.6
N1—C1—C2 130.02 (16) H8A—C8—H8B 108.1
N2—C1—C2 118.76 (15) C8—C9—H9A 109.5
C3—C2—C1 118.91 (17) C8—C9—H9B 109.5
C3—C2—H2B 120.5 H9A—C9—H9B 109.5
C1—C2—H2B 120.5 C8—C9—H9C 109.5
C2—C3—C4 120.71 (17) H9A—C9—H9C 109.5
C2—C3—H3D 119.6 H9B—C9—H9C 109.5
C4—C3—H3D 119.6
C7—N1—C1—N2 −0.09 (18) O2—S2—C6—C7 −6.34 (19)
C7—N1—C1—C2 −179.63 (18) N3—S2—C6—C7 −121.56 (17)
C5—N2—C1—N1 179.11 (15) O3—S2—C6—N2 −59.80 (16)
C6—N2—C1—N1 −0.39 (18) O2—S2—C6—N2 171.48 (14)
C5—N2—C1—C2 −1.3 (2) N3—S2—C6—N2 56.26 (16)
C6—N2—C1—C2 179.21 (15) C1—N1—C7—C6 0.56 (19)
N1—C1—C2—C3 179.69 (18) C1—N1—C7—S1 177.83 (12)
N2—C1—C2—C3 0.2 (3) N2—C6—C7—N1 −0.79 (19)
C1—C2—C3—C4 0.3 (3) S2—C6—C7—N1 177.35 (13)
C2—C3—C4—C5 0.3 (3) N2—C6—C7—S1 −177.72 (12)
C3—C4—C5—N2 −1.3 (3) S2—C6—C7—S1 0.4 (3)
C1—N2—C5—C4 1.9 (3) O1—S1—C7—N1 0.33 (15)
C6—N2—C5—C4 −178.78 (17) C8—S1—C7—N1 110.16 (14)
C5—N2—C6—C7 −178.75 (16) O1—S1—C7—C6 177.09 (16)
C1—N2—C6—C7 0.69 (17) C8—S1—C7—C6 −73.08 (17)
C5—N2—C6—S2 3.0 (3) O1—S1—C8—C9 −77.41 (15)
C1—N2—C6—S2 −177.60 (12) C7—S1—C8—C9 174.87 (14)
O3—S2—C6—C7 122.38 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1i 0.83 2.07 2.888 (2) 171
N3—H3B···N1ii 0.82 2.24 3.026 (2) 161

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2050).

References

  1. Maxwell, B. D., Boyé, O. G. & Ohta, K. (2005). J. Label. Compd Radiopharm., 48, 397–406.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013992/go2050sup1.cif

e-68-o1342-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013992/go2050Isup2.hkl

e-68-o1342-Isup2.hkl (98.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812013992/go2050Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES