Abstract
In the title compound, C10H14N3 +·Cl−, the tetrahydropyridinium ring of the cation, which adopts a slightly distorted envelope conformation, is disordered over two orientations with an occupancy ratio of 0.653 (5):0.347 (5). The amidinium fragment of the major conformer is twisted relative to the benzene ring by 22.5 (6)° and the two C—N bond lengths of this fragment are similar [1.3228 (16) and 1.319 (2) Å]. In the crystal, the chloride anions are involved in three N—H⋯Cl hydrogen bonds, which link the components into a two-dimensional hydrogen-bonded network parallel to (010).
Related literature
For the synthesis, see: Wydra et al. (1990 ▶); Stolić et al. (2009 ▶, 2011 ▶). For related compounds, see: Molčanov et al. (2011 ▶); Jarak et al. (2005 ▶); Legrand et al. (2008 ▶). For the biological activity of compounds comprising a cyclic amidine system, see: Boykin (2002 ▶); Chaires et al. (2004 ▶); Farahat et al. (2011 ▶); Hall et al. (1998 ▶). For the GAMESS program package, see: Schmidt et al. (1993 ▶).
Experimental
Crystal data
C10H14N3 +·Cl−
M r = 211.69
Orthorhombic,
a = 15.0055 (2) Å
b = 8.0884 (1) Å
c = 17.8088 (3) Å
V = 2161.46 (5) Å3
Z = 8
Cu Kα radiation
μ = 2.84 mm−1
T = 293 K
0.15 × 0.10 × 0.09 mm
Data collection
Oxford Diffraction Xcalibur Nova R diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011 ▶) T min = 0.676, T max = 0.784
6131 measured reflections
2242 independent reflections
1760 reflections with I > 2σ(I)
R int = 0.017
Refinement
R[F 2 > 2σ(F 2)] = 0.031
wR(F 2) = 0.098
S = 1.05
2242 reflections
146 parameters
H-atom parameters constrained
Δρmax = 0.18 e Å−3
Δρmin = −0.16 e Å−3
Data collection: CrysAlis PRO (Agilent, 2011 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014493/gk2441sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014493/gk2441Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812014493/gk2441Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1NA⋯Cl1i | 0.90 | 2.47 | 3.3271 (16) | 160 |
| N2B—H2N⋯Cl1 | 0.90 | 2.27 | 3.1126 (12) | 156 |
| N3B—H3N⋯Cl1ii | 0.90 | 2.42 | 3.250 (17) | 153 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
This research was funded by the Croatian Ministry of Science, Education and Sports, grant Nos. 098–1191344-2943 and 053–0982914–2965.
supplementary crystallographic information
Comment
Natural and synthetic aromatic amidines that bind in the DNA minor groove have proved to be clinically useful agents primarly as antiparasitic agents.(Boykin, 2002; Farahat et al., 2011). In addition to their antiparasitic properties, certain diamidines display a useful spectrum of antitumor, antiviral and antifungal activities. (Chaires et al., 2004; Hall et al., 1998; Stolić et al. 2009; Stolić et al. 2011). Cyclic amidine moiety is known in a number of potential antitumor agents; some of them have 4-(1,4,5,6-tetrahydropirimidin-2-yl)phenylamine as the building unit (Stolić et al., 2011; Molčanov et al., 2011).
The asymmetric unit contains a single formula unit of 2-(4-aminophenyl)-3,4,5,6-tetrahydropyrimidin-1-ium chloride. The tetrahydropyrimidinium ring is disordered over two positions designated as A and B (Fig. 1). Their respective occupancies are 0.347 (5)/ 0.653 (5). While there is a formal double C=N bond in the neutral tetrahydropyrimidine, both C—N bonds in the cation are approximately equal. However, the positive charge is localized on the C7 atom, as confirmed by DFT calculations (Fig. 3). Such a delocalization poses a significant restraint to conformation of the tetrahydropyrimidine ring. Cremer-Pople puckering parameters are Q = 0.454 (5)°, Θ = 132.8 (6)°, Φ = 55.2 (9)° for the conformer A (atom sequence N2B–C7B–N3B–C10B–C9B–C8B) and Q = 0.527 (12)°, Θ = 51.4 (11)°, Φ = 197.7 (13)° for the conformer B (atom sequence N2B–C7B–N3B–C10B–C9B–C8B) indicating the envelope form for the A ring and the conformation intermediate between half-chair and boat for the ring B. The chloride anions are coordinated by three N—H···Cl hydrogen bonds in the pyramidal arrangement. The crystal packing is dominated by hydrogen bonded layers parallel to (0 1 0) (Fig. 2, Table 1)
Experimental
The crude imidate ester hydrochloride (1.61 g, 8.6 mmol) prepared from 4-aminobenzonitrile (1.12 g, 9.5 mmol) in anhydrous methanol by Pinner reaction was suspended in anhydrous methanol (100 ml), 1,3-diaminopropane (4 ml) was added and mixture was stirred at room temperature for 4 days under the nitrogen atmosphere. The solvent was removed under reduced pressure and residue was recrystallized from ethanol-diethyl ether to yield 1.06 g (57.6%) of white powder, IR (νmax/cm-1): 2883, 2023, 1595, 1472, 1101, 727, 635; 1H NMR (DMSO-d6) δ/p.p.m.: 8.28 (s, 2H, NH), 7.54 (d, 2H, J = 8.5 Hz, ArH), 6.65 (d, 2H, J = 8.1 Hz, ArH), 6.10 (s, 2H, NH2), 2.88 (t, 4H, J = 7.4 Hz, CH2), 1.90 (m, 2H, J = 7.4 Hz, CH2).
DFT calculations. The structure, obtained from the X-ray structural analysis was optimized without symmetry constrains by using MP2/6–31+G(d,p) level of theory implemented in the GAMESS program package (Schmidt et al., 1993) . Tight convergence criteria were used in the optimization. The calculation was checked for convergence and frequencies were calculated in order to prove that the optimized structure was the minimum. The optimized geometry shows agreement with experimental one (conformer B); only four bonds (N1—C1, N3—C7, C2—C3 and C5–C6) differ more than 3 e.s.d.'s.
Refinement
Hydrogen atoms were located from a difference Fourier map and refined as riding on their parent atoms. C—H bond lenghts were constrained to 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, while N—H bonds were constrained to 0.90 Å; Uiso(H) = 1.2 Ueq(C,N). Since the disordered atoms are very close to each other, they were refined with equal displacement ellipsoids using the command EADP in SHELXL97 (Sheldrick, 2008) for every pair of disordered atoms (A and B), except C9A and C9B which had their displacement parameters refined independently.
Figures
Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of the asymmetric unit of the title compound showing the major position of the disordered tetrahydropyrimidinium ring (B). Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are depicted as spheres of arbitrary radii.
Fig. 2.
Hydrogen bonded (0 1 0) layer in the title compound. Symmetry operators: (i) x + 3/2, -y + 1/2, -z + 1; (ii) -x, y, -z + 3/2.
Fig. 3.
Mulliken charges calculated by DFT method.
Crystal data
| C10H14N3+·Cl− | F(000) = 896 |
| Mr = 211.69 | Dx = 1.301 Mg m−3 |
| Orthorhombic, Pbcn | Cu Kα radiation, λ = 1.54184 Å |
| Hall symbol: -P 2n 2ab | Cell parameters from 3458 reflections |
| a = 15.0055 (2) Å | θ = 2.5–76.0° |
| b = 8.0884 (1) Å | µ = 2.84 mm−1 |
| c = 17.8088 (3) Å | T = 293 K |
| V = 2161.46 (5) Å3 | Prism, colourless |
| Z = 8 | 0.15 × 0.10 × 0.09 mm |
Data collection
| Oxford Diffraction Xcalibur Nova R diffractometer | 1760 reflections with I > 2σ(I) |
| ω scans | Rint = 0.017 |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | θmax = 76.2°, θmin = 5.0° |
| Tmin = 0.676, Tmax = 0.784 | h = −18→18 |
| 6131 measured reflections | k = −5→10 |
| 2242 independent reflections | l = −22→22 |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0224P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.098 | (Δ/σ)max = 0.001 |
| S = 1.05 | Δρmax = 0.18 e Å−3 |
| 2242 reflections | Δρmin = −0.16 e Å−3 |
| 146 parameters |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Cl1 | 0.33023 (2) | 0.24010 (5) | 0.60412 (2) | 0.05806 (15) | |
| N1 | 0.73148 (10) | 0.50143 (18) | 0.76130 (9) | 0.0710 (4) | |
| H1NB | 0.7775 | 0.5727 | 0.7593 | 0.085* | |
| H1NA | 0.7154 | 0.4539 | 0.8049 | 0.085* | |
| N2A | 0.48706 (7) | 0.24901 (14) | 0.48980 (7) | 0.0481 (3) | 0.347 (5) |
| H2NB | 0.4516 | 0.2692 | 0.5296 | 0.058* | 0.347 (5) |
| N2B | 0.48706 (7) | 0.24901 (14) | 0.48980 (7) | 0.0481 (3) | 0.653 (5) |
| H2N | 0.4516 | 0.2691 | 0.5295 | 0.058* | 0.653 (5) |
| N3A | 0.6227 (6) | 0.2596 (6) | 0.4311 (5) | 0.0498 (10) | 0.653 (5) |
| H3M | 0.682 | 0.2722 | 0.4359 | 0.06* | 0.653 (5) |
| N3B | 0.6181 (11) | 0.3005 (15) | 0.4279 (11) | 0.0498 (10) | 0.347 (5) |
| H3N | 0.6774 | 0.3132 | 0.4327 | 0.06* | 0.347 (5) |
| C1 | 0.69335 (9) | 0.45272 (15) | 0.69569 (8) | 0.0474 (3) | |
| C2 | 0.61748 (9) | 0.35056 (16) | 0.69653 (7) | 0.0475 (3) | |
| H2 | 0.5937 | 0.3163 | 0.7422 | 0.057* | |
| C3 | 0.57817 (8) | 0.30093 (16) | 0.63062 (7) | 0.0436 (3) | |
| H3 | 0.5275 | 0.2348 | 0.6323 | 0.052* | |
| C4 | 0.61292 (8) | 0.34788 (14) | 0.56100 (7) | 0.0405 (3) | |
| C5 | 0.68797 (9) | 0.45061 (16) | 0.56016 (8) | 0.0483 (3) | |
| H5 | 0.712 | 0.4839 | 0.5145 | 0.058* | |
| C6 | 0.72660 (10) | 0.50288 (16) | 0.62576 (9) | 0.0510 (3) | |
| H6 | 0.7757 | 0.5729 | 0.6238 | 0.061* | |
| C7A | 0.57250 (8) | 0.28921 (15) | 0.49100 (7) | 0.0427 (3) | 0.347 (5) |
| C7B | 0.57250 (8) | 0.28921 (15) | 0.49100 (7) | 0.0427 (3) | 0.653 (5) |
| C8A | 0.4451 (10) | 0.2003 (13) | 0.4167 (7) | 0.0457 (8) | 0.347 (5) |
| H8A1 | 0.4026 | 0.2777 | 0.3957 | 0.055* | 0.347 (5) |
| H8A2 | 0.4127 | 0.1021 | 0.4324 | 0.055* | 0.347 (5) |
| C8B | 0.4427 (5) | 0.1637 (5) | 0.4285 (3) | 0.0457 (8) | 0.653 (5) |
| H8A | 0.446 | 0.0442 | 0.432 | 0.055* | 0.653 (5) |
| H8B | 0.3803 | 0.1951 | 0.4276 | 0.055* | 0.653 (5) |
| C9A | 0.5137 (3) | 0.1287 (7) | 0.3654 (2) | 0.0539 (14) | 0.347 (5) |
| H9A1 | 0.5428 | 0.0266 | 0.3802 | 0.065* | 0.347 (5) |
| H9A2 | 0.4832 | 0.1087 | 0.3183 | 0.065* | 0.347 (5) |
| C9B | 0.48604 (17) | 0.2297 (4) | 0.35639 (14) | 0.0574 (8) | 0.653 (5) |
| H9B1 | 0.475 | 0.3468 | 0.3492 | 0.069* | 0.653 (5) |
| H9B2 | 0.4611 | 0.1709 | 0.3138 | 0.069* | 0.653 (5) |
| C10A | 0.5833 (7) | 0.2609 (10) | 0.3539 (6) | 0.0575 (9) | 0.347 (5) |
| H10C | 0.6269 | 0.2273 | 0.3167 | 0.069* | 0.347 (5) |
| H10D | 0.5567 | 0.3649 | 0.3386 | 0.069* | 0.347 (5) |
| C10B | 0.5866 (3) | 0.1982 (5) | 0.3599 (3) | 0.0575 (9) | 0.653 (5) |
| H10A | 0.5985 | 0.0804 | 0.3593 | 0.069* | 0.653 (5) |
| H10B | 0.6159 | 0.2482 | 0.317 | 0.069* | 0.653 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0367 (2) | 0.0877 (3) | 0.0498 (2) | −0.00153 (14) | 0.00414 (13) | 0.00525 (16) |
| N1 | 0.0747 (9) | 0.0785 (8) | 0.0598 (8) | −0.0183 (7) | −0.0182 (7) | −0.0077 (6) |
| N2A | 0.0334 (5) | 0.0656 (7) | 0.0454 (6) | 0.0000 (4) | 0.0010 (5) | −0.0087 (5) |
| N2B | 0.0334 (5) | 0.0656 (7) | 0.0454 (6) | 0.0000 (4) | 0.0010 (5) | −0.0087 (5) |
| N3A | 0.0340 (10) | 0.069 (3) | 0.0461 (10) | 0.005 (2) | 0.0034 (8) | −0.006 (2) |
| N3B | 0.0340 (10) | 0.069 (3) | 0.0461 (10) | 0.005 (2) | 0.0034 (8) | −0.006 (2) |
| C1 | 0.0431 (6) | 0.0459 (6) | 0.0533 (7) | 0.0034 (5) | −0.0080 (6) | −0.0059 (5) |
| C2 | 0.0433 (7) | 0.0561 (7) | 0.0430 (6) | −0.0005 (5) | 0.0012 (6) | −0.0006 (6) |
| C3 | 0.0350 (6) | 0.0488 (6) | 0.0470 (7) | −0.0029 (5) | 0.0009 (5) | −0.0013 (5) |
| C4 | 0.0322 (5) | 0.0453 (6) | 0.0440 (6) | 0.0024 (4) | 0.0000 (5) | −0.0004 (5) |
| C5 | 0.0407 (6) | 0.0529 (7) | 0.0515 (7) | −0.0045 (5) | 0.0037 (6) | 0.0042 (5) |
| C6 | 0.0395 (6) | 0.0508 (7) | 0.0627 (8) | −0.0083 (5) | −0.0033 (6) | −0.0019 (6) |
| C7A | 0.0354 (6) | 0.0495 (6) | 0.0433 (6) | 0.0037 (5) | 0.0008 (5) | −0.0003 (5) |
| C7B | 0.0354 (6) | 0.0495 (6) | 0.0433 (6) | 0.0037 (5) | 0.0008 (5) | −0.0003 (5) |
| C8A | 0.0416 (7) | 0.050 (2) | 0.0454 (19) | −0.0047 (19) | −0.0044 (13) | 0.0034 (14) |
| C8B | 0.0416 (7) | 0.050 (2) | 0.0454 (19) | −0.0047 (19) | −0.0044 (13) | 0.0034 (14) |
| C9A | 0.052 (3) | 0.061 (3) | 0.049 (2) | 0.005 (2) | −0.0064 (19) | −0.0088 (19) |
| C9B | 0.0558 (14) | 0.0712 (18) | 0.0453 (12) | 0.0074 (12) | −0.0077 (10) | −0.0036 (11) |
| C10A | 0.0534 (10) | 0.077 (3) | 0.0425 (11) | 0.004 (2) | 0.0041 (9) | −0.007 (2) |
| C10B | 0.0534 (10) | 0.077 (3) | 0.0425 (11) | 0.004 (2) | 0.0041 (9) | −0.007 (2) |
Geometric parameters (Å, º)
| N1—C1 | 1.3593 (18) | C4—C5 | 1.3996 (17) |
| N1—H1NB | 0.8999 | C4—C7A | 1.4653 (17) |
| N1—H1NA | 0.8999 | C5—C6 | 1.3710 (19) |
| N2A—C7A | 1.3228 (17) | C5—H5 | 0.93 |
| N2A—C8A | 1.499 (14) | C6—H6 | 0.93 |
| N2A—H2NB | 0.901 | C8A—C9A | 1.494 (15) |
| N2B—H2N | 0.9 | C8A—H8A1 | 0.9677 |
| N2B—C7B | 1.3228 (16) | C8A—H8A2 | 0.9717 |
| N2B—C8B | 1.453 (6) | C8B—C9B | 1.535 (6) |
| N3A—C7A | 1.327 (9) | C8B—H8A | 0.97 |
| N3A—C10A | 1.497 (14) | C8B—H8B | 0.97 |
| N3A—H3M | 0.8999 | C9A—C10A | 1.509 (11) |
| N3B—C10B | 1.541 (19) | C9A—H9A1 | 0.97 |
| N3B—C7B | 1.319 (2) | C9A—H9A2 | 0.97 |
| N3B—H3N | 0.8999 | C9B—C10B | 1.531 (6) |
| C1—C6 | 1.402 (2) | C9B—H9B1 | 0.97 |
| C1—C2 | 1.4069 (19) | C10A—H10C | 0.97 |
| C2—C3 | 1.3736 (18) | C10A—H10D | 0.97 |
| C2—H2 | 0.93 | C10B—H10A | 0.97 |
| C3—C4 | 1.3975 (18) | C10B—H10B | 0.97 |
| C3—H3 | 0.93 | ||
| C1—N1—H1NB | 118.4 | C10A—C9A—H9A2 | 109.1 |
| C1—N1—H1NA | 120.4 | H9A1—C9A—H9A2 | 107.8 |
| H1NB—N1—H1NA | 120.9 | C8A—C9A—H9B2 | 84.7 |
| C7A—N2A—C8A | 119.1 (6) | C10A—C9A—H9B2 | 98.2 |
| C7A—N2A—H2NB | 121 | H9A1—C9A—H9B2 | 135.3 |
| C8A—N2A—H2NB | 118.8 | C8A—C9A—H10A | 145.1 |
| C7A—N2A—H2N | 121 | C10A—C9A—H10A | 62.4 |
| C8A—N2A—H2N | 118.8 | H9A1—C9A—H10A | 49 |
| C7A—N3A—C10A | 120.9 (7) | H9A2—C9A—H10A | 109.4 |
| C7A—N3A—H3M | 117.6 | H9B2—C9A—H10A | 128.2 |
| C10A—N3A—H3M | 118.5 | C10B—C9B—C8B | 109.0 (4) |
| C7A—N3A—H3N | 113.1 | C10B—C9B—H8A1 | 148.6 |
| C10A—N3A—H3N | 111.9 | C8B—C9B—H8A1 | 48.7 |
| C10B—N3B—H3M | 106.6 | C10B—C9B—H9A2 | 85.5 |
| C10B—N3B—H3N | 116.1 | C8B—C9B—H9A2 | 100.1 |
| N1—C1—C6 | 122.01 (13) | H8A1—C9B—H9A2 | 116.9 |
| N1—C1—C2 | 120.11 (13) | C10B—C9B—H9B1 | 109.6 |
| C6—C1—C2 | 117.87 (12) | C8B—C9B—H9B1 | 112.2 |
| C3—C2—C1 | 120.67 (12) | H8A1—C9B—H9B1 | 70.4 |
| C3—C2—H2 | 119.7 | H9A2—C9B—H9B1 | 136.1 |
| C1—C2—H2 | 119.7 | C10B—C9B—H9B2 | 109.3 |
| C2—C3—C4 | 121.22 (12) | C8B—C9B—H9B2 | 108.6 |
| C2—C3—H3 | 119.4 | H8A1—C9B—H9B2 | 99.8 |
| C4—C3—H3 | 119.4 | H9B1—C9B—H9B2 | 108.1 |
| C3—C4—C5 | 118.10 (11) | C10B—C9B—H10D | 56.9 |
| C3—C4—C7A | 120.81 (11) | C8B—C9B—H10D | 134.7 |
| C5—C4—C7A | 121.08 (11) | H8A1—C9B—H10D | 119.1 |
| C6—C5—C4 | 120.94 (12) | H9A2—C9B—H10D | 119.1 |
| C6—C5—H5 | 119.5 | H9B1—C9B—H10D | 53.3 |
| C4—C5—H5 | 119.5 | H9B2—C9B—H10D | 116.7 |
| C5—C6—C1 | 121.16 (12) | N3A—C10A—C9A | 98.2 (6) |
| C5—C6—H6 | 119.4 | N3A—C10A—H10C | 111.1 |
| C1—C6—H6 | 119.4 | C9A—C10A—H10C | 111.2 |
| N2A—C7A—N3A | 119.5 (4) | N3A—C10A—H10D | 115.2 |
| N2A—C7A—C4 | 119.64 (12) | C9A—C10A—H10D | 111.6 |
| N3A—C7A—C4 | 120.5 (4) | H10C—C10A—H10D | 109.3 |
| C9A—C8A—N2A | 110.1 (10) | N3A—C10A—H10A | 82.6 |
| C9A—C8A—H8A1 | 117.9 | C9A—C10A—H10A | 53 |
| N2A—C8A—H8A1 | 116.2 | H10C—C10A—H10A | 70.4 |
| C9A—C8A—H8A2 | 101.8 | H10D—C10A—H10A | 159.5 |
| N2A—C8A—H8A2 | 100 | N3A—C10A—H10B | 119.8 |
| H8A1—C8A—H8A2 | 108.1 | C9A—C10A—H10B | 115.4 |
| C9A—C8A—H8A | 75.1 | H10D—C10A—H10B | 97.5 |
| N2A—C8A—H8A | 94 | H10A—C10A—H10B | 80.6 |
| H8A1—C8A—H8A | 136.1 | C9B—C10B—N3B | 104.2 (7) |
| C9A—C8A—H8B | 141.2 | C9B—C10B—H9A1 | 75.3 |
| N2A—C8A—H8B | 104.6 | N3B—C10B—H9A1 | 114.9 |
| H8A1—C8A—H8B | 57.2 | C9B—C10B—H10C | 121.5 |
| H8A2—C8A—H8B | 54.5 | N3B—C10B—H10C | 106.9 |
| H8A—C8A—H8B | 85.9 | H9A1—C10B—H10C | 129.1 |
| C9B—C8B—H8A1 | 63.6 | C9B—C10B—H10D | 62.4 |
| C9B—C8B—H8A2 | 128.9 | N3B—C10B—H10D | 78.7 |
| H8A1—C8B—H8A2 | 105.9 | H9A1—C10B—H10D | 137.7 |
| C9B—C8B—H8A | 112.3 | H10C—C10B—H10D | 76.8 |
| H8A1—C8B—H8A | 142.5 | C9B—C10B—H10A | 110.2 |
| C9B—C8B—H8B | 107.8 | N3B—C10B—H10A | 118.6 |
| H8A1—C8B—H8B | 48.2 | H10C—C10B—H10A | 96.3 |
| H8A2—C8B—H8B | 63.4 | H10D—C10B—H10A | 162.7 |
| H8A—C8B—H8B | 108.2 | C9B—C10B—H10B | 110.2 |
| C8A—C9A—C10A | 106.6 (7) | N3B—C10B—H10B | 104.8 |
| C8A—C9A—H9A1 | 118.3 | H9A1—C10B—H10B | 137.3 |
| C10A—C9A—H9A1 | 109.2 | H10D—C10B—H10B | 63.5 |
| C8A—C9A—H9A2 | 105.5 | H10A—C10B—H10B | 108.4 |
| N1—C1—C2—C3 | 179.79 (13) | C10A—N3A—C7A—N2A | 29.8 (6) |
| C6—C1—C2—C3 | 0.59 (19) | C10A—N3A—C7A—C4 | −157.3 (5) |
| C1—C2—C3—C4 | 1.0 (2) | C3—C4—C7A—N2A | 26.62 (18) |
| C2—C3—C4—C5 | −1.51 (19) | C5—C4—C7A—N2A | −154.22 (12) |
| C2—C3—C4—C7A | 177.68 (12) | C3—C4—C7A—N3A | −146.3 (3) |
| C3—C4—C5—C6 | 0.38 (19) | C5—C4—C7A—N3A | 32.9 (3) |
| C7A—C4—C5—C6 | −178.81 (12) | C7A—N2A—C8A—C9A | 27.2 (7) |
| C4—C5—C6—C1 | 1.3 (2) | N2A—C8A—C9A—C10A | −59.5 (8) |
| N1—C1—C6—C5 | 179.09 (13) | C7A—N3A—C10A—C9A | −58.3 (7) |
| C2—C1—C6—C5 | −1.7 (2) | C8A—C9A—C10A—N3A | 69.8 (8) |
| C8A—N2A—C7A—N3A | −11.2 (5) | C8B—C9B—C10B—N3B | −62.7 (7) |
| C8A—N2A—C7A—C4 | 175.9 (4) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1NA···Cl1i | 0.90 | 2.47 | 3.3271 (16) | 160 |
| N2B—H2N···Cl1 | 0.90 | 2.27 | 3.1126 (12) | 156 |
| N3B—H3N···Cl1ii | 0.90 | 2.42 | 3.250 (17) | 153 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x+1/2, −y+1/2, −z+1.
Calculated bond lengths (Å)
| N1 | C1 | 1.372 |
| N1 | H1NB | 1.008 |
| N1 | H1NA | 1.008 |
| N2 | C7 | 1.332 |
| N2 | H2A | 1.011 |
| N2 | C8 | 1.470 |
| N3 | C7 | 1.332 |
| N3 | C10 | 1.469 |
| N3 | H3 | 0.899 |
| C1 | C6 | 1.411 |
| C1 | C2 | 1.411 |
| C2 | C3 | 1.388 |
| C2 | H2 | 1.083 |
| C3 | C4 | 1.407 |
| C3 | H3 | 1.084 |
| C4 | C5 | 1.407 |
| C4 | C7 | 1.458 |
| C5 | C6 | 1.388 |
| C5 | H5 | 1.084 |
| C6 | H6 | 1.083 |
| C8 | C9 | 1.520 |
| C8 | H8A | 1.089 |
| C8 | H8B | 1.092 |
| C9 | C10 | 1.522 |
| C9 | H9A | 1.089 |
| C9 | H9B | 1.091 |
| C10 | H10A | 1.087 |
| C10 | H10B | 1.092 |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2441).
References
- Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
- Boykin, D. W. (2002). J. Braz. Chem. Soc. 13, 763–771.
- Chaires, J. B., Ren, J., Hamelberg, D., Kumar, A., Pandya, V., Boykin, D. W. & Wilson, W. D. (2004). J. Med. Chem. 47, 5729–5742. [DOI] [PubMed]
- Farahat, A. A., Paliakov, E., Kumar, A., Barghash, A. E., Goda, F. E., Eisa, H. M., Wenzler, T., Brun, R., Liu, Y., Wilson, W. D. & Boykin, D. W. (2011). Bioorg. Med. Chem. 19, 2156–2167. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Hall, J. E., Kerrigan, J. E., Ramachandran, K., Bender, B. C., Stanko, J. P., Jones, S. K., Patrick, D. A. & Tidwell, R. R. (1998). Antimicrob. Agents Chemother. 42, 666–674. [DOI] [PMC free article] [PubMed]
- Jarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, o98–o100. [DOI] [PubMed]
- Legrand, Y. M., Lee, A. van der & Barboiu, M. (2008). Acta Cryst. E64, o967–o968. [DOI] [PMC free article] [PubMed]
- Molčanov, K., Stolić, I., Kojić-Prodić, B. & Bajić, M. (2011). Acta Cryst. E67, o3450–o3451. [DOI] [PMC free article] [PubMed]
- Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, N. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stolić, I., Mišković, K., Magdaleno, A., Silber, A. M., Piantanida, I., Bajić, M. & Glavaš-Obrovac, L. (2009). Bioorg. Med. Chem. 17, 2544–2554. [DOI] [PubMed]
- Stolić, I., Mišković, I., Piantanida, I., Baus-Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). Eur. J. Med. Chem. 46, 743–755. [DOI] [PubMed]
- Wydra, R. L., Patterson, S. E. & Strekowski, L. (1990). J. Heterocycl. Chem. 27, 803–805.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014493/gk2441sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014493/gk2441Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812014493/gk2441Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



