Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):o1383–o1384. doi: 10.1107/S160053681201361X

2-(5-Bromo­thio­phen-2-yl)-5-[5-(10-ethyl­phenothia­zin-3-yl)thio­phen-2-yl]-1,3,4-oxadiazole

Yu-Zhen Pan a, You-Gui Wang a, Jian-Hui Liu b,*, Li-Cheng Sun b,c,*
PMCID: PMC3344512  PMID: 22590274

Abstract

The mol­ecule of the title compound, C24H16BrN3OS3, contains three approximately planar fragments, viz. an oxadiazole ring plus two adjacent thio­phene groups, and two phenothia­zine benzene rings, with largest deviations from the least-squares planes of 0.051 (3), 0.019 (4) and 0.014 (3) Å, respectively. The phenothia­zine unit adopts a butterfly conformation, with a dihedral angle of 38.06 (15)° between the terminal benzene rings. The dihedral angle between the 2,5-bis­(thio­phen-2-yl)oxadiazole unit and the attached benzene ring is 15.35 (11)°. In the crystal, mol­ecules form stacks along the b-axis direction; neighboring mol­ecules within the stack are related by inversion centers, with shortest inter­centroid separations of 3.741 (2) and 3.767 (2) Å.

Related literature  

For electro-optical properties of phenothia­zine derivatives, see: Lai et al. (2001, 2003); Han et al. (2008); Meng et al. (2010); Zhang et al. (2005); Park et al. (2011); Kim et al. (2011); Hagfeldt et al. (2010); Wu et al. (2010). For related structures, see: Chu & Van der Helm (1975); Hdii et al. (1998); Li et al. (2009a ,b ); Yu et al. (2011); Pan et al. (2012).graphic file with name e-68-o1383-scheme1.jpg

Experimental  

Crystal data  

  • C24H16BrN3OS3

  • M r = 538.49

  • Triclinic, Inline graphic

  • a = 7.4300 (5) Å

  • b = 7.6019 (5) Å

  • c = 22.1933 (14) Å

  • α = 89.315 (4)°

  • β = 89.170 (4)°

  • γ = 64.891 (4)°

  • V = 1134.93 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 296 K

  • 0.10 × 0.08 × 0.07 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.812, T max = 0.860

  • 11444 measured reflections

  • 3972 independent reflections

  • 3138 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.136

  • S = 1.06

  • 3972 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2004) and SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201361X/yk2050sup1.cif

e-68-o1383-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201361X/yk2050Isup2.hkl

e-68-o1383-Isup2.hkl (194.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201361X/yk2050Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the China Natural Science Foundation (21120102036) and the National Basic Research Program of China (2009CB220009) for financial support.

supplementary crystallographic information

Comment

The derivatives of phenothiazine have attracted much interest since they can serve as photoactive and electroactive materials in many fields, such as electrogenerated chemiluminescence (Lai et al., 2001, 2003), environment sensitive fluorophores (Han et al., 2008; Meng et al., 2010), organic light-emitting diodes (Zhang et al., 2005; Park et al., 2011) and solar cells (Hagfeldt et al., 2010; Kim et al., 2011; Wu et al., 2010). As part of our studies on these materials, here we report the crystal structure of the title compound, C24H16BrN3OS3.

In the molecule of the title compound (Fig. 1), two benzene rings of the phenothiazine group display a noncoplanar butterfly conformation with a dihedral angle of 38.06 (15)°. Both thiophene rings, oxadiazole group and benzene ring with C9 atom of phenthiazine lie almost in the same plane. In the crystal, there are C—H···N contacts and π-π interactions between neighbouring molecules.

Experimental

3-dihydroxyboryl-10-ethylphenothiazine (320 mg, 1.2 mmol), 2,5-bis(5-bromo-2-thiophen-2-yl)-1,3,4-oxadiazole (350 mg, 0.9 mmol) and Pd(PPh3)4 (21 mg, 0.02 mmol) were dissolved in 20 ml THF under nitrogen atmosphere, then aqueous solution of Na2CO3 (2.0 M, 6 mL) was added to reaction mixture. The mixture was stirred at 80°C for 24 hrs, then it was poured into water and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. After removal of the solvent, the crude product was purified by chromatography on a silica gel column using dichloromethane-ethyl acetate (v/v = 150:1) as eluent and isolated as a yellow powder. Yield: 145 mg (30%). The yellow single crystals suitable for X-ray analysis were obtained after several days by slow evaporation of a mixture solution in dichloromethane and petroleum ether.

Refinement

H atoms were placed in calculated positions and treated as riding atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Structure of the title compound with atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.

Crystal data

C24H16BrN3OS3 Z = 2
Mr = 538.49 F(000) = 544
Triclinic, P1 Dx = 1.576 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4300 (5) Å Cell parameters from 4410 reflections
b = 7.6019 (5) Å θ = 2.8–25.6°
c = 22.1933 (14) Å µ = 2.11 mm1
α = 89.315 (4)° T = 296 K
β = 89.170 (4)° Block, yellow
γ = 64.891 (4)° 0.10 × 0.08 × 0.07 mm
V = 1134.93 (13) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 3972 independent reflections
Radiation source: fine-focus sealed tube 3138 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
phi and ω scans θmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.812, Tmax = 0.860 k = −8→9
11444 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.0555P] where P = (Fo2 + 2Fc2)/3
3972 reflections (Δ/σ)max = 0.001
290 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.64760 (7) 0.55973 (6) 0.18906 (2) 0.0835 (2)
C1 0.3622 (6) 0.2273 (5) 0.96143 (15) 0.0594 (9)
H1 0.2281 0.2762 0.9718 0.071*
C2 0.4887 (7) 0.2710 (5) 0.99607 (17) 0.0673 (10)
H2 0.4416 0.3463 1.0304 0.081*
C3 0.6867 (7) 0.2023 (5) 0.97957 (17) 0.0682 (11)
H3 0.7731 0.2313 1.0031 0.082*
C4 0.7577 (5) 0.0905 (5) 0.92832 (16) 0.0587 (9)
H4 0.8904 0.0489 0.9170 0.070*
C5 0.6325 (5) 0.0397 (4) 0.89353 (14) 0.0456 (7)
C6 0.4320 (5) 0.1113 (4) 0.91116 (13) 0.0465 (7)
C7 0.9127 (5) −0.2003 (6) 0.83409 (18) 0.0666 (10)
H7A 0.9822 −0.1174 0.8320 0.080*
H7B 0.9341 −0.2683 0.7961 0.080*
C8 0.9994 (6) −0.3473 (6) 0.8843 (2) 0.0839 (13)
H8A 0.9828 −0.2808 0.9219 0.126*
H8B 1.1383 −0.4238 0.8765 0.126*
H8C 0.9320 −0.4307 0.8863 0.126*
C9 0.5786 (5) −0.0232 (4) 0.79035 (14) 0.0437 (7)
C10 0.6538 (5) −0.0294 (5) 0.73245 (15) 0.0522 (8)
H10 0.7888 −0.0638 0.7269 0.063*
C11 0.5316 (5) 0.0147 (4) 0.68302 (15) 0.0501 (8)
H11 0.5870 0.0038 0.6446 0.060*
C12 0.3283 (5) 0.0748 (4) 0.68915 (13) 0.0450 (7)
C13 0.2503 (5) 0.0895 (4) 0.74764 (14) 0.0465 (7)
H13 0.1138 0.1335 0.7532 0.056*
C14 0.3721 (5) 0.0401 (4) 0.79706 (14) 0.0452 (7)
C15 0.1960 (5) 0.1204 (4) 0.63696 (14) 0.0468 (7)
C16 0.0059 (5) 0.1390 (4) 0.63392 (15) 0.0508 (8)
H16 −0.0620 0.1199 0.6671 0.061*
C17 −0.0786 (5) 0.1891 (4) 0.57703 (14) 0.0516 (8)
H17 −0.2075 0.2072 0.5685 0.062*
C18 0.0480 (5) 0.2087 (4) 0.53520 (15) 0.0488 (7)
C19 0.0111 (5) 0.2606 (4) 0.47247 (14) 0.0469 (7)
C20 −0.1542 (5) 0.3449 (4) 0.39177 (14) 0.0448 (7)
C21 −0.3225 (5) 0.3959 (4) 0.35297 (14) 0.0449 (7)
C22 −0.5041 (5) 0.4019 (4) 0.36531 (16) 0.0546 (8)
H22 −0.5420 0.3753 0.4032 0.065*
C23 −0.6299 (5) 0.4525 (4) 0.31502 (17) 0.0570 (8)
H23 −0.7589 0.4620 0.3157 0.068*
C24 −0.5401 (5) 0.4854 (4) 0.26594 (14) 0.0515 (8)
N1 0.6991 (4) −0.0788 (4) 0.84232 (12) 0.0492 (6)
N2 0.1313 (4) 0.2746 (4) 0.43185 (12) 0.0563 (7)
N3 0.0218 (4) 0.3301 (4) 0.37835 (12) 0.0554 (7)
O1 −0.1732 (3) 0.3035 (3) 0.45107 (9) 0.0466 (5)
S1 0.27273 (13) 0.04182 (14) 0.86988 (4) 0.0583 (3)
S2 0.27462 (13) 0.16405 (12) 0.56662 (4) 0.0537 (2)
S3 −0.30112 (13) 0.45375 (12) 0.27857 (4) 0.0536 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1064 (4) 0.0847 (3) 0.0675 (3) −0.0479 (3) −0.0321 (3) 0.0175 (2)
C1 0.070 (2) 0.0534 (17) 0.0436 (19) −0.0159 (16) 0.0046 (17) 0.0046 (15)
C2 0.101 (3) 0.0543 (18) 0.046 (2) −0.032 (2) −0.005 (2) −0.0026 (15)
C3 0.102 (3) 0.066 (2) 0.052 (2) −0.051 (2) −0.014 (2) 0.0023 (17)
C4 0.065 (2) 0.0672 (19) 0.056 (2) −0.0394 (17) −0.0077 (17) 0.0088 (17)
C5 0.0504 (18) 0.0507 (15) 0.0412 (17) −0.0270 (14) −0.0026 (14) 0.0072 (13)
C6 0.0567 (19) 0.0486 (15) 0.0362 (17) −0.0243 (14) −0.0032 (14) 0.0072 (13)
C7 0.047 (2) 0.078 (2) 0.068 (3) −0.0199 (17) 0.0001 (18) −0.0067 (19)
C8 0.071 (3) 0.077 (2) 0.083 (3) −0.011 (2) −0.022 (2) 0.000 (2)
C9 0.0466 (17) 0.0477 (15) 0.0412 (17) −0.0242 (13) 0.0027 (14) −0.0011 (13)
C10 0.0461 (18) 0.0637 (18) 0.050 (2) −0.0267 (15) 0.0068 (15) −0.0067 (15)
C11 0.054 (2) 0.0569 (17) 0.0405 (18) −0.0245 (15) 0.0095 (15) −0.0066 (14)
C12 0.0524 (19) 0.0425 (14) 0.0420 (18) −0.0219 (13) 0.0056 (14) −0.0029 (13)
C13 0.0435 (17) 0.0532 (16) 0.0441 (18) −0.0219 (13) 0.0037 (14) −0.0011 (13)
C14 0.0495 (18) 0.0504 (15) 0.0415 (17) −0.0267 (14) 0.0020 (14) −0.0004 (13)
C15 0.059 (2) 0.0415 (14) 0.0412 (17) −0.0224 (14) 0.0048 (15) −0.0023 (12)
C16 0.056 (2) 0.0576 (17) 0.0407 (18) −0.0262 (15) 0.0045 (15) 0.0028 (14)
C17 0.0516 (19) 0.0571 (17) 0.0462 (19) −0.0231 (15) 0.0030 (15) −0.0027 (14)
C18 0.0534 (19) 0.0445 (14) 0.0458 (18) −0.0184 (13) 0.0029 (15) −0.0016 (13)
C19 0.0511 (19) 0.0452 (15) 0.0428 (18) −0.0189 (13) 0.0016 (15) −0.0026 (13)
C20 0.0490 (18) 0.0435 (14) 0.0403 (17) −0.0183 (13) 0.0085 (14) −0.0030 (12)
C21 0.0519 (18) 0.0408 (14) 0.0429 (17) −0.0208 (13) 0.0075 (14) −0.0007 (12)
C22 0.057 (2) 0.0539 (17) 0.052 (2) −0.0230 (15) 0.0095 (17) 0.0028 (15)
C23 0.0512 (19) 0.0544 (17) 0.066 (2) −0.0227 (15) 0.0007 (17) 0.0030 (16)
C24 0.063 (2) 0.0463 (15) 0.0466 (19) −0.0247 (15) −0.0021 (16) 0.0022 (14)
N1 0.0415 (14) 0.0610 (14) 0.0447 (16) −0.0214 (12) −0.0002 (12) −0.0031 (12)
N2 0.0556 (17) 0.0717 (16) 0.0431 (16) −0.0287 (14) 0.0030 (13) 0.0036 (13)
N3 0.0538 (17) 0.0719 (16) 0.0417 (16) −0.0282 (13) 0.0047 (13) 0.0035 (13)
O1 0.0484 (13) 0.0497 (11) 0.0405 (12) −0.0197 (9) 0.0060 (10) 0.0007 (9)
S1 0.0539 (5) 0.0906 (6) 0.0417 (5) −0.0418 (4) 0.0041 (4) 0.0022 (4)
S2 0.0562 (5) 0.0677 (5) 0.0411 (5) −0.0300 (4) 0.0038 (4) 0.0003 (4)
S3 0.0612 (5) 0.0636 (5) 0.0419 (5) −0.0326 (4) 0.0042 (4) 0.0040 (4)

Geometric parameters (Å, º)

Br1—C24 1.871 (3) C12—C13 1.400 (4)
C1—C2 1.370 (5) C12—C15 1.471 (4)
C1—C6 1.382 (4) C13—C14 1.376 (4)
C1—H1 0.9300 C13—H13 0.9300
C2—C3 1.381 (6) C14—S1 1.765 (3)
C2—H2 0.9300 C15—C16 1.361 (5)
C3—C4 1.385 (5) C15—S2 1.736 (3)
C3—H3 0.9300 C16—C17 1.394 (5)
C4—C5 1.394 (4) C16—H16 0.9300
C4—H4 0.9300 C17—C18 1.363 (4)
C5—C6 1.403 (4) C17—H17 0.9300
C5—N1 1.406 (4) C18—C19 1.441 (4)
C6—S1 1.758 (3) C18—S2 1.726 (3)
C7—N1 1.469 (4) C19—N2 1.295 (4)
C7—C8 1.511 (6) C19—O1 1.358 (4)
C7—H7A 0.9700 C20—N3 1.295 (4)
C7—H7B 0.9700 C20—O1 1.369 (4)
C8—H8A 0.9600 C20—C21 1.438 (5)
C8—H8B 0.9600 C21—C22 1.355 (5)
C8—H8C 0.9600 C21—S3 1.726 (3)
C9—C10 1.387 (4) C22—C23 1.407 (5)
C9—C14 1.406 (4) C22—H22 0.9300
C9—N1 1.417 (4) C23—C24 1.344 (5)
C10—C11 1.379 (5) C23—H23 0.9300
C10—H10 0.9300 C24—S3 1.715 (4)
C11—C12 1.385 (4) N2—N3 1.405 (4)
C11—H11 0.9300
C2—C1—C6 120.6 (4) C12—C13—H13 119.4
C2—C1—H1 119.7 C13—C14—C9 120.9 (3)
C6—C1—H1 119.7 C13—C14—S1 120.3 (2)
C1—C2—C3 119.5 (3) C9—C14—S1 118.7 (2)
C1—C2—H2 120.2 C16—C15—C12 129.4 (3)
C3—C2—H2 120.2 C16—C15—S2 110.0 (2)
C2—C3—C4 120.6 (4) C12—C15—S2 120.6 (2)
C2—C3—H3 119.7 C15—C16—C17 114.4 (3)
C4—C3—H3 119.7 C15—C16—H16 122.8
C3—C4—C5 120.7 (3) C17—C16—H16 122.8
C3—C4—H4 119.6 C18—C17—C16 112.8 (3)
C5—C4—H4 119.6 C18—C17—H17 123.6
C4—C5—C6 117.6 (3) C16—C17—H17 123.6
C4—C5—N1 122.9 (3) C17—C18—C19 128.1 (3)
C6—C5—N1 119.5 (3) C17—C18—S2 111.1 (3)
C1—C6—C5 120.9 (3) C19—C18—S2 120.8 (2)
C1—C6—S1 120.4 (3) N2—C19—O1 113.1 (3)
C5—C6—S1 118.6 (2) N2—C19—C18 128.8 (3)
N1—C7—C8 112.8 (3) O1—C19—C18 118.0 (3)
N1—C7—H7A 109.0 N3—C20—O1 112.7 (3)
C8—C7—H7A 109.0 N3—C20—C21 128.5 (3)
N1—C7—H7B 109.0 O1—C20—C21 118.8 (3)
C8—C7—H7B 109.0 C22—C21—C20 129.4 (3)
H7A—C7—H7B 107.8 C22—C21—S3 111.6 (3)
C7—C8—H8A 109.5 C20—C21—S3 119.0 (2)
C7—C8—H8B 109.5 C21—C22—C23 113.3 (3)
H8A—C8—H8B 109.5 C21—C22—H22 123.4
C7—C8—H8C 109.5 C23—C22—H22 123.4
H8A—C8—H8C 109.5 C24—C23—C22 111.5 (3)
H8B—C8—H8C 109.5 C24—C23—H23 124.2
C10—C9—C14 117.6 (3) C22—C23—H23 124.2
C10—C9—N1 123.4 (3) C23—C24—S3 113.5 (3)
C14—C9—N1 119.0 (3) C23—C24—Br1 127.3 (3)
C11—C10—C9 121.1 (3) S3—C24—Br1 119.19 (18)
C11—C10—H10 119.4 C5—N1—C9 117.9 (2)
C9—C10—H10 119.4 C5—N1—C7 119.3 (3)
C10—C11—C12 121.6 (3) C9—N1—C7 118.0 (3)
C10—C11—H11 119.2 C19—N2—N3 106.0 (3)
C12—C11—H11 119.2 C20—N3—N2 106.1 (3)
C11—C12—C13 117.6 (3) C19—O1—C20 102.1 (2)
C11—C12—C15 122.4 (3) C6—S1—C14 98.95 (15)
C13—C12—C15 120.1 (3) C18—S2—C15 91.68 (16)
C14—C13—C12 121.1 (3) C24—S3—C21 90.13 (16)
C14—C13—H13 119.4

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2050).

References

  1. Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.
  4. Hagfeldt, A., Boschloo, G., Sun, L.-C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595–6663. [DOI] [PubMed]
  5. Han, F., Chi, L.-N., Wu, W.-T., Liang, X.-F., Fu, M.-Y. & Zhao, J.-Z. (2008). J. Photochem. Photobiol. A, 196, 10–23.
  6. Hdii, F., Reboul, J.-P., Barbe, J., Siri, D. & Pèpe, G. (1998). Acta Cryst. C54, 1151–1152.
  7. Kim, S. H., Kim, H. W., Sakong, C., Namgoong, J., Park, S. W., Ko, M. J., Lee, C. H., Lee, W. I. & Kim, J. P. (2011). Org. Lett. 13, 5784–5787. [DOI] [PubMed]
  8. Lai, R. Y., Fabrizio, E. F., Lu, L. D., Jenekhe, S. A. & Bard, A. J. (2001). J. Am. Chem. Soc. 123, 9112–9118. [DOI] [PubMed]
  9. Lai, R. Y., Kong, X. X., Jenekhe, S. A. & Bard, A. J. (2003). J. Am. Chem. Soc. 125, 12631–12639. [DOI] [PubMed]
  10. Li, D. M., Hu, R. T., Zhou, W., Sun, P. P., Kan, Y. H., Tian, Y. P., Zhou, H. P., Wu, J. Y., Tao, X. T. & Jiang, M. H. (2009a). Eur. J. Inorg. Chem. pp. 2664–2672.
  11. Li, D.-M., Lv, L.-F., Sun, P.-P., Zhou, W., Wang, P., Wu, J.-Y., Kan, Y.-H., Zhou, H.-P. & Tian, Y.-P. (2009b). Dyes Pigm. 83, 180–186.
  12. Meng, K., Liu, Y. L., Feng, W. K., Zheng, Q., Zhao, X. J., Wang, S. F. & Gong, Q. H. (2010). J. Photochem. Photobiol. A, 210, 44–47.
  13. Pan, Y.-Z., Wang, Y.-G., Liu, J.-H. & Sun, L.-C. (2012). Acta Cryst. E68, o649. [DOI] [PMC free article] [PubMed]
  14. Park, Y., Kim, B., Lee, C., Hyun, A., Jang, S., Lee, J. H., Gal, Y. S., Kim, T. H., Kim, K. S. & Park, J. (2011). J. Phys. Chem. C, 115, 4843–4850.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Wu, T. Y., Tsao, M. H., Chen, F. L., Su, S. G., Chang, C. W., Wang, H. P., Lin, Y. C., Ou-Yang, W. C. & Sun, I. W. (2010). Int. J. Mol. Sci. 11, 329–353. [DOI] [PMC free article] [PubMed]
  17. Yu, D.-H., Wang, J.-Q., Kong, L. & Liu, Z. (2011). Acta Cryst. E67, o3344. [DOI] [PMC free article] [PubMed]
  18. Zhang, X.-H., Choi, S. H., Choi, D. H. & Ahn, K. H. (2005). Tetrahedron Lett. 46, 5273–5276.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201361X/yk2050sup1.cif

e-68-o1383-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201361X/yk2050Isup2.hkl

e-68-o1383-Isup2.hkl (194.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201361X/yk2050Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES