Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):o1385. doi: 10.1107/S1600536812014869

N-(2,6-Dichloro­phen­yl)-2-(naphthalen-1-yl)acetamide

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Prakash S Nayak b, B Narayana b, B K Sarojini c
PMCID: PMC3344513  PMID: 22590275

Abstract

In the title compound, C18H13Cl2NO, the naphthalene ring system and the benzene ring form dihedral angles of 74.73 (13) and 62.53 (16)°, respectively, with the acetamide grouping [maximum deviation = 0.005 (3) Å]. The naphthalene ring system forms a dihedral angle of 75.14 (13)° with the benzene ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming C(4) chains propagating in [010]. The O atom also accepts two C—H⋯O inter­actions.

Related literature  

For related structures, see: Fun et al. (2010, 2011a ,b ). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1385-scheme1.jpg

Experimental  

Crystal data  

  • C18H13Cl2NO

  • M r = 330.19

  • Monoclinic, Inline graphic

  • a = 13.1918 (13) Å

  • b = 4.7199 (5) Å

  • c = 24.878 (2) Å

  • β = 103.127 (3)°

  • V = 1508.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.38 × 0.13 × 0.08 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.853, T max = 0.968

  • 13545 measured reflections

  • 4397 independent reflections

  • 3245 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.168

  • S = 1.08

  • 4397 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014869/hb6731sup1.cif

e-68-o1385-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014869/hb6731Isup2.hkl

e-68-o1385-Isup2.hkl (215.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014869/hb6731Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.84 (4) 2.00 (4) 2.823 (3) 165 (3)
C8—H8A⋯O1i 0.99 2.37 3.242 (4) 146
C8—H8B⋯O1ii 0.99 2.53 3.488 (4) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS–Phase 1 programme.

supplementary crystallographic information

Comment

In continuation of our work on synthesis and structures of amides (Fun et al., 2010, 2011a,b) we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths are comparable to related structures (Fun et al., 2010, 2011a,b). The naphthalene ring system (C9-C18, maximum deviation of 0.017 (3) Å at atom C9) and the benzene ring (C1-C6) form dihedral angles of 74.73 (13) and 62.53 (16)°, respectively, with the acetamide moiety (O1/N1/C7/C8, maximum deviation of 0.005 (3) Å at atom C7). The naphthalene ring system forms a dihedral angle of 75.14 (13)° with the benzene ring.

In the crystal, Fig. 2, molecules are linked via N1–H1N1···O1, C8–H8A···O1 and C8–H8B···O1 hydrogen bonds (Table 1) into two-molecule-thick chains along [010].

Experimental

1-Naphthalene acetic acid (0.186 g, 1 mmol) and 2,6-dichloroaniline (0.162 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Colourless needles were grown from N,N-dimethyl formamide solution by the slow evaporation method (m.p.: 463K).

Refinement

Atom H1N1 was located in a difference Fourier map and refined freely with N1-H1N1 = 0.85 (4) Å. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.99 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C18H13Cl2NO F(000) = 680
Mr = 330.19 Dx = 1.454 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3979 reflections
a = 13.1918 (13) Å θ = 3.2–30.0°
b = 4.7199 (5) Å µ = 0.43 mm1
c = 24.878 (2) Å T = 100 K
β = 103.127 (3)° Needle, colourless
V = 1508.5 (3) Å3 0.38 × 0.13 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4397 independent reflections
Radiation source: fine-focus sealed tube 3245 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
φ and ω scans θmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −18→18
Tmin = 0.853, Tmax = 0.968 k = −6→6
13545 measured reflections l = −35→35

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0606P)2 + 3.359P] where P = (Fo2 + 2Fc2)/3
4397 reflections (Δ/σ)max = 0.001
203 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.46301 (6) 0.58083 (17) 1.15354 (3) 0.02081 (18)
Cl2 0.13465 (6) −0.0073 (2) 1.03531 (3) 0.0258 (2)
O1 0.36215 (16) −0.0699 (5) 1.02088 (9) 0.0167 (4)
N1 0.32626 (19) 0.3664 (5) 1.04970 (10) 0.0128 (5)
C1 0.3584 (2) 0.3527 (7) 1.15041 (12) 0.0160 (6)
C2 0.3352 (2) 0.2594 (8) 1.19925 (13) 0.0221 (7)
H2A 0.3758 0.3204 1.2339 0.026*
C3 0.2519 (3) 0.0759 (8) 1.19680 (14) 0.0247 (7)
H3A 0.2357 0.0096 1.2299 0.030*
C4 0.1922 (3) −0.0109 (7) 1.14604 (14) 0.0234 (7)
H4A 0.1355 −0.1375 1.1444 0.028*
C5 0.2158 (2) 0.0887 (7) 1.09772 (13) 0.0186 (6)
C6 0.3005 (2) 0.2685 (6) 1.09881 (11) 0.0136 (5)
C7 0.3562 (2) 0.1873 (6) 1.01372 (11) 0.0123 (5)
C8 0.3845 (2) 0.3240 (6) 0.96339 (11) 0.0125 (5)
H8A 0.3733 0.5311 0.9645 0.015*
H8B 0.4592 0.2910 0.9649 0.015*
C9 0.3199 (2) 0.2055 (6) 0.90964 (11) 0.0128 (5)
C10 0.3612 (2) 0.0027 (7) 0.88140 (12) 0.0156 (6)
H10A 0.4293 −0.0667 0.8965 0.019*
C11 0.3044 (2) −0.1058 (7) 0.83020 (12) 0.0183 (6)
H11A 0.3343 −0.2474 0.8114 0.022*
C12 0.2067 (2) −0.0057 (7) 0.80799 (12) 0.0177 (6)
H12A 0.1691 −0.0769 0.7735 0.021*
C13 0.1607 (2) 0.2029 (6) 0.83576 (12) 0.0151 (6)
C14 0.0590 (2) 0.3104 (7) 0.81287 (12) 0.0189 (6)
H14A 0.0213 0.2416 0.7782 0.023*
C15 0.0150 (2) 0.5103 (8) 0.83999 (13) 0.0213 (6)
H15A −0.0527 0.5800 0.8240 0.026*
C16 0.0700 (2) 0.6148 (7) 0.89197 (13) 0.0199 (6)
H16A 0.0387 0.7521 0.9110 0.024*
C17 0.1686 (2) 0.5172 (7) 0.91479 (12) 0.0171 (6)
H17A 0.2052 0.5902 0.9494 0.021*
C18 0.2165 (2) 0.3100 (6) 0.88767 (12) 0.0140 (5)
H1N1 0.332 (3) 0.543 (8) 1.0462 (14) 0.014 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0224 (3) 0.0174 (4) 0.0219 (4) −0.0038 (3) 0.0033 (3) −0.0046 (3)
Cl2 0.0198 (3) 0.0294 (5) 0.0285 (4) −0.0066 (3) 0.0058 (3) −0.0084 (3)
O1 0.0234 (10) 0.0077 (10) 0.0203 (10) 0.0022 (8) 0.0077 (8) −0.0007 (8)
N1 0.0208 (11) 0.0034 (12) 0.0152 (11) 0.0017 (9) 0.0057 (9) 0.0020 (9)
C1 0.0189 (13) 0.0116 (14) 0.0176 (13) 0.0024 (11) 0.0045 (10) 0.0000 (11)
C2 0.0277 (15) 0.0230 (18) 0.0161 (14) 0.0069 (14) 0.0062 (11) 0.0013 (13)
C3 0.0322 (16) 0.0236 (18) 0.0224 (15) 0.0066 (15) 0.0148 (13) 0.0064 (14)
C4 0.0271 (15) 0.0159 (16) 0.0317 (17) 0.0004 (13) 0.0163 (13) 0.0055 (14)
C5 0.0205 (13) 0.0154 (15) 0.0211 (14) 0.0029 (12) 0.0070 (11) −0.0011 (12)
C6 0.0196 (13) 0.0059 (13) 0.0170 (13) 0.0030 (11) 0.0077 (10) 0.0021 (10)
C7 0.0132 (11) 0.0091 (13) 0.0142 (12) 0.0003 (10) 0.0021 (9) −0.0017 (11)
C8 0.0161 (12) 0.0068 (12) 0.0148 (12) −0.0002 (10) 0.0041 (10) −0.0002 (10)
C9 0.0161 (12) 0.0091 (13) 0.0139 (12) −0.0023 (11) 0.0051 (10) 0.0015 (11)
C10 0.0182 (12) 0.0120 (14) 0.0172 (13) −0.0008 (12) 0.0052 (10) 0.0002 (11)
C11 0.0257 (14) 0.0131 (15) 0.0174 (13) 0.0008 (12) 0.0075 (11) −0.0030 (12)
C12 0.0238 (14) 0.0140 (14) 0.0146 (13) −0.0025 (12) 0.0032 (10) −0.0021 (12)
C13 0.0192 (13) 0.0108 (14) 0.0154 (13) −0.0045 (11) 0.0042 (10) 0.0009 (11)
C14 0.0200 (13) 0.0174 (16) 0.0175 (14) −0.0017 (12) 0.0004 (11) 0.0010 (12)
C15 0.0151 (12) 0.0230 (17) 0.0248 (15) 0.0009 (12) 0.0029 (11) 0.0031 (13)
C16 0.0220 (14) 0.0157 (16) 0.0231 (15) 0.0017 (12) 0.0075 (11) −0.0010 (12)
C17 0.0208 (13) 0.0136 (14) 0.0175 (13) 0.0006 (12) 0.0054 (10) −0.0002 (12)
C18 0.0164 (12) 0.0098 (13) 0.0164 (13) −0.0009 (11) 0.0053 (10) 0.0006 (11)

Geometric parameters (Å, º)

Cl1—C1 1.738 (3) C9—C10 1.371 (4)
Cl2—C5 1.734 (3) C9—C18 1.436 (4)
O1—C7 1.227 (4) C10—C11 1.418 (4)
N1—C7 1.354 (4) C10—H10A 0.9500
N1—C6 1.418 (4) C11—C12 1.367 (4)
N1—H1N1 0.85 (4) C11—H11A 0.9500
C1—C2 1.390 (4) C12—C13 1.416 (4)
C1—C6 1.394 (4) C12—H12A 0.9500
C2—C3 1.390 (5) C13—C18 1.426 (4)
C2—H2A 0.9500 C13—C14 1.426 (4)
C3—C4 1.390 (5) C14—C15 1.364 (5)
C3—H3A 0.9500 C14—H14A 0.9500
C4—C5 1.390 (4) C15—C16 1.420 (4)
C4—H4A 0.9500 C15—H15A 0.9500
C5—C6 1.398 (4) C16—C17 1.375 (4)
C7—C8 1.528 (4) C16—H16A 0.9500
C8—C9 1.520 (4) C17—C18 1.416 (4)
C8—H8A 0.9900 C17—H17A 0.9500
C8—H8B 0.9900
C7—N1—C6 122.0 (3) C10—C9—C18 119.9 (3)
C7—N1—H1N1 120 (2) C10—C9—C8 119.9 (3)
C6—N1—H1N1 117 (2) C18—C9—C8 120.2 (2)
C2—C1—C6 122.1 (3) C9—C10—C11 121.5 (3)
C2—C1—Cl1 119.1 (2) C9—C10—H10A 119.3
C6—C1—Cl1 118.8 (2) C11—C10—H10A 119.3
C3—C2—C1 119.2 (3) C12—C11—C10 119.7 (3)
C3—C2—H2A 120.4 C12—C11—H11A 120.2
C1—C2—H2A 120.4 C10—C11—H11A 120.2
C4—C3—C2 120.2 (3) C11—C12—C13 120.8 (3)
C4—C3—H3A 119.9 C11—C12—H12A 119.6
C2—C3—H3A 119.9 C13—C12—H12A 119.6
C3—C4—C5 119.6 (3) C12—C13—C18 119.9 (3)
C3—C4—H4A 120.2 C12—C13—C14 121.4 (3)
C5—C4—H4A 120.2 C18—C13—C14 118.7 (3)
C4—C5—C6 121.6 (3) C15—C14—C13 121.1 (3)
C4—C5—Cl2 118.1 (3) C15—C14—H14A 119.5
C6—C5—Cl2 120.3 (2) C13—C14—H14A 119.5
C1—C6—C5 117.3 (3) C14—C15—C16 120.3 (3)
C1—C6—N1 120.8 (3) C14—C15—H15A 119.9
C5—C6—N1 121.9 (3) C16—C15—H15A 119.9
O1—C7—N1 122.7 (3) C17—C16—C15 120.0 (3)
O1—C7—C8 121.2 (3) C17—C16—H16A 120.0
N1—C7—C8 116.1 (3) C15—C16—H16A 120.0
C9—C8—C7 111.9 (2) C16—C17—C18 121.1 (3)
C9—C8—H8A 109.2 C16—C17—H17A 119.4
C7—C8—H8A 109.2 C18—C17—H17A 119.4
C9—C8—H8B 109.2 C17—C18—C13 118.8 (3)
C7—C8—H8B 109.2 C17—C18—C9 122.9 (3)
H8A—C8—H8B 107.9 C13—C18—C9 118.2 (3)
C6—C1—C2—C3 0.1 (5) C18—C9—C10—C11 0.7 (4)
Cl1—C1—C2—C3 −179.7 (3) C8—C9—C10—C11 −177.9 (3)
C1—C2—C3—C4 −0.5 (5) C9—C10—C11—C12 0.5 (5)
C2—C3—C4—C5 −0.5 (5) C10—C11—C12—C13 −0.8 (5)
C3—C4—C5—C6 1.9 (5) C11—C12—C13—C18 −0.2 (5)
C3—C4—C5—Cl2 −176.1 (3) C11—C12—C13—C14 179.6 (3)
C2—C1—C6—C5 1.2 (4) C12—C13—C14—C15 179.7 (3)
Cl1—C1—C6—C5 −178.9 (2) C18—C13—C14—C15 −0.5 (5)
C2—C1—C6—N1 −179.8 (3) C13—C14—C15—C16 −0.2 (5)
Cl1—C1—C6—N1 0.1 (4) C14—C15—C16—C17 0.9 (5)
C4—C5—C6—C1 −2.3 (4) C15—C16—C17—C18 −0.8 (5)
Cl2—C5—C6—C1 175.8 (2) C16—C17—C18—C13 0.1 (5)
C4—C5—C6—N1 178.7 (3) C16—C17—C18—C9 179.0 (3)
Cl2—C5—C6—N1 −3.2 (4) C12—C13—C18—C17 −179.6 (3)
C7—N1—C6—C1 117.3 (3) C14—C13—C18—C17 0.5 (4)
C7—N1—C6—C5 −63.7 (4) C12—C13—C18—C9 1.4 (4)
C6—N1—C7—O1 0.6 (4) C14—C13—C18—C9 −178.4 (3)
C6—N1—C7—C8 −178.3 (2) C10—C9—C18—C17 179.4 (3)
O1—C7—C8—C9 57.7 (3) C8—C9—C18—C17 −2.0 (4)
N1—C7—C8—C9 −123.3 (3) C10—C9—C18—C13 −1.7 (4)
C7—C8—C9—C10 −99.9 (3) C8—C9—C18—C13 176.9 (3)
C7—C8—C9—C18 81.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.84 (4) 2.00 (4) 2.823 (3) 165 (3)
C8—H8A···O1i 0.99 2.37 3.242 (4) 146
C8—H8B···O1ii 0.99 2.53 3.488 (4) 163

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6731).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2941–o2942. [DOI] [PMC free article] [PubMed]
  4. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2926–o2927. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014869/hb6731sup1.cif

e-68-o1385-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014869/hb6731Isup2.hkl

e-68-o1385-Isup2.hkl (215.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014869/hb6731Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES