Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):o1347. doi: 10.1107/S1600536812014407

3-(Adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)-thione

Ali A El-Emam a, Nasser R El-Brollosy a, Hazem A Ghabbour a, Ching Kheng Quah b,, Hoong-Kun Fun b,*,§
PMCID: PMC3344481  PMID: 22590243

Abstract

In the title compound, C14H21N3S, the 1,2,4-triazole ring is nearly planar, with a maximum deviation of 0.003 (4) Å. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯S hydrogen bonds.

Related literature  

For the biological activity of adamantane derivatives, see: Al-Omar et al. (2010); Al-Deeb et al. (2006); El-Emam et al. (2004); Kadi et al. (2007, 2010); Vernier et al. (1969). For the synthesis of the title compound, see: El-Emam & Ibrahim (1991). For related structures of adamantane derivatives, see: Almutairi et al. (2012); Al-Tamimi et al. (2010); Rouchal et al. (2010); Wang et al. (2011); Al-Abdullah et al. (2012). For standard bond-length data, see: Allen et al. (1987).graphic file with name e-68-o1347-scheme1.jpg

Experimental  

Crystal data  

  • C14H21N3S

  • M r = 263.40

  • Monoclinic, Inline graphic

  • a = 13.8329 (7) Å

  • b = 7.3107 (4) Å

  • c = 17.5302 (12) Å

  • β = 128.157 (4)°

  • V = 1393.99 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.94 mm−1

  • T = 296 K

  • 0.58 × 0.12 × 0.05 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.228, T max = 0.906

  • 8009 measured reflections

  • 2448 independent reflections

  • 1632 reflections with I > 2σ(I)

  • R int = 0.093

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.167

  • S = 1.13

  • 2448 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014407/is5108sup1.cif

e-68-o1347-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014407/is5108Isup2.hkl

e-68-o1347-Isup2.hkl (120.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014407/is5108Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.88 (4) 2.47 (4) 3.338 (4) 170 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al. 2004). Moreover, adamantane derivatives were recently reported to exhibit marked antibacterial activity (Kadi et al., 2007, 2010). In an earlier publication, we reported the synthesis and potent anti-inflammatory and analgesic activities of a series of 5-(1-adamantyl)-4-substituted-4H-1,2,4-triazole-3-thiols and related derivatives including the title compound (El-Emam & Ibrahim, 1991).

In the title molecule (Fig. 1), the 1,2,4-triazole ring (N1–N3/C1/C2) is nearly planar with a maximum deviation of 0.003 (4)) Å at atom C1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Almutairi et al., 2012; Al-Tamimi et al., 2010; Rouchal et al., 2010; Wang et al., 2011; Al-Abdullah et al., 2012).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular N2—H2A···S1 hydrogen bonds (Table 1).

Experimental

A mixture of adamantane-1-carbohydrazide (1.94 g, 0.01 mol), ethyl isothiocyanate (0.87 g, 0.01 mol), in ethanol (10 ml) was heated under reflux with stirring for one hour and the solvent was distilled off in vacuo. Aqueous sodium hydroxide solution (10%, 15 ml) was added to the residue and the mixture was heated under reflux for 2 h, then filtered hot. On cooling, the mixture was acidified with hydrochloric acid and the precipitated crude product was filtered, washed with water, dried and crystallized from aqueous ethanol to yield 2.24 g (85%) of the title compound (C14H21N3S) as colorless crystals. M.p.: 210-212 °C. 1H NMR (CDCl3, 500.13 MHz): δ 1.36 (t, 3H, CH3CH2, J = 7.0 Hz), 1.73 (s, 6H, Adamantane-H), 1.99 (m, 6H, Adamantane-H), 2.06 (s, 3H, Adamantane-H), 4.19 (q, 2H, CH3CH2), 11.60 (br. s, 1H, NH). 13C NMR (CDCl3, 125.76 MHz): δ 13.99 (CH3), 27.91, 35.48, 36.27, 39.75 (Adamantane-C), 41.17 (CH2), 158.04 (C=N), 167.25 (C=S).

Refinement

Atom H1N2 was located in a difference Fourier map and refined freely [N—H = 0.87 (4) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.96–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A packing diagram of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C14H21N3S F(000) = 568
Mr = 263.40 Dx = 1.255 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 592 reflections
a = 13.8329 (7) Å θ = 4.1–66.5°
b = 7.3107 (4) Å µ = 1.94 mm1
c = 17.5302 (12) Å T = 296 K
β = 128.157 (4)° Needle, colourless
V = 1393.99 (16) Å3 0.58 × 0.12 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2448 independent reflections
Radiation source: fine-focus sealed tube 1632 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.093
φ and ω scans θmax = 67.5°, θmin = 4.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→16
Tmin = 0.228, Tmax = 0.906 k = −8→6
8009 measured reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0553P)2 + 1.0409P] where P = (Fo2 + 2Fc2)/3
2448 reflections (Δ/σ)max = 0.001
168 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.10923 (11) 0.88672 (13) 0.05119 (8) 0.0602 (4)
N1 0.0606 (3) 0.6128 (4) 0.1520 (2) 0.0452 (7)
N2 0.0957 (4) 0.7839 (4) 0.0738 (3) 0.0591 (10)
N3 0.1903 (3) 0.6609 (4) 0.1203 (2) 0.0571 (9)
C1 0.0152 (4) 0.7606 (4) 0.0913 (3) 0.0490 (10)
C2 0.1677 (4) 0.5561 (5) 0.1684 (3) 0.0479 (9)
C3 0.2544 (4) 0.4078 (5) 0.2347 (3) 0.0505 (9)
C4 0.3537 (4) 0.3859 (5) 0.2218 (4) 0.0733 (13)
H4A 0.3954 0.5018 0.2345 0.088*
H4B 0.3158 0.3509 0.1554 0.088*
C5 0.4475 (5) 0.2398 (6) 0.2914 (5) 0.0821 (15)
H5A 0.5104 0.2284 0.2822 0.099*
C6 0.5089 (5) 0.2972 (7) 0.3961 (5) 0.0953 (18)
H6A 0.5695 0.2068 0.4406 0.114*
H6B 0.5504 0.4136 0.4096 0.114*
C7 0.4113 (4) 0.3141 (6) 0.4098 (3) 0.0710 (12)
H7A 0.4502 0.3481 0.4771 0.085*
C8 0.3435 (4) 0.1329 (5) 0.3865 (3) 0.0660 (12)
H8A 0.2810 0.1455 0.3951 0.079*
H8B 0.4009 0.0391 0.4307 0.079*
C9 0.2836 (4) 0.0760 (5) 0.2820 (3) 0.0587 (11)
H9A 0.2415 −0.0414 0.2682 0.070*
C10 0.1908 (4) 0.2214 (5) 0.2139 (3) 0.0524 (10)
H10A 0.1279 0.2312 0.2223 0.063*
H10B 0.1512 0.1862 0.1473 0.063*
C11 0.3813 (5) 0.0576 (6) 0.2681 (4) 0.0781 (14)
H11A 0.3433 0.0231 0.2016 0.094*
H11B 0.4397 −0.0369 0.3106 0.094*
C12 0.3189 (4) 0.4605 (5) 0.3421 (3) 0.0595 (11)
H12A 0.3607 0.5768 0.3564 0.071*
H12B 0.2579 0.4739 0.3523 0.071*
C13 −0.0034 (4) 0.5359 (5) 0.1871 (3) 0.0486 (9)
H13A −0.0375 0.6350 0.2006 0.058*
H13B 0.0553 0.4710 0.2474 0.058*
C14 −0.1058 (4) 0.4064 (5) 0.1148 (3) 0.0577 (10)
H14A −0.1485 0.3664 0.1389 0.087*
H14B −0.0717 0.3024 0.1056 0.087*
H14C −0.1622 0.4682 0.0540 0.087*
H1N2 0.089 (3) 0.868 (5) 0.035 (3) 0.063 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0812 (8) 0.0444 (6) 0.0664 (7) 0.0174 (5) 0.0513 (6) 0.0157 (4)
N1 0.060 (2) 0.0367 (15) 0.0490 (17) 0.0075 (14) 0.0389 (16) 0.0066 (12)
N2 0.088 (3) 0.0436 (19) 0.069 (2) 0.0136 (17) 0.060 (2) 0.0182 (16)
N3 0.076 (2) 0.0419 (17) 0.074 (2) 0.0115 (16) 0.057 (2) 0.0146 (15)
C1 0.071 (3) 0.0329 (18) 0.048 (2) 0.0057 (17) 0.039 (2) 0.0031 (15)
C2 0.064 (3) 0.0383 (19) 0.053 (2) 0.0010 (17) 0.042 (2) 0.0002 (15)
C3 0.059 (3) 0.040 (2) 0.064 (2) 0.0053 (17) 0.043 (2) 0.0074 (16)
C4 0.086 (3) 0.051 (2) 0.120 (4) 0.012 (2) 0.082 (3) 0.020 (2)
C5 0.074 (3) 0.062 (3) 0.140 (5) 0.022 (2) 0.080 (4) 0.029 (3)
C6 0.061 (3) 0.071 (3) 0.127 (5) 0.005 (3) 0.045 (3) 0.025 (3)
C7 0.055 (3) 0.064 (3) 0.068 (3) −0.004 (2) 0.025 (2) 0.005 (2)
C8 0.053 (3) 0.057 (3) 0.070 (3) 0.007 (2) 0.029 (2) 0.023 (2)
C9 0.061 (3) 0.037 (2) 0.078 (3) 0.0047 (18) 0.043 (2) 0.0093 (18)
C10 0.062 (3) 0.044 (2) 0.055 (2) 0.0045 (18) 0.038 (2) 0.0048 (16)
C11 0.081 (3) 0.052 (3) 0.118 (4) 0.022 (2) 0.070 (3) 0.020 (3)
C12 0.060 (3) 0.045 (2) 0.063 (3) −0.0037 (18) 0.032 (2) 0.0001 (18)
C13 0.065 (3) 0.043 (2) 0.052 (2) 0.0083 (18) 0.043 (2) 0.0071 (16)
C14 0.060 (3) 0.049 (2) 0.067 (3) −0.0003 (19) 0.041 (2) −0.0006 (18)

Geometric parameters (Å, º)

S1—C1 1.677 (4) C7—C12 1.521 (5)
N1—C1 1.367 (4) C7—C8 1.526 (5)
N1—C2 1.386 (5) C7—H7A 0.9800
N1—C13 1.468 (4) C8—C9 1.530 (6)
N2—C1 1.337 (5) C8—H8A 0.9700
N2—N3 1.366 (4) C8—H8B 0.9700
N2—H1N2 0.87 (4) C9—C10 1.520 (5)
N3—C2 1.312 (4) C9—C11 1.522 (6)
C2—C3 1.497 (5) C9—H9A 0.9800
C3—C4 1.533 (5) C10—H10A 0.9700
C3—C10 1.539 (5) C10—H10B 0.9700
C3—C12 1.553 (5) C11—H11A 0.9700
C4—C5 1.535 (6) C11—H11B 0.9700
C4—H4A 0.9700 C12—H12A 0.9700
C4—H4B 0.9700 C12—H12B 0.9700
C5—C11 1.522 (6) C13—C14 1.514 (5)
C5—C6 1.530 (7) C13—H13A 0.9700
C5—H5A 0.9800 C13—H13B 0.9700
C6—C7 1.515 (7) C14—H14A 0.9600
C6—H6A 0.9700 C14—H14B 0.9600
C6—H6B 0.9700 C14—H14C 0.9600
C1—N1—C2 108.5 (3) C7—C8—C9 110.2 (3)
C1—N1—C13 121.5 (3) C7—C8—H8A 109.6
C2—N1—C13 130.0 (3) C9—C8—H8A 109.6
C1—N2—N3 113.9 (3) C7—C8—H8B 109.6
C1—N2—H1N2 124 (3) C9—C8—H8B 109.6
N3—N2—H1N2 122 (3) H8A—C8—H8B 108.1
C2—N3—N2 104.3 (3) C10—C9—C11 109.8 (3)
N2—C1—N1 103.4 (3) C10—C9—C8 108.7 (3)
N2—C1—S1 128.2 (3) C11—C9—C8 109.8 (4)
N1—C1—S1 128.3 (3) C10—C9—H9A 109.5
N3—C2—N1 109.9 (3) C11—C9—H9A 109.5
N3—C2—C3 121.8 (3) C8—C9—H9A 109.5
N1—C2—C3 128.2 (3) C9—C10—C3 110.6 (3)
C2—C3—C4 108.8 (3) C9—C10—H10A 109.5
C2—C3—C10 113.0 (3) C3—C10—H10A 109.5
C4—C3—C10 107.9 (3) C9—C10—H10B 109.5
C2—C3—C12 110.2 (3) C3—C10—H10B 109.5
C4—C3—C12 108.0 (3) H10A—C10—H10B 108.1
C10—C3—C12 108.8 (3) C9—C11—C5 109.0 (3)
C3—C4—C5 110.5 (3) C9—C11—H11A 109.9
C3—C4—H4A 109.6 C5—C11—H11A 109.9
C5—C4—H4A 109.6 C9—C11—H11B 109.9
C3—C4—H4B 109.6 C5—C11—H11B 109.9
C5—C4—H4B 109.6 H11A—C11—H11B 108.3
H4A—C4—H4B 108.1 C7—C12—C3 110.3 (3)
C11—C5—C6 111.0 (4) C7—C12—H12A 109.6
C11—C5—C4 108.8 (4) C3—C12—H12A 109.6
C6—C5—C4 109.4 (4) C7—C12—H12B 109.6
C11—C5—H5A 109.2 C3—C12—H12B 109.6
C6—C5—H5A 109.2 H12A—C12—H12B 108.1
C4—C5—H5A 109.2 N1—C13—C14 112.5 (3)
C7—C6—C5 108.9 (4) N1—C13—H13A 109.1
C7—C6—H6A 109.9 C14—C13—H13A 109.1
C5—C6—H6A 109.9 N1—C13—H13B 109.1
C7—C6—H6B 109.9 C14—C13—H13B 109.1
C5—C6—H6B 109.9 H13A—C13—H13B 107.8
H6A—C6—H6B 108.3 C13—C14—H14A 109.5
C6—C7—C12 109.6 (4) C13—C14—H14B 109.5
C6—C7—C8 110.4 (4) H14A—C14—H14B 109.5
C12—C7—C8 108.7 (3) C13—C14—H14C 109.5
C6—C7—H7A 109.4 H14A—C14—H14C 109.5
C12—C7—H7A 109.4 H14B—C14—H14C 109.5
C8—C7—H7A 109.4
C1—N2—N3—C2 0.3 (4) C11—C5—C6—C7 −59.4 (5)
N3—N2—C1—N1 −0.6 (4) C4—C5—C6—C7 60.7 (5)
N3—N2—C1—S1 177.7 (3) C5—C6—C7—C12 −61.3 (5)
C2—N1—C1—N2 0.6 (4) C5—C6—C7—C8 58.3 (5)
C13—N1—C1—N2 −178.0 (3) C6—C7—C8—C9 −58.9 (5)
C2—N1—C1—S1 −177.7 (3) C12—C7—C8—C9 61.4 (5)
C13—N1—C1—S1 3.8 (5) C7—C8—C9—C10 −61.4 (4)
N2—N3—C2—N1 0.1 (4) C7—C8—C9—C11 58.8 (4)
N2—N3—C2—C3 −176.4 (3) C11—C9—C10—C3 −60.1 (4)
C1—N1—C2—N3 −0.4 (4) C8—C9—C10—C3 60.0 (4)
C13—N1—C2—N3 177.9 (3) C2—C3—C10—C9 178.9 (3)
C1—N1—C2—C3 175.8 (3) C4—C3—C10—C9 58.6 (4)
C13—N1—C2—C3 −5.9 (6) C12—C3—C10—C9 −58.3 (4)
N3—C2—C3—C4 −8.8 (5) C10—C9—C11—C5 60.7 (5)
N1—C2—C3—C4 175.4 (4) C8—C9—C11—C5 −58.8 (5)
N3—C2—C3—C10 −128.6 (4) C6—C5—C11—C9 59.8 (5)
N1—C2—C3—C10 55.6 (5) C4—C5—C11—C9 −60.7 (5)
N3—C2—C3—C12 109.5 (4) C6—C7—C12—C3 61.0 (5)
N1—C2—C3—C12 −66.3 (5) C8—C7—C12—C3 −59.7 (5)
C2—C3—C4—C5 177.9 (4) C2—C3—C12—C7 −177.4 (3)
C10—C3—C4—C5 −59.2 (5) C4—C3—C12—C7 −58.7 (4)
C12—C3—C4—C5 58.2 (5) C10—C3—C12—C7 58.2 (4)
C3—C4—C5—C11 61.2 (5) C1—N1—C13—C14 82.7 (4)
C3—C4—C5—C6 −60.3 (5) C2—N1—C13—C14 −95.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···S1i 0.88 (4) 2.47 (4) 3.338 (4) 170 (4)

Symmetry code: (i) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5108).

References

  1. Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531. [DOI] [PMC free article] [PubMed]
  2. Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug Res. 56, 40–47. [DOI] [PubMed]
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656. [DOI] [PMC free article] [PubMed]
  5. Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550. [DOI] [PMC free article] [PubMed]
  6. Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756. [DOI] [PMC free article] [PubMed]
  7. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  8. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. [DOI] [PubMed]
  9. El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug Res. 41, 1260–1264. [PubMed]
  10. Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. [DOI] [PubMed]
  11. Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem 42, 235–242. [DOI] [PubMed]
  12. Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665. [DOI] [PubMed]
  16. Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o348. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014407/is5108sup1.cif

e-68-o1347-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014407/is5108Isup2.hkl

e-68-o1347-Isup2.hkl (120.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014407/is5108Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES