Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):o1359. doi: 10.1107/S160053681201481X

[2-(2,5-Dichloro­benz­yl)-4-hy­droxy-1,1-dioxo-2H-1,2-benzothia­zin-3-yl](phen­yl)methanone

Nazia Sattar a, Hamid Latif Siddiqui a,*, Matloob Ahmad b, Muhammad Akram c, Masood Parvez d
PMCID: PMC3344491  PMID: 22590253

Abstract

In the title mol­ecule, C22H15Cl2NO4S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.343 (5) and 0.402 (5) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The mol­ecular structure is consolidated by an intra­molecular O—H⋯O hydrogen bond, which generates an S(?) ring. In the crystal, the molecules are linked by C—H⋯O interactions into [010] chains.

Related literature  

For background information on the activity of anti-inflammatory and analgesic oxicams, see: Lombardino et al. (1971); Soler (1985); Carty et al. (1993); Turck et al. (1995); Blackham & Owen (1975). For the biological activity of benzothia­zine derivatives, see: Zia-ur-Rehman et al. (2005); Ahmad et al. (2010). For the syntheses and crystal stuctures of related benzothia­zine derivatives, see: Ahmad et al. (2011); Aslam et al. (2012).graphic file with name e-68-o1359-scheme1.jpg

Experimental  

Crystal data  

  • C22H15Cl2NO4S

  • M r = 460.32

  • Monoclinic, Inline graphic

  • a = 12.8172 (5) Å

  • b = 9.9215 (4) Å

  • c = 16.7155 (5) Å

  • β = 110.511 (2)°

  • V = 1990.89 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 173 K

  • 0.20 × 0.18 × 0.16 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.913, T max = 0.930

  • 16108 measured reflections

  • 4592 independent reflections

  • 3598 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.118

  • S = 1.11

  • 4592 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201481X/rk2344sup1.cif

e-68-o1359-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201481X/rk2344Isup2.hkl

e-68-o1359-Isup2.hkl (220.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201481X/rk2344Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.95 2.60 3.310 (4) 132
O3—H3O⋯O4 0.84 1.80 2.539 (3) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

supplementary crystallographic information

Comment

Oxicam is the most recent class of non-steroidal anti-inflammatory drugs (NSAIDs) and includes molecules that are derived from 1,2-benzothiazine-1,1-dioxide nuclei which are found to be potent anti-inflammatory and analgesic agents, e.g., piroxicam (Lombardino et al., 1971), droxicam (Soler, 1985), ampiroxicam (Carty et al., 1993), meloxicam (Turck et al., 1995) and sudoxicam (Blackham & Owen, 1975), etc. Besides oxicam, a large number of benzothiazine derivatives are found to possess anti-microbial (Zia-ur-Rehman et al., 2005) and anti-oxidant activities (Ahmad et al., 2010). As part of our ongoing research we are interested in the synthesis and characterization of novel benzothiazine derivatives (Aslam et al., 2012; Ahmad et al., 2011). In this paper we report the synthesis, molecular and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree well with the corresponding bond distances and angles reported for structures of closely related compounds (Ahmad et al., 2011; Aslam et al., 2012). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.402 (5)Å and 0.343 (5)Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The dihedral angle between the mean planes of benzene rings C1-C6 and C17-C22 is 31.17 (7)° while the mean planes of the benzene rings C1-C6 and C10-C15 are oriented at 35.09 (9)° with respect to each other. The molecular structure of the title compound is stabilized by intramolecular interactions O3–H3O···O4, C11–H11···N1 and C16–H16A···O2, etc, while the crystal packing is consolidated by C3–H3···O4i intermolecular nonclassical hydrogen bonds resulting in chains of molecules lying along the b-axis (Fig. 2 and Table 1). Symmetry code: (i) x, y+1, z.

Experimental

A mixture of 3-benzoyl-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide (1.0 g, 3.32 mmol), aqueous sodium hydroxide (0.26 g, 6.6 mmol) and 2-(bromomethyl)-1,4-dichlorobenzene (0.80 g, 3.32 mmol) in acetone (10 ml) was subjected to ultrasonic irradiation for 20 minutes at 318 K. The reaction mixture was then acidified to pH = 3 by using dilute hydrochloric acid. The precipitates were filtered, washed with excess of distilled water and dried at room temperature to get chrome yellow powder of the title compound (1.38 g, 90.3%). The crystals suitable for X-ray crystallographic analysis were grown from methanol by slow evaporation at room temperature.

Refinement

The H atoms bonded to C and O atoms were positioned geometrically and refined using a riding model, with O–H = 0.84Å and C–H = 0.95Å and 0.99Å, respectively, for aryl and methylene type H-atoms. The Uiso(H) were allowed at 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 25% probability level. The H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A part of the unit cell showing intermolecular and intramolecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

Crystal data

C22H15Cl2NO4S F(000) = 944
Mr = 460.32 Dx = 1.536 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8696 reflections
a = 12.8172 (5) Å θ = 1.0–27.5°
b = 9.9215 (4) Å µ = 0.46 mm1
c = 16.7155 (5) Å T = 173 K
β = 110.511 (2)° Prism, yellow
V = 1990.89 (13) Å3 0.20 × 0.18 × 0.16 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 4592 independent reflections
Radiation source: fine-focus sealed tube 3598 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
ω and φ scans θmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan (SORTAV; Blessing, 1997) h = −16→16
Tmin = 0.913, Tmax = 0.930 k = −12→12
16108 measured reflections l = −21→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0232P)2 + 2.3517P] where P = (Fo2 + 2Fc2)/3
4592 reflections (Δ/σ)max = 0.001
272 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.52481 (7) −0.04749 (10) 0.39033 (6) 0.0658 (3)
Cl2 0.50174 (9) 0.57915 (12) 0.37257 (7) 0.0804 (3)
S1 0.87675 (5) 0.25684 (7) 0.53887 (4) 0.03478 (16)
O1 0.98780 (15) 0.2067 (2) 0.56375 (12) 0.0457 (5)
O2 0.84712 (17) 0.3467 (2) 0.59407 (11) 0.0465 (5)
O3 0.79566 (17) 0.0186 (2) 0.31269 (11) 0.0418 (5)
H3O 0.7866 −0.0624 0.3235 0.050*
O4 0.77251 (15) −0.18006 (19) 0.40080 (11) 0.0408 (5)
N1 0.79342 (17) 0.1262 (2) 0.52149 (12) 0.0331 (5)
C1 0.8421 (2) 0.3280 (3) 0.43643 (16) 0.0339 (6)
C2 0.8521 (2) 0.4653 (3) 0.42629 (18) 0.0406 (6)
H2 0.8739 0.5236 0.4744 0.049*
C3 0.8297 (2) 0.5165 (3) 0.34482 (19) 0.0465 (7)
H3 0.8365 0.6104 0.3369 0.056*
C4 0.7977 (3) 0.4316 (3) 0.27565 (18) 0.0483 (7)
H4 0.7830 0.4676 0.2201 0.058*
C5 0.7866 (2) 0.2949 (3) 0.28534 (17) 0.0421 (7)
H5 0.7638 0.2378 0.2366 0.050*
C6 0.8089 (2) 0.2404 (3) 0.36662 (15) 0.0318 (5)
C7 0.7989 (2) 0.0952 (3) 0.37903 (15) 0.0326 (6)
C8 0.7978 (2) 0.0396 (3) 0.45361 (14) 0.0307 (5)
C9 0.7971 (2) −0.1051 (3) 0.46462 (16) 0.0334 (6)
C10 0.8276 (2) −0.1656 (3) 0.55114 (16) 0.0357 (6)
C11 0.9160 (2) −0.1140 (3) 0.61913 (17) 0.0403 (6)
H11 0.9531 −0.0345 0.6119 0.048*
C12 0.9498 (2) −0.1792 (3) 0.69745 (18) 0.0463 (7)
H12 1.0107 −0.1448 0.7438 0.056*
C13 0.8954 (3) −0.2934 (3) 0.70810 (19) 0.0498 (8)
H13 0.9190 −0.3376 0.7619 0.060*
C14 0.8066 (3) −0.3445 (3) 0.6410 (2) 0.0505 (8)
H14 0.7685 −0.4226 0.6491 0.061*
C15 0.7735 (3) −0.2815 (3) 0.56220 (19) 0.0448 (7)
H15 0.7137 −0.3175 0.5157 0.054*
C16 0.6823 (2) 0.1408 (3) 0.53043 (16) 0.0376 (6)
H16A 0.6906 0.1968 0.5813 0.045*
H16B 0.6560 0.0507 0.5403 0.045*
C17 0.5954 (2) 0.2036 (3) 0.45391 (16) 0.0396 (6)
C18 0.5232 (2) 0.1274 (4) 0.38632 (19) 0.0502 (8)
C19 0.4486 (3) 0.1900 (5) 0.3150 (2) 0.0661 (11)
H19 0.4009 0.1372 0.2695 0.079*
C20 0.4435 (3) 0.3273 (5) 0.3101 (2) 0.0685 (11)
H20 0.3933 0.3699 0.2606 0.082*
C21 0.5114 (3) 0.4044 (4) 0.37701 (19) 0.0564 (9)
C22 0.5870 (2) 0.3432 (3) 0.44836 (17) 0.0437 (7)
H22 0.6336 0.3972 0.4938 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0454 (4) 0.0807 (7) 0.0762 (6) −0.0194 (4) 0.0274 (4) −0.0311 (5)
Cl2 0.0780 (7) 0.0882 (8) 0.0780 (6) 0.0331 (6) 0.0310 (5) 0.0324 (6)
S1 0.0355 (3) 0.0382 (4) 0.0259 (3) −0.0025 (3) 0.0048 (2) −0.0050 (3)
O1 0.0316 (10) 0.0547 (13) 0.0402 (10) −0.0033 (9) −0.0006 (8) −0.0019 (9)
O2 0.0582 (13) 0.0452 (12) 0.0332 (10) −0.0025 (10) 0.0124 (9) −0.0114 (9)
O3 0.0569 (12) 0.0388 (11) 0.0303 (9) −0.0066 (10) 0.0160 (9) −0.0086 (8)
O4 0.0440 (11) 0.0395 (11) 0.0358 (10) −0.0041 (9) 0.0102 (8) −0.0087 (8)
N1 0.0342 (11) 0.0379 (12) 0.0265 (10) −0.0022 (10) 0.0100 (9) −0.0041 (9)
C1 0.0311 (13) 0.0375 (15) 0.0310 (13) −0.0010 (11) 0.0082 (10) −0.0024 (11)
C2 0.0414 (15) 0.0378 (15) 0.0399 (15) −0.0015 (12) 0.0108 (12) −0.0062 (12)
C3 0.0529 (18) 0.0349 (16) 0.0515 (17) 0.0000 (13) 0.0178 (14) 0.0047 (13)
C4 0.0578 (19) 0.0464 (18) 0.0389 (15) −0.0002 (15) 0.0146 (14) 0.0081 (13)
C5 0.0469 (16) 0.0474 (17) 0.0304 (13) −0.0005 (13) 0.0117 (12) −0.0024 (12)
C6 0.0305 (12) 0.0366 (14) 0.0276 (11) −0.0021 (11) 0.0092 (10) −0.0020 (11)
C7 0.0281 (12) 0.0398 (15) 0.0290 (12) −0.0016 (11) 0.0088 (10) −0.0074 (11)
C8 0.0276 (12) 0.0380 (14) 0.0246 (11) −0.0008 (11) 0.0066 (9) −0.0035 (10)
C9 0.0274 (12) 0.0388 (15) 0.0337 (13) −0.0021 (11) 0.0103 (10) −0.0028 (11)
C10 0.0379 (14) 0.0354 (14) 0.0349 (13) 0.0042 (12) 0.0140 (11) 0.0028 (11)
C11 0.0391 (15) 0.0417 (16) 0.0387 (14) 0.0041 (12) 0.0119 (12) 0.0034 (12)
C12 0.0454 (16) 0.0536 (19) 0.0365 (15) 0.0096 (14) 0.0102 (13) 0.0026 (13)
C13 0.062 (2) 0.0496 (19) 0.0413 (16) 0.0147 (16) 0.0226 (15) 0.0116 (14)
C14 0.067 (2) 0.0375 (17) 0.0579 (19) 0.0017 (15) 0.0351 (17) 0.0071 (14)
C15 0.0504 (17) 0.0423 (17) 0.0449 (16) −0.0002 (13) 0.0206 (14) −0.0016 (13)
C16 0.0365 (14) 0.0490 (17) 0.0306 (13) −0.0006 (12) 0.0156 (11) −0.0037 (12)
C17 0.0292 (13) 0.0628 (19) 0.0296 (13) 0.0001 (13) 0.0138 (11) −0.0029 (12)
C18 0.0313 (14) 0.079 (2) 0.0444 (16) −0.0037 (15) 0.0190 (13) −0.0138 (16)
C19 0.0351 (17) 0.119 (4) 0.0399 (18) −0.002 (2) 0.0073 (14) −0.013 (2)
C20 0.0389 (18) 0.124 (4) 0.0366 (17) 0.018 (2) 0.0057 (14) 0.015 (2)
C21 0.0395 (16) 0.088 (3) 0.0434 (17) 0.0170 (17) 0.0171 (14) 0.0127 (17)
C22 0.0343 (14) 0.065 (2) 0.0340 (14) 0.0068 (14) 0.0142 (12) 0.0029 (13)

Geometric parameters (Å, º)

Cl1—C18 1.736 (4) C9—C10 1.486 (3)
Cl2—C21 1.738 (4) C10—C15 1.389 (4)
S1—O1 1.425 (2) C10—C11 1.391 (4)
S1—O2 1.4268 (19) C11—C12 1.386 (4)
S1—N1 1.640 (2) C11—H11 0.9500
S1—C1 1.759 (3) C12—C13 1.375 (4)
O3—C7 1.333 (3) C12—H12 0.9500
O3—H3O 0.8400 C13—C14 1.384 (4)
O4—C9 1.247 (3) C13—H13 0.9500
N1—C8 1.440 (3) C14—C15 1.384 (4)
N1—C16 1.491 (3) C14—H14 0.9500
C1—C2 1.384 (4) C15—H15 0.9500
C1—C6 1.397 (3) C16—C17 1.506 (4)
C2—C3 1.386 (4) C16—H16A 0.9900
C2—H2 0.9500 C16—H16B 0.9900
C3—C4 1.372 (4) C17—C22 1.389 (4)
C3—H3 0.9500 C17—C18 1.404 (4)
C4—C5 1.379 (4) C18—C19 1.387 (5)
C4—H4 0.9500 C19—C20 1.365 (6)
C5—C6 1.396 (4) C19—H19 0.9500
C5—H5 0.9500 C20—C21 1.383 (5)
C6—C7 1.467 (4) C20—H20 0.9500
C7—C8 1.368 (3) C21—C22 1.386 (4)
C8—C9 1.448 (4) C22—H22 0.9500
O1—S1—O2 119.62 (12) C12—C11—C10 119.7 (3)
O1—S1—N1 107.33 (12) C12—C11—H11 120.1
O2—S1—N1 107.70 (12) C10—C11—H11 120.1
O1—S1—C1 108.03 (12) C13—C12—C11 120.1 (3)
O2—S1—C1 110.19 (12) C13—C12—H12 119.9
N1—S1—C1 102.62 (11) C11—C12—H12 119.9
C7—O3—H3O 109.5 C12—C13—C14 120.5 (3)
C8—N1—C16 116.06 (19) C12—C13—H13 119.7
C8—N1—S1 114.13 (16) C14—C13—H13 119.7
C16—N1—S1 119.42 (18) C13—C14—C15 119.8 (3)
C2—C1—C6 121.6 (2) C13—C14—H14 120.1
C2—C1—S1 120.8 (2) C15—C14—H14 120.1
C6—C1—S1 117.5 (2) C14—C15—C10 120.0 (3)
C1—C2—C3 119.0 (3) C14—C15—H15 120.0
C1—C2—H2 120.5 C10—C15—H15 120.0
C3—C2—H2 120.5 N1—C16—C17 113.8 (2)
C4—C3—C2 120.1 (3) N1—C16—H16A 108.8
C4—C3—H3 120.0 C17—C16—H16A 108.8
C2—C3—H3 120.0 N1—C16—H16B 108.8
C3—C4—C5 121.2 (3) C17—C16—H16B 108.8
C3—C4—H4 119.4 H16A—C16—H16B 107.7
C5—C4—H4 119.4 C22—C17—C18 118.0 (3)
C4—C5—C6 120.1 (3) C22—C17—C16 119.1 (3)
C4—C5—H5 120.0 C18—C17—C16 122.9 (3)
C6—C5—H5 120.0 C19—C18—C17 120.7 (3)
C5—C6—C1 118.1 (2) C19—C18—Cl1 118.4 (3)
C5—C6—C7 121.3 (2) C17—C18—Cl1 120.8 (3)
C1—C6—C7 120.6 (2) C20—C19—C18 120.3 (3)
O3—C7—C8 121.4 (2) C20—C19—H19 119.9
O3—C7—C6 114.9 (2) C18—C19—H19 119.9
C8—C7—C6 123.7 (2) C19—C20—C21 119.9 (3)
C7—C8—N1 119.5 (2) C19—C20—H20 120.0
C7—C8—C9 121.2 (2) C21—C20—H20 120.0
N1—C8—C9 119.2 (2) C20—C21—C22 120.4 (4)
O4—C9—C8 119.6 (2) C20—C21—Cl2 120.1 (3)
O4—C9—C10 119.6 (2) C22—C21—Cl2 119.4 (3)
C8—C9—C10 120.8 (2) C21—C22—C17 120.5 (3)
C15—C10—C11 119.9 (3) C21—C22—H22 119.7
C15—C10—C9 119.4 (2) C17—C22—H22 119.7
C11—C10—C9 120.5 (2)
O1—S1—N1—C8 −61.89 (19) S1—N1—C8—C9 138.3 (2)
O2—S1—N1—C8 168.09 (17) C7—C8—C9—O4 −16.1 (4)
C1—S1—N1—C8 51.8 (2) N1—C8—C9—O4 161.9 (2)
O1—S1—N1—C16 154.46 (18) C7—C8—C9—C10 162.6 (2)
O2—S1—N1—C16 24.5 (2) N1—C8—C9—C10 −19.5 (3)
C1—S1—N1—C16 −91.83 (19) O4—C9—C10—C15 −36.4 (4)
O1—S1—C1—C2 −96.7 (2) C8—C9—C10—C15 144.9 (3)
O2—S1—C1—C2 35.6 (3) O4—C9—C10—C11 138.0 (3)
N1—S1—C1—C2 150.1 (2) C8—C9—C10—C11 −40.7 (4)
O1—S1—C1—C6 80.8 (2) C15—C10—C11—C12 0.3 (4)
O2—S1—C1—C6 −146.9 (2) C9—C10—C11—C12 −174.1 (3)
N1—S1—C1—C6 −32.4 (2) C10—C11—C12—C13 −0.7 (4)
C6—C1—C2—C3 −0.8 (4) C11—C12—C13—C14 0.0 (4)
S1—C1—C2—C3 176.6 (2) C12—C13—C14—C15 1.1 (5)
C1—C2—C3—C4 0.3 (4) C13—C14—C15—C10 −1.5 (4)
C2—C3—C4—C5 0.3 (5) C11—C10—C15—C14 0.8 (4)
C3—C4—C5—C6 −0.5 (5) C9—C10—C15—C14 175.3 (3)
C4—C5—C6—C1 0.0 (4) C8—N1—C16—C17 −62.6 (3)
C4—C5—C6—C7 −179.3 (3) S1—N1—C16—C17 80.4 (3)
C2—C1—C6—C5 0.7 (4) N1—C16—C17—C22 −86.3 (3)
S1—C1—C6—C5 −176.8 (2) N1—C16—C17—C18 92.3 (3)
C2—C1—C6—C7 −180.0 (2) C22—C17—C18—C19 2.1 (4)
S1—C1—C6—C7 2.5 (3) C16—C17—C18—C19 −176.5 (3)
C5—C6—C7—O3 16.2 (4) C22—C17—C18—Cl1 −177.5 (2)
C1—C6—C7—O3 −163.1 (2) C16—C17—C18—Cl1 3.9 (4)
C5—C6—C7—C8 −166.5 (2) C17—C18—C19—C20 −0.7 (5)
C1—C6—C7—C8 14.2 (4) Cl1—C18—C19—C20 178.9 (3)
O3—C7—C8—N1 −175.6 (2) C18—C19—C20—C21 −1.2 (5)
C6—C7—C8—N1 7.3 (4) C19—C20—C21—C22 1.8 (5)
O3—C7—C8—C9 2.3 (4) C19—C20—C21—Cl2 −177.8 (3)
C6—C7—C8—C9 −174.8 (2) C20—C21—C22—C17 −0.4 (4)
C16—N1—C8—C7 101.2 (3) Cl2—C21—C22—C17 179.2 (2)
S1—N1—C8—C7 −43.8 (3) C18—C17—C22—C21 −1.5 (4)
C16—N1—C8—C9 −76.8 (3) C16—C17—C22—C21 177.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O4i 0.95 2.60 3.310 (4) 132
O3—H3O···O4 0.84 1.80 2.539 (3) 146
C11—H11···N1 0.95 2.62 3.003 (3) 105
C16—H16A···O2 0.99 2.45 2.862 (3) 105
C16—H16B···Cl1 0.99 2.67 3.120 (3) 108

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2344).

References

  1. Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704. [DOI] [PubMed]
  2. Ahmad, N., Zia-ur-Rehman, M., Siddiqui, H. L., Arshad, M. N. & Asiri, A. M. (2011). Acta Cryst. E67, o2613. [DOI] [PMC free article] [PubMed]
  3. Aslam, S., Siddiqui, H. L., Ahmad, M., Bukhari, I. H. & Parvez, M. (2012). Acta Cryst. E68, o502. [DOI] [PMC free article] [PubMed]
  4. Blackham, A. & Owen, R. T. (1975). J. Pharm. Pharmacol. 27, 201–203. [DOI] [PubMed]
  5. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
  6. Carty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissmen, A. (1993). Agents Actions, 39, 157–165. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1971). J. Med. Chem. 14, 1171–1175. [DOI] [PubMed]
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soler, J. E. (1985). US Patent No. 4 563 452.
  13. Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest. 9, 270–276.
  14. Zia-ur-Rehman, M., Choudhary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 54, 1171–1175.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201481X/rk2344sup1.cif

e-68-o1359-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201481X/rk2344Isup2.hkl

e-68-o1359-Isup2.hkl (220.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201481X/rk2344Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES