Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):o1360. doi: 10.1107/S1600536812014493

2-(4-Amino­phen­yl)-3,4,5,6-tetra­hydro­pyrimidin-1-ium chloride

Krešimir Molčanov a,*, Ivana Stolić b, Biserka Kojić-Prodić a, Goran Kovačević a, Miroslav Bajić b
PMCID: PMC3344492  PMID: 22590254

Abstract

In the title compound, C10H14N3 +·Cl, the tetra­hydro­pyridinium ring of the cation, which adopts a slightly distorted envelope conformation, is disordered over two orientations with an occupancy ratio of 0.653 (5):0.347 (5). The amidinium fragment of the major conformer is twisted relative to the benzene ring by 22.5 (6)° and the two C—N bond lengths of this fragment are similar [1.3228 (16) and 1.319 (2) Å]. In the crystal, the chloride anions are involved in three N—H⋯Cl hydrogen bonds, which link the components into a two-dimensional hydrogen-bonded network parallel to (010).

Related literature  

For the synthesis, see: Wydra et al. (1990); Stolić et al. (2009, 2011). For related compounds, see: Molčanov et al. (2011); Jarak et al. (2005); Legrand et al. (2008). For the biological activity of compounds comprising a cyclic amidine system, see: Boykin (2002); Chaires et al. (2004); Farahat et al. (2011); Hall et al. (1998). For the GAMESS program package, see: Schmidt et al. (1993).graphic file with name e-68-o1360-scheme1.jpg

Experimental  

Crystal data  

  • C10H14N3 +·Cl

  • M r = 211.69

  • Orthorhombic, Inline graphic

  • a = 15.0055 (2) Å

  • b = 8.0884 (1) Å

  • c = 17.8088 (3) Å

  • V = 2161.46 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.84 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.09 mm

Data collection  

  • Oxford Diffraction Xcalibur Nova R diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.676, T max = 0.784

  • 6131 measured reflections

  • 2242 independent reflections

  • 1760 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.098

  • S = 1.05

  • 2242 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014493/gk2441sup1.cif

e-68-o1360-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014493/gk2441Isup2.hkl

e-68-o1360-Isup2.hkl (108.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014493/gk2441Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯Cl1i 0.90 2.47 3.3271 (16) 160
N2B—H2N⋯Cl1 0.90 2.27 3.1126 (12) 156
N3B—H3N⋯Cl1ii 0.90 2.42 3.250 (17) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was funded by the Croatian Ministry of Science, Education and Sports, grant Nos. 098–1191344-2943 and 053–0982914–2965.

supplementary crystallographic information

Comment

Natural and synthetic aromatic amidines that bind in the DNA minor groove have proved to be clinically useful agents primarly as antiparasitic agents.(Boykin, 2002; Farahat et al., 2011). In addition to their antiparasitic properties, certain diamidines display a useful spectrum of antitumor, antiviral and antifungal activities. (Chaires et al., 2004; Hall et al., 1998; Stolić et al. 2009; Stolić et al. 2011). Cyclic amidine moiety is known in a number of potential antitumor agents; some of them have 4-(1,4,5,6-tetrahydropirimidin-2-yl)phenylamine as the building unit (Stolić et al., 2011; Molčanov et al., 2011).

The asymmetric unit contains a single formula unit of 2-(4-aminophenyl)-3,4,5,6-tetrahydropyrimidin-1-ium chloride. The tetrahydropyrimidinium ring is disordered over two positions designated as A and B (Fig. 1). Their respective occupancies are 0.347 (5)/ 0.653 (5). While there is a formal double C=N bond in the neutral tetrahydropyrimidine, both C—N bonds in the cation are approximately equal. However, the positive charge is localized on the C7 atom, as confirmed by DFT calculations (Fig. 3). Such a delocalization poses a significant restraint to conformation of the tetrahydropyrimidine ring. Cremer-Pople puckering parameters are Q = 0.454 (5)°, Θ = 132.8 (6)°, Φ = 55.2 (9)° for the conformer A (atom sequence N2B–C7B–N3B–C10B–C9B–C8B) and Q = 0.527 (12)°, Θ = 51.4 (11)°, Φ = 197.7 (13)° for the conformer B (atom sequence N2B–C7B–N3B–C10B–C9B–C8B) indicating the envelope form for the A ring and the conformation intermediate between half-chair and boat for the ring B. The chloride anions are coordinated by three N—H···Cl hydrogen bonds in the pyramidal arrangement. The crystal packing is dominated by hydrogen bonded layers parallel to (0 1 0) (Fig. 2, Table 1)

Experimental

The crude imidate ester hydrochloride (1.61 g, 8.6 mmol) prepared from 4-aminobenzonitrile (1.12 g, 9.5 mmol) in anhydrous methanol by Pinner reaction was suspended in anhydrous methanol (100 ml), 1,3-diaminopropane (4 ml) was added and mixture was stirred at room temperature for 4 days under the nitrogen atmosphere. The solvent was removed under reduced pressure and residue was recrystallized from ethanol-diethyl ether to yield 1.06 g (57.6%) of white powder, IR (νmax/cm-1): 2883, 2023, 1595, 1472, 1101, 727, 635; 1H NMR (DMSO-d6) δ/p.p.m.: 8.28 (s, 2H, NH), 7.54 (d, 2H, J = 8.5 Hz, ArH), 6.65 (d, 2H, J = 8.1 Hz, ArH), 6.10 (s, 2H, NH2), 2.88 (t, 4H, J = 7.4 Hz, CH2), 1.90 (m, 2H, J = 7.4 Hz, CH2).

DFT calculations. The structure, obtained from the X-ray structural analysis was optimized without symmetry constrains by using MP2/6–31+G(d,p) level of theory implemented in the GAMESS program package (Schmidt et al., 1993) . Tight convergence criteria were used in the optimization. The calculation was checked for convergence and frequencies were calculated in order to prove that the optimized structure was the minimum. The optimized geometry shows agreement with experimental one (conformer B); only four bonds (N1—C1, N3—C7, C2—C3 and C5–C6) differ more than 3 e.s.d.'s.

Refinement

Hydrogen atoms were located from a difference Fourier map and refined as riding on their parent atoms. C—H bond lenghts were constrained to 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, while N—H bonds were constrained to 0.90 Å; Uiso(H) = 1.2 Ueq(C,N). Since the disordered atoms are very close to each other, they were refined with equal displacement ellipsoids using the command EADP in SHELXL97 (Sheldrick, 2008) for every pair of disordered atoms (A and B), except C9A and C9B which had their displacement parameters refined independently.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of the asymmetric unit of the title compound showing the major position of the disordered tetrahydropyrimidinium ring (B). Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are depicted as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Hydrogen bonded (0 1 0) layer in the title compound. Symmetry operators: (i) x + 3/2, -y + 1/2, -z + 1; (ii) -x, y, -z + 3/2.

Fig. 3.

Fig. 3.

Mulliken charges calculated by DFT method.

Crystal data

C10H14N3+·Cl F(000) = 896
Mr = 211.69 Dx = 1.301 Mg m3
Orthorhombic, Pbcn Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2n 2ab Cell parameters from 3458 reflections
a = 15.0055 (2) Å θ = 2.5–76.0°
b = 8.0884 (1) Å µ = 2.84 mm1
c = 17.8088 (3) Å T = 293 K
V = 2161.46 (5) Å3 Prism, colourless
Z = 8 0.15 × 0.10 × 0.09 mm

Data collection

Oxford Diffraction Xcalibur Nova R diffractometer 1760 reflections with I > 2σ(I)
ω scans Rint = 0.017
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) θmax = 76.2°, θmin = 5.0°
Tmin = 0.676, Tmax = 0.784 h = −18→18
6131 measured reflections k = −5→10
2242 independent reflections l = −22→22

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0224P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.18 e Å3
2242 reflections Δρmin = −0.16 e Å3
146 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.33023 (2) 0.24010 (5) 0.60412 (2) 0.05806 (15)
N1 0.73148 (10) 0.50143 (18) 0.76130 (9) 0.0710 (4)
H1NB 0.7775 0.5727 0.7593 0.085*
H1NA 0.7154 0.4539 0.8049 0.085*
N2A 0.48706 (7) 0.24901 (14) 0.48980 (7) 0.0481 (3) 0.347 (5)
H2NB 0.4516 0.2692 0.5296 0.058* 0.347 (5)
N2B 0.48706 (7) 0.24901 (14) 0.48980 (7) 0.0481 (3) 0.653 (5)
H2N 0.4516 0.2691 0.5295 0.058* 0.653 (5)
N3A 0.6227 (6) 0.2596 (6) 0.4311 (5) 0.0498 (10) 0.653 (5)
H3M 0.682 0.2722 0.4359 0.06* 0.653 (5)
N3B 0.6181 (11) 0.3005 (15) 0.4279 (11) 0.0498 (10) 0.347 (5)
H3N 0.6774 0.3132 0.4327 0.06* 0.347 (5)
C1 0.69335 (9) 0.45272 (15) 0.69569 (8) 0.0474 (3)
C2 0.61748 (9) 0.35056 (16) 0.69653 (7) 0.0475 (3)
H2 0.5937 0.3163 0.7422 0.057*
C3 0.57817 (8) 0.30093 (16) 0.63062 (7) 0.0436 (3)
H3 0.5275 0.2348 0.6323 0.052*
C4 0.61292 (8) 0.34788 (14) 0.56100 (7) 0.0405 (3)
C5 0.68797 (9) 0.45061 (16) 0.56016 (8) 0.0483 (3)
H5 0.712 0.4839 0.5145 0.058*
C6 0.72660 (10) 0.50288 (16) 0.62576 (9) 0.0510 (3)
H6 0.7757 0.5729 0.6238 0.061*
C7A 0.57250 (8) 0.28921 (15) 0.49100 (7) 0.0427 (3) 0.347 (5)
C7B 0.57250 (8) 0.28921 (15) 0.49100 (7) 0.0427 (3) 0.653 (5)
C8A 0.4451 (10) 0.2003 (13) 0.4167 (7) 0.0457 (8) 0.347 (5)
H8A1 0.4026 0.2777 0.3957 0.055* 0.347 (5)
H8A2 0.4127 0.1021 0.4324 0.055* 0.347 (5)
C8B 0.4427 (5) 0.1637 (5) 0.4285 (3) 0.0457 (8) 0.653 (5)
H8A 0.446 0.0442 0.432 0.055* 0.653 (5)
H8B 0.3803 0.1951 0.4276 0.055* 0.653 (5)
C9A 0.5137 (3) 0.1287 (7) 0.3654 (2) 0.0539 (14) 0.347 (5)
H9A1 0.5428 0.0266 0.3802 0.065* 0.347 (5)
H9A2 0.4832 0.1087 0.3183 0.065* 0.347 (5)
C9B 0.48604 (17) 0.2297 (4) 0.35639 (14) 0.0574 (8) 0.653 (5)
H9B1 0.475 0.3468 0.3492 0.069* 0.653 (5)
H9B2 0.4611 0.1709 0.3138 0.069* 0.653 (5)
C10A 0.5833 (7) 0.2609 (10) 0.3539 (6) 0.0575 (9) 0.347 (5)
H10C 0.6269 0.2273 0.3167 0.069* 0.347 (5)
H10D 0.5567 0.3649 0.3386 0.069* 0.347 (5)
C10B 0.5866 (3) 0.1982 (5) 0.3599 (3) 0.0575 (9) 0.653 (5)
H10A 0.5985 0.0804 0.3593 0.069* 0.653 (5)
H10B 0.6159 0.2482 0.317 0.069* 0.653 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0367 (2) 0.0877 (3) 0.0498 (2) −0.00153 (14) 0.00414 (13) 0.00525 (16)
N1 0.0747 (9) 0.0785 (8) 0.0598 (8) −0.0183 (7) −0.0182 (7) −0.0077 (6)
N2A 0.0334 (5) 0.0656 (7) 0.0454 (6) 0.0000 (4) 0.0010 (5) −0.0087 (5)
N2B 0.0334 (5) 0.0656 (7) 0.0454 (6) 0.0000 (4) 0.0010 (5) −0.0087 (5)
N3A 0.0340 (10) 0.069 (3) 0.0461 (10) 0.005 (2) 0.0034 (8) −0.006 (2)
N3B 0.0340 (10) 0.069 (3) 0.0461 (10) 0.005 (2) 0.0034 (8) −0.006 (2)
C1 0.0431 (6) 0.0459 (6) 0.0533 (7) 0.0034 (5) −0.0080 (6) −0.0059 (5)
C2 0.0433 (7) 0.0561 (7) 0.0430 (6) −0.0005 (5) 0.0012 (6) −0.0006 (6)
C3 0.0350 (6) 0.0488 (6) 0.0470 (7) −0.0029 (5) 0.0009 (5) −0.0013 (5)
C4 0.0322 (5) 0.0453 (6) 0.0440 (6) 0.0024 (4) 0.0000 (5) −0.0004 (5)
C5 0.0407 (6) 0.0529 (7) 0.0515 (7) −0.0045 (5) 0.0037 (6) 0.0042 (5)
C6 0.0395 (6) 0.0508 (7) 0.0627 (8) −0.0083 (5) −0.0033 (6) −0.0019 (6)
C7A 0.0354 (6) 0.0495 (6) 0.0433 (6) 0.0037 (5) 0.0008 (5) −0.0003 (5)
C7B 0.0354 (6) 0.0495 (6) 0.0433 (6) 0.0037 (5) 0.0008 (5) −0.0003 (5)
C8A 0.0416 (7) 0.050 (2) 0.0454 (19) −0.0047 (19) −0.0044 (13) 0.0034 (14)
C8B 0.0416 (7) 0.050 (2) 0.0454 (19) −0.0047 (19) −0.0044 (13) 0.0034 (14)
C9A 0.052 (3) 0.061 (3) 0.049 (2) 0.005 (2) −0.0064 (19) −0.0088 (19)
C9B 0.0558 (14) 0.0712 (18) 0.0453 (12) 0.0074 (12) −0.0077 (10) −0.0036 (11)
C10A 0.0534 (10) 0.077 (3) 0.0425 (11) 0.004 (2) 0.0041 (9) −0.007 (2)
C10B 0.0534 (10) 0.077 (3) 0.0425 (11) 0.004 (2) 0.0041 (9) −0.007 (2)

Geometric parameters (Å, º)

N1—C1 1.3593 (18) C4—C5 1.3996 (17)
N1—H1NB 0.8999 C4—C7A 1.4653 (17)
N1—H1NA 0.8999 C5—C6 1.3710 (19)
N2A—C7A 1.3228 (17) C5—H5 0.93
N2A—C8A 1.499 (14) C6—H6 0.93
N2A—H2NB 0.901 C8A—C9A 1.494 (15)
N2B—H2N 0.9 C8A—H8A1 0.9677
N2B—C7B 1.3228 (16) C8A—H8A2 0.9717
N2B—C8B 1.453 (6) C8B—C9B 1.535 (6)
N3A—C7A 1.327 (9) C8B—H8A 0.97
N3A—C10A 1.497 (14) C8B—H8B 0.97
N3A—H3M 0.8999 C9A—C10A 1.509 (11)
N3B—C10B 1.541 (19) C9A—H9A1 0.97
N3B—C7B 1.319 (2) C9A—H9A2 0.97
N3B—H3N 0.8999 C9B—C10B 1.531 (6)
C1—C6 1.402 (2) C9B—H9B1 0.97
C1—C2 1.4069 (19) C10A—H10C 0.97
C2—C3 1.3736 (18) C10A—H10D 0.97
C2—H2 0.93 C10B—H10A 0.97
C3—C4 1.3975 (18) C10B—H10B 0.97
C3—H3 0.93
C1—N1—H1NB 118.4 C10A—C9A—H9A2 109.1
C1—N1—H1NA 120.4 H9A1—C9A—H9A2 107.8
H1NB—N1—H1NA 120.9 C8A—C9A—H9B2 84.7
C7A—N2A—C8A 119.1 (6) C10A—C9A—H9B2 98.2
C7A—N2A—H2NB 121 H9A1—C9A—H9B2 135.3
C8A—N2A—H2NB 118.8 C8A—C9A—H10A 145.1
C7A—N2A—H2N 121 C10A—C9A—H10A 62.4
C8A—N2A—H2N 118.8 H9A1—C9A—H10A 49
C7A—N3A—C10A 120.9 (7) H9A2—C9A—H10A 109.4
C7A—N3A—H3M 117.6 H9B2—C9A—H10A 128.2
C10A—N3A—H3M 118.5 C10B—C9B—C8B 109.0 (4)
C7A—N3A—H3N 113.1 C10B—C9B—H8A1 148.6
C10A—N3A—H3N 111.9 C8B—C9B—H8A1 48.7
C10B—N3B—H3M 106.6 C10B—C9B—H9A2 85.5
C10B—N3B—H3N 116.1 C8B—C9B—H9A2 100.1
N1—C1—C6 122.01 (13) H8A1—C9B—H9A2 116.9
N1—C1—C2 120.11 (13) C10B—C9B—H9B1 109.6
C6—C1—C2 117.87 (12) C8B—C9B—H9B1 112.2
C3—C2—C1 120.67 (12) H8A1—C9B—H9B1 70.4
C3—C2—H2 119.7 H9A2—C9B—H9B1 136.1
C1—C2—H2 119.7 C10B—C9B—H9B2 109.3
C2—C3—C4 121.22 (12) C8B—C9B—H9B2 108.6
C2—C3—H3 119.4 H8A1—C9B—H9B2 99.8
C4—C3—H3 119.4 H9B1—C9B—H9B2 108.1
C3—C4—C5 118.10 (11) C10B—C9B—H10D 56.9
C3—C4—C7A 120.81 (11) C8B—C9B—H10D 134.7
C5—C4—C7A 121.08 (11) H8A1—C9B—H10D 119.1
C6—C5—C4 120.94 (12) H9A2—C9B—H10D 119.1
C6—C5—H5 119.5 H9B1—C9B—H10D 53.3
C4—C5—H5 119.5 H9B2—C9B—H10D 116.7
C5—C6—C1 121.16 (12) N3A—C10A—C9A 98.2 (6)
C5—C6—H6 119.4 N3A—C10A—H10C 111.1
C1—C6—H6 119.4 C9A—C10A—H10C 111.2
N2A—C7A—N3A 119.5 (4) N3A—C10A—H10D 115.2
N2A—C7A—C4 119.64 (12) C9A—C10A—H10D 111.6
N3A—C7A—C4 120.5 (4) H10C—C10A—H10D 109.3
C9A—C8A—N2A 110.1 (10) N3A—C10A—H10A 82.6
C9A—C8A—H8A1 117.9 C9A—C10A—H10A 53
N2A—C8A—H8A1 116.2 H10C—C10A—H10A 70.4
C9A—C8A—H8A2 101.8 H10D—C10A—H10A 159.5
N2A—C8A—H8A2 100 N3A—C10A—H10B 119.8
H8A1—C8A—H8A2 108.1 C9A—C10A—H10B 115.4
C9A—C8A—H8A 75.1 H10D—C10A—H10B 97.5
N2A—C8A—H8A 94 H10A—C10A—H10B 80.6
H8A1—C8A—H8A 136.1 C9B—C10B—N3B 104.2 (7)
C9A—C8A—H8B 141.2 C9B—C10B—H9A1 75.3
N2A—C8A—H8B 104.6 N3B—C10B—H9A1 114.9
H8A1—C8A—H8B 57.2 C9B—C10B—H10C 121.5
H8A2—C8A—H8B 54.5 N3B—C10B—H10C 106.9
H8A—C8A—H8B 85.9 H9A1—C10B—H10C 129.1
C9B—C8B—H8A1 63.6 C9B—C10B—H10D 62.4
C9B—C8B—H8A2 128.9 N3B—C10B—H10D 78.7
H8A1—C8B—H8A2 105.9 H9A1—C10B—H10D 137.7
C9B—C8B—H8A 112.3 H10C—C10B—H10D 76.8
H8A1—C8B—H8A 142.5 C9B—C10B—H10A 110.2
C9B—C8B—H8B 107.8 N3B—C10B—H10A 118.6
H8A1—C8B—H8B 48.2 H10C—C10B—H10A 96.3
H8A2—C8B—H8B 63.4 H10D—C10B—H10A 162.7
H8A—C8B—H8B 108.2 C9B—C10B—H10B 110.2
C8A—C9A—C10A 106.6 (7) N3B—C10B—H10B 104.8
C8A—C9A—H9A1 118.3 H9A1—C10B—H10B 137.3
C10A—C9A—H9A1 109.2 H10D—C10B—H10B 63.5
C8A—C9A—H9A2 105.5 H10A—C10B—H10B 108.4
N1—C1—C2—C3 179.79 (13) C10A—N3A—C7A—N2A 29.8 (6)
C6—C1—C2—C3 0.59 (19) C10A—N3A—C7A—C4 −157.3 (5)
C1—C2—C3—C4 1.0 (2) C3—C4—C7A—N2A 26.62 (18)
C2—C3—C4—C5 −1.51 (19) C5—C4—C7A—N2A −154.22 (12)
C2—C3—C4—C7A 177.68 (12) C3—C4—C7A—N3A −146.3 (3)
C3—C4—C5—C6 0.38 (19) C5—C4—C7A—N3A 32.9 (3)
C7A—C4—C5—C6 −178.81 (12) C7A—N2A—C8A—C9A 27.2 (7)
C4—C5—C6—C1 1.3 (2) N2A—C8A—C9A—C10A −59.5 (8)
N1—C1—C6—C5 179.09 (13) C7A—N3A—C10A—C9A −58.3 (7)
C2—C1—C6—C5 −1.7 (2) C8A—C9A—C10A—N3A 69.8 (8)
C8A—N2A—C7A—N3A −11.2 (5) C8B—C9B—C10B—N3B −62.7 (7)
C8A—N2A—C7A—C4 175.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1NA···Cl1i 0.90 2.47 3.3271 (16) 160
N2B—H2N···Cl1 0.90 2.27 3.1126 (12) 156
N3B—H3N···Cl1ii 0.90 2.42 3.250 (17) 153

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x+1/2, −y+1/2, −z+1.

Calculated bond lengths (Å)

N1 C1 1.372
N1 H1NB 1.008
N1 H1NA 1.008
N2 C7 1.332
N2 H2A 1.011
N2 C8 1.470
N3 C7 1.332
N3 C10 1.469
N3 H3 0.899
C1 C6 1.411
C1 C2 1.411
C2 C3 1.388
C2 H2 1.083
C3 C4 1.407
C3 H3 1.084
C4 C5 1.407
C4 C7 1.458
C5 C6 1.388
C5 H5 1.084
C6 H6 1.083
C8 C9 1.520
C8 H8A 1.089
C8 H8B 1.092
C9 C10 1.522
C9 H9A 1.089
C9 H9B 1.091
C10 H10A 1.087
C10 H10B 1.092

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2441).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Boykin, D. W. (2002). J. Braz. Chem. Soc. 13, 763–771.
  3. Chaires, J. B., Ren, J., Hamelberg, D., Kumar, A., Pandya, V., Boykin, D. W. & Wilson, W. D. (2004). J. Med. Chem. 47, 5729–5742. [DOI] [PubMed]
  4. Farahat, A. A., Paliakov, E., Kumar, A., Barghash, A. E., Goda, F. E., Eisa, H. M., Wenzler, T., Brun, R., Liu, Y., Wilson, W. D. & Boykin, D. W. (2011). Bioorg. Med. Chem. 19, 2156–2167. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Hall, J. E., Kerrigan, J. E., Ramachandran, K., Bender, B. C., Stanko, J. P., Jones, S. K., Patrick, D. A. & Tidwell, R. R. (1998). Antimicrob. Agents Chemother. 42, 666–674. [DOI] [PMC free article] [PubMed]
  8. Jarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, o98–o100. [DOI] [PubMed]
  9. Legrand, Y. M., Lee, A. van der & Barboiu, M. (2008). Acta Cryst. E64, o967–o968. [DOI] [PMC free article] [PubMed]
  10. Molčanov, K., Stolić, I., Kojić-Prodić, B. & Bajić, M. (2011). Acta Cryst. E67, o3450–o3451. [DOI] [PMC free article] [PubMed]
  11. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, N. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Stolić, I., Mišković, K., Magdaleno, A., Silber, A. M., Piantanida, I., Bajić, M. & Glavaš-Obrovac, L. (2009). Bioorg. Med. Chem. 17, 2544–2554. [DOI] [PubMed]
  14. Stolić, I., Mišković, I., Piantanida, I., Baus-Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). Eur. J. Med. Chem. 46, 743–755. [DOI] [PubMed]
  15. Wydra, R. L., Patterson, S. E. & Strekowski, L. (1990). J. Heterocycl. Chem. 27, 803–805.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014493/gk2441sup1.cif

e-68-o1360-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014493/gk2441Isup2.hkl

e-68-o1360-Isup2.hkl (108.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014493/gk2441Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES